J/ψ polarization in p + p collisions at √s = 200 GeV in STAR *

BARBARA TRZECIAK FOR THE STAR COLLABORATION

Faculty of Physics, Warsaw University of Technology
Koszykowa 75, 00-662 Warsaw, Poland

In this paper, J/ψ polarization at mid-rapidity in p + p collisions at √s = 200 GeV measured in the STAR experiment at RHIC is reported. J/ψ production is analyzed via the dielectron decay channel. J/ψ polarization is extracted from the decay angular distribution in the helicity frame. The J/ψ polarization is measured at transverse momentum range (2 - 6) GeV/c and is found to be consistent with NLO+ Color Singlet Model (NLO+ CSM), Color Octet Model (COM) predictions and with no polarization within current uncertainties.

PACS numbers: 13.88.+e, 13.20.Gd, 14.40.Lb

1. Introduction

A number of models with different J/ψ production mechanisms are able to describe the measured J/ψ production cross section reasonably well. It suggests that other observables are needed to discriminate between different J/ψ production models. J/ψ spin alignment, commonly named as J/ψ polarization, can be used as such an observable since various models have different p_T dependent predictions on the J/ψ polarization.

The Color Evaporation Model (CEM) describes J/ψ cross sections measured in many experiments reasonably well but has no prediction power regarding the J/ψ polarization. The NLO+ Color Singlet Model (CSM) [II] predicts longitudinal J/ψ polarization in the helicity frame at low and mid p_T at mid-rapidity. That recent calculations of the CSM for the yield differential in p_T show better agreement with RHIC data at low and mid p_T than earlier CSM calculations and the result for J/ψ polarization is in good agreement with the PHENIX data. Non-relativistic quantum chromodynamics (NRQCD) effective theory, also known as Color Octet Model

* Presented at Strangeness in Quark Matter, 18-24 September 2011 Polish Academy of Arts and Sciences, Cracow, Poland
(COM) predicts transverse polarization at high $J/\psi \ p_T$, $p_T > 5$ GeV/c which is in disagreement with the polarization measurement from the CDF experiment at FermiLab [2]. On the other hand a tuned NRQCD predicts longitudinal J/ψ polarization at $1.5 < p_T < 5$ GeV/c at mid-rapidity and is able to qualitatively describe the PHENIX J/ψ polarization measurements as well as the cross section measurements [3].

The measurement of J/ψ polarization at $p_T > 5$ GeV/c is expected to have discrimination power against different models of J/ψ production since, e.g., NLO^+ CSM and COM predict different polarization in that $J/\psi \ p_T$ region.

1.1. Decay angular distribution

In this study, J/ψ polarization is analyzed via the angular distribution of the electron decay from charmonium in the helicity frame [4]. The angular distribution is derived from the density matrix elements of the production amplitude using parity conservation rules. Polar angle θ is the angle between the positron momentum vector in the J/ψ rest frame and J/ψ momentum vector in the laboratory frame.

The angular distribution integrated over the azimuthal angle is parametrized:

$$\frac{dN}{d \cos \theta} \propto 1 + \lambda \cos^2 \theta$$

where λ is the polarization parameter that contains both the longitudinal and transverse components of the J/ψ cross section. When $\lambda = 0$ there is no polarization, $\lambda = -1$ means full longitudinal polarization and $\lambda = 1$ corresponds to full transverse polarization.

2. Data analysis

In this analysis, data recorded in 200 GeV $p + p$ collisions in the STAR experiment in year 2009 is used. The analyzed data was sampled from an integrated luminosity of $\sim 1.5 \ p b^{-1}$ and was triggered by the STAR Barrel Electromagnetic Calorimeter (BEMC). The trigger required transverse energy deposited in a single BEMC tower ($\Delta \eta \times \Delta \phi = 0.05 \times 0.05$) to be within $2.6 < E_T \leq 4.3$ GeV.

J/ψ is reconstructed via its dielectron decay channel $J/\psi \to e^+e^-$ with branching ratio BR = 5.9%, and is required that at least one of electrons from J/ψ decay satisfies the trigger conditions. The Time Projection Chamber (TPC), Time Of Flight (TOF) and BEMC detectors are used to reconstruct and identify electrons. The TPC provides information about dE/dx. Information from the TOF is very useful for electron identification and hadron rejection at lower momenta, where electron and hadron dE/dx bands
overlap, $|1/\beta - 1| < 0.03$ ($\beta = v/c$) cut was applied at $p < 1.4 \text{ GeV}/c$. In 2009, 72% of the TOF detector was installed. At higher momenta the BEMC can reject hadrons very efficiently. For momenta above 1.4 GeV/c a cut of $E/p > 0.5$ was used, where E is energy deposited in a single BEMC tower (for electrons E/p ratio is expected to be ≈ 1).

2.1. J/ψ signal

The cuts mentioned above allowed us to obtain a very clear J/ψ signal with a signal to background ratio of 15 and very high significance of 26σ. Fig. 1a shows the invariant mass distribution of all combinations of e^+e^- pairs in black (closed circles) and combinatorial background in red (open circles). The combinatorial background is calculated using like-sign technique, from a sum of e^+e^- and e^-e^- pairs. The J/ψ signal is obtained by subtracting the red histogram (background) from the black histogram (signal+background), see Fig. 1b. The number of J/ψ's calculated by counting bin entries in the invariant mass range (2.9 - 3.3) GeV/c^2 is 772 ± 29 in the J/ψ p_T range (2 - 6) GeV/c and $|y| < 1$. The same mass window is used for the polarization analysis for which the signal is split into 3 statistically comparable p_T bins.

