Pion Charge Exchange Scattering at High Energies

A. V. Barnes, D. J. Mellema, A. V. Tollestrup and R. L. Walker
California Institute of Technology, Pasadena, California, 91125

and

O. I. Dahl, R. A. Johnson, R. W. Kenney and M. Priststein
Lawrence Berkeley Laboratory, Berkeley, California, 94720

ABSTRACT

We report on a study of pion charge exchange scattering carried out at Fermilab in the energy range 20 to 200 GeV. The results can be described remarkably well by a simple Regge pole model. The charge exchange cross sections in the forward direction lead to a prediction for the difference in total cross sections of \(\pi^- p \) and \(\pi^+ p \) which is in satisfactory agreement with direct measurements of this difference in another experiment at Fermilab.

According to Regge theory, if the charge exchange amplitude at high energies is dominated by the p-pole, it is expected to have a simple power law energy dependence at fixed \(t \), giving a differential cross section of the form

\[
\frac{d\sigma}{dt}(s, t) = \frac{2\alpha(t)}{\nu}
\]

where \(\nu = (s - u)/4M = u + t/4M \), \(u \) is the \(\pi^- \) lab energy and \(s, t \) and \(u \) are the usual energy and momentum transfer variables. The functions \(\beta(t) \) and \(\alpha(t) \) are not predicted by the theory but it has been found from previous data that the "p trajectory," \(\alpha(t) \), is approximately linear in \(t \), the extrapolation of \(\alpha(t) \) as determined for negative \(t \) passing nearly through the points corresponding to the observed spin and mass of the \(\rho \) and \(g \) mesons.
Some deviation from the above simple power law behavior might be expected because of possible Regge cuts and because the observation of asymmetry in charge exchange scattering from polarized targets\(^5,6\) indicates that the amplitudes must have other components besides the dominant pole, at least in the energy region below 10 GeV. Nevertheless, an excellent phenomenological description of our entire set of data is provided by the simple expression (1), with

\[
\alpha(t) = a_0 + a_1 t + a_2 t^2, \quad -1.4 < t \leq 0 \text{ GeV}^2
\]

\[
B(t) = b_1 e^{bt} - t(t - t_0)^2 (b_2 + b_3 t + b_4 t^2)e^{b_2 t}
\]

Values of the parameters found from a fit to our data are

\[
a_0 = 0.481 \pm 0.004, \quad a_1 = 0.928 \pm 0.034, \quad a_2 = 0.205 \pm 0.055
\]

\[
b_1 = 5.20 \pm 0.21, \quad b_2 = 6.16 \pm 0.61, \quad t_0 = -0.542 \pm 0.004
\]

\[
b_3 = 2340 \pm 80, \quad b_4 = 2.34 \pm 0.10 \times 10^5
\]

\[
b_5 = (-0.77 \pm 1.41) \times 10^5, \quad b_6 = (-11.6 \pm 5.4) \times 10^5
\]

The units are such that \(t\) is in GeV\(^2\), \(v\) in GeV, and \(\frac{d\sigma}{dt}\) in pb/GeV\(^2\). The fit gives a \(\chi^2\) of 107 for 128 degrees of freedom.

Curves computed with the above parameters are shown in Figs. 1 and 2. The data points shown in these figures and also the cross sections given in Table 1 have been corrected for the effects of experimental t-resolution and finite bin widths. This correction (or unfolding) has been made as follows: the fitting function (1) has been folded with the t-resolution and integrated over the finite bin widths in order to obtain "smeared" cross sections to be compared with the measured data in minimizing \(\chi^2\). The ratios of unsmeared to smeared fitting cross sections are then used as the correction factors applied to the measured data.

Separate fits at each energy were also made to investigate the energy dependence of the parameter \(t_0\). The values of \(t_0\) fluctuate by \(\pm 0.02\) GeV\(^2\) but no systematic variation with energy is apparent.

The trajectory \(\alpha(t)\) obtained from the overall fit is shown by the solid curve in Fig. 3, together with "data points," \(\alpha^*(t)\), obtained in the conventional manner by fitting the data at each value of \(t\) separately, using the form (1). As may be seen in this figure, the observed values of \(\alpha(t)\) in the \(t\) range from 0 to -0.3 GeV\(^2\) fall remarkably close to a straight line drawn through the points corresponding to the \(p\) and \(g\) mesons.

Although the parameterization given above fits our data remarkably well, it agrees only qualitatively with previous data\(^2,3,4\) as shown by an example at 5.9 GeV in Fig. 1. Effective trajectories obtained from the lower energy data have had a significantly larger intercept \(a_0\).

We next consider a comparison between our data and the difference in total cross sections for \(\pi^p\) and \(\pi^p\) interactions, \(\Delta \sigma = \sigma_{\text{tot}}(\pi^p) - \sigma_{\text{tot}}(\pi^p)\). As is well known, isospin invariance and the optical theorem relate this difference to the imaginary part of the forward charge exchange amplitude. Expressed in terms of cross sections, this relation is

\[
\frac{d\sigma}{dt}(t=0) = \frac{\pi}{2} R \left(1 + R^2\right) |\text{Im} \alpha(0)|^2 = 25.54 \left(1 + R^2\right) (\Delta \sigma)^2
\]

\[
\frac{d\sigma}{dt}(t=0)^2
\]

where \(R\) is the ratio of real to imaginary parts of the forward charge exchange amplitude \(\alpha(0)\), \(\frac{d\sigma}{dt}\) is the incident beam momentum in GeV, and \(\frac{d\sigma}{dt}\) is the charge exchange cross section in pb/GeV\(^2\) if \(\Delta \sigma\) is in mb. Furthermore, if we assume that the observed power law dependence of \(\frac{d\sigma}{dt}(t=0)\) extends to higher energies, dispersion relations give a relation between the ratio \(R\) and the exponent \(\alpha(0)\); \(R = \tan \left(\frac{\alpha(0)}{2}\right)\).
We are thus able to predict the difference $\Delta \sigma$ from the charge exchange data. The result is shown in Fig. 4 where it is compared with direct measurements of this difference in three experiments$^7,8,9)$. Our prediction agrees very well with the results of Carroll et al.9 obtained at Fermilab in the energy range 23 to 240 GeV.