![Fig. 1: Invariant mass distributions in J/ψ mass window (2.9 - 3.3) GeV/c^2. J/ψ p_T range (2 - 6) GeV/c and $|y| < 1$. Fig. (a) shows signal+background in black (closed circles) and like-sign background in red (open circles). Fig. (b) shows J/ψ signal after the combinatorial background subtraction.](image)

3. J/ψ polarization

The uncorrected $\cos\theta$ distribution is obtained using the same electron identification cuts as J/ψ signal, in the J/ψ p_T range of (2 - 6) GeV/c and $|y| < 1$. The $\cos\theta$ distribution is divided into 3 J/ψ p_T bins: $2 < p_T < 3$ GeV/c, $3 < p_T < 4$ GeV/c and $4 < p_T < 6$ GeV/c. The $\cos\theta$ distributions for the 3 p_T bins, with combinatorial background subtracted are presented in Fig. 2a, 2c, 2e respectively.
3.1. Corrections

In order to get the $\cos\theta$ corrections, unpolarized Monte Carlo J/ψ's with uniform p_T and rapidity distributions are embedded into real events and the detector response is simulated. All cuts used in the analysis were applied and the $\cos\theta$ efficiency as a function of J/ψ transverse momentum was obtained. $\cos\theta$ distributions were also re-weighted according to the real J/ψ p_T and y shapes. Obtained in that way, corrections were applied to uncorrected $\cos\theta$ distributions from data in 1 GeV/c wide J/ψ p_T bins. Corrections include acceptance correction, tracking efficiency, electron identification efficiency and trigger efficiency. The total J/ψ efficiency is shown vs J/ψ transverse momentum in Fig. 2b, 2d, 2f. The most critical factor is trigger efficiency. At least one of electrons from J/ψ decay must have p_T above 2.6 GeV/c.
since is required to satisfy the trigger conditions. It causes significant loss in number of observed J/ψ at lower J/ψ p_T and the efficiency decrease with decreasing $|\cos\theta|$. It is well visible in Fig. 2b where we lose all entries at $\cos\theta \sim 0$. With increasing J/ψ p_T the trigger efficiency increase but because the trigger has also the upper threshold ($E_T \leq 4.3$ GeV) and due to the acceptance effect (single electron $p_T > 0.4$ GeV/c and $|\eta| < 1$) we see drop of total efficiency at $|\cos\theta| \sim 1$, see Fig. 2f.

![Graphs](attachment:graphs.png)

(a) $\lambda = 0.46 \pm 0.40 \text{ (stat.)} \pm 0.34 \text{ (sys.)}, 2 < J/\psi p_T < 3$ GeV/c

(b) $\lambda = -0.32 \pm 0.20 \text{ (stat.)} \pm 0.16 \text{ (sys.)}, 3 < J/\psi p_T < 4$ GeV/c

(c) $\lambda = -0.17 \pm 0.29 \text{ (stat.)} \pm 0.11 \text{ (sys.)}, 4 < J/\psi p_T < 6$ GeV/c

Fig. 3: Corrected $\cos\theta$ distributions with the fit: $\text{norm}(1 + \lambda \cos^2 \theta)$, errors are statistical.

3.2. J/ψ polarization result

The corrected $\cos\theta$ distributions are fitted with: $\text{norm}(1 + \lambda \cos^2 \theta)$ (see Eq. 1.1) with no constraints on the fit parameters, see Fig. 3a, 3b, 3c where norm is a normalization factor, λ is the polarization parameter. Lines represent the most likely fits. Obtained results of the polarization parameter are: $\lambda = 0.46 \pm 0.40 \text{ (stat.)} \pm 0.34 \text{ (sys.)}$, $\lambda = -0.32 \pm 0.20 \text{ (stat.)} \pm 0.16 \text{ (sys.)}$, $\lambda = -0.17 \pm 0.29 \text{ (stat.)} \pm 0.11 \text{ (sys.)}$ for J/ψ p_T ranges: (2 - 3) GeV/c, (3 - 4) GeV/c, (4 - 6) GeV/c respectively. Dominant sources of systematic uncertainties are: $\cos\theta$ binning and acceptance, J/ψ mass range, electron identification cut, trigger efficiency. Detailed work on systematic error estimation is in progress.
Polarization parameters as a function of $J/\psi p_T$ are shown in Fig. 4. The STAR result (red star symbols) is compared with $NLO^+ CSM$ [1] (blue shaded area) and COM [3] (gray hatched area) model predictions and with the PHENIX result for J/ψ polarization at mid-rapidity (black symbols) [5]. The STAR result is consistent with the COM and CSM predictions within current experimental and theoretical uncertainties. The measurement is also consistent with the PHENIX data and extends the p_T reach to ~ 6 GeV/c.

4. Summary

In this report, the J/ψ polarization measurement from the STAR experiment at mid-rapidity is presented. The polarization parameter λ is extracted in the helicity frame in 3 $J/\psi p_T$ bins. Within current uncertainties the obtained transverse momentum dependent λ parameter is consistent with $NLO^+ CSM$ and COM model predictions, and with no polarization.

REFERENCES