We wish to express our appreciation to the many people at the Fermilab, at LBL and at Caltech, who have contributed much to this experiment. A powerful system for on-line analysis of data was created by J. F. Bartlett. The charged particle and gamma veto system was designed by M. A. Wahlig. D. Hermeyer helped build and maintain much of the electronics and also helped take some of the data. Others to whom we are particularly indebted are D. Eartley, P. Koehler, R. Lundy, H. Haggerty, C. C. Fox, R. D. Field, and P. R. Stevens.

References and Footnotes

Captions

Table 1. Differential cross sections in \(\mu b/\text{GeV}^2 \) and other results

for \(\bar{\nu}p \rightarrow \pi^0n \). These data have been corrected for the effects

of experimental \(t \)-resolution and finite bin widths. Only statistical errors and errors in \(t \)-dependent corrections are given for

\(\frac{d\sigma}{dt} \) but all systematic errors are included in the integral cross

sections \(\sigma_I \). The right-hand column, \(a^*(t) \), contains values of the

trajectory obtained by fitting the data for each value of \(t \)

separately.

Figure 1. Differential cross sections at 20.8, 64.4, and 199.3 GeV from this

experiment, and at 5.9 GeV from Ref. 2. The curves are the result

of a fit described in the text.

Figure 2. Differential cross sections in the region of small \(t \). The curves

are the result of a fit described in the text.

Figure 3. The effective trajectory \(a(t) \).

Figure 4. Data from three experiments (Refs. 7, 8, 9) on the difference \(\Delta\sigma \)

of \(\bar{\nu}p \) and \(\nu^+p \) total cross sections, compared to the prediction

(solid line) from our data on charge exchange scattering. This

prediction is obtained from the parameters of the fit described in

the text.
Fig. 1

Fig. 2
<table>
<thead>
<tr>
<th>(-t^2) (GeV²)</th>
<th>Bin Width (GeV²)</th>
<th>(a(t))</th>
<th>Beam Momentum GeV</th>
<th>Number of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.002</td>
<td>0.004</td>
<td></td>
<td>20.8</td>
<td>104 \pm 5</td>
</tr>
<tr>
<td>0.006</td>
<td>0.004</td>
<td></td>
<td>40.8</td>
<td>50.6 \pm 2.1</td>
</tr>
<tr>
<td>0.012</td>
<td>0.008</td>
<td></td>
<td>64.4</td>
<td>32.0 \pm 1.3</td>
</tr>
<tr>
<td>0.020</td>
<td>0.008</td>
<td></td>
<td>100.7</td>
<td>20.3 \pm 0.8</td>
</tr>
<tr>
<td>0.028</td>
<td>0.008</td>
<td></td>
<td>150.2</td>
<td>13.4 \pm 0.5</td>
</tr>
<tr>
<td>0.040</td>
<td>0.016</td>
<td></td>
<td>199.3</td>
<td>10.4 \pm 0.4</td>
</tr>
<tr>
<td>0.056</td>
<td>0.016</td>
<td></td>
<td>0.491 \pm 0.012</td>
<td></td>
</tr>
<tr>
<td>0.072</td>
<td>0.016</td>
<td></td>
<td>0.474 \pm 0.011</td>
<td></td>
</tr>
<tr>
<td>0.090</td>
<td>0.020</td>
<td></td>
<td>0.474 \pm 0.010</td>
<td></td>
</tr>
<tr>
<td>0.110</td>
<td>0.020</td>
<td></td>
<td>0.471 \pm 0.009</td>
<td></td>
</tr>
<tr>
<td>0.140</td>
<td>0.040</td>
<td></td>
<td>0.472 \pm 0.008</td>
<td></td>
</tr>
<tr>
<td>0.180</td>
<td>0.040</td>
<td></td>
<td>0.477 \pm 0.008</td>
<td></td>
</tr>
<tr>
<td>0.220</td>
<td>0.040</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>0.040</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.310</td>
<td>0.060</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.370</td>
<td>0.060</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>0.100</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.550</td>
<td>0.100</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.650</td>
<td>0.100</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.750</td>
<td>0.100</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>0.890</td>
<td>0.200</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>1.100</td>
<td>0.200</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
<tr>
<td>1.300</td>
<td>0.200</td>
<td></td>
<td>0.393 \pm 0.007</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\frac{d\sigma}{dt}(t=0)) from fit</th>
<th>100.3</th>
<th>49.8</th>
<th>30.9</th>
<th>19.51</th>
<th>12.88</th>
<th>9.61</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1(\mu b)=\int_0^{t=0} \frac{d\sigma}{dt} dt) (\sim -1.5)</td>
<td>22.6 \pm 1.1</td>
<td>9.8 \pm 0.5</td>
<td>5.61 \pm 0.25</td>
<td>3.20 \pm 0.14</td>
<td>2.02 \pm 0.09</td>
<td>1.44 \pm 0.06</td>
</tr>
</tbody>
</table>

| Number of Events | 26,700 | 36,500 | 29,900 | 30,700 | 26,100 | 23,400 |

Table 1
Fig. 3

Fig. 4