Observation of spin correlation in $t\bar{t}$ events from pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract

A measurement of spin correlation in $t\bar{t}$ production is reported using data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 2.1 fb$^{-1}$. Candidate events are selected in the dilepton topology with large missing transverse energy and at least two jets. The difference in azimuthal angle between the two charged leptons in the laboratory frame is used to extract the correlation between the top and antitop quark spins. In the helicity basis the measured degree of correlation corresponds to $A_{\text{helicity}} = 0.40^{+0.09}_{-0.08}$, in agreement with the next-to-leading-order Standard Model prediction. The hypothesis of zero spin correlation is excluded at 5.1 standard deviations.
A measurement of spin correlation in $t\bar{t}$ production is reported using data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 2.1 fb$^{-1}$. Candidate events are selected in the dilepton topology with large missing transverse energy and at least two jets. The difference in azimuthal angle between the two charged leptons in the laboratory frame is used to extract the correlation between the top and antitop quark spins. In the helicity basis the measured degree of correlation corresponds to $A_{\text{helicity}} = 0.40^{+0.07}_{-0.08}$, in agreement with the next-to-leading-order Standard Model prediction. The hypothesis of zero spin correlation is excluded at 5.1 standard deviations.

The top quark was discovered in 1995 [1, 2] at the Tevatron proton-antiproton collider. The lifetime of the top quark is at least an order of magnitude shorter than the timescale for strong interactions, implying that the top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4]. While the polarization of top quark decays before hadronization [3–7]. Therefore the timescale for strong interactions, implying that the top quark is at least an order of magnitude shorter than its decay products and can be measured directly via its angular distributions [4].
the $\Delta \phi$ distribution. The fit result is converted into a value of A in two bases: the helicity basis, using the direction of flight of the top quark in the center-of-mass frame of the $t\bar{t}$ system [31, 32], and the maximal basis which is optimized for $t\bar{t}$ production from gg fusion, as described in Ref. [12]. In the helicity basis the SM correlation coefficient is calculated to be $A_{\text{helicity}}^{\text{SM}} = 0.31$ [8], and in the maximal basis $A_{\text{maximal}}^{\text{SM}} = 0.44$, evaluated at matrix-element level using MCONLO. Theoretical uncertainties due to the variation of factorization and renormalization scales and due to PDFs are of the order of 1% including next-to-leading-order (NLO) QCD corrections in $t\bar{t}$ production and top quark decay [22].

The ATLAS detector [33] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector (ID) covering $|\eta| < 2.5$ and comprising a silicon pixel detector, a silicon microstrip detector and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, followed by a liquid argon electromagnetic sampling calorimeter (LAr) with high granularity. An iron-scintillator tile calorimeter provides an electromagnetic calorimeter (LAr) with high granularity. An iron-scintillator tile calorimeter provides hadronic energy measurements in the central rapidity region ($|\eta| < 1.7$). The end-cap and forward regions are instrumented with LAr calorimeters for both electromagnetic (EM) and hadronic energy measurements up to $|\eta| < 4.9$. The calorimeter system is surrounded by a muon spectrometer (MS) with high-precision tracking chambers covering $|\eta| < 2.7$ and separate trigger chambers. The magnetic field is provided by a barrel and two end-cap superconducting toroid magnets. A three-level trigger system is used to select events with high-p_T leptons for this analysis. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the trigger rate to 75 kHz. This is followed by two software-based trigger levels that together reduce the event rate to $200 - 400$ Hz.

This analysis uses collision data with a center-of-mass energy of $\sqrt{s} = 7$ TeV recorded between March 22 and August 22, 2011, corresponding to an integrated luminosity of 2.1 fb$^{-1}$. The luminosity is given with an uncertainty of 3.7% [34, 35].

Monte Carlo (MC) simulation samples are used to evaluate the contributions, and shapes of distributions of kinematic variables, for signal $t\bar{t}$ events and background processes not evaluated from complementary data samples. All MC samples are processed with the GEANT4 [36] simulation of the ATLAS detector [37] and are passed through the same analysis chain as data. The simulation includes multiple pp interactions per bunch crossing (pile-up). Events are weighted such that the distribution of the average number of interactions per bunch crossing that observed in data. The mean number of pile-up interactions varies between 5.7 and 7.1 for the different data-taking periods.

Samples with SM spin correlation and without spin correlation are generated using MC@NLO with the CTEQ6.6 PDF set and a top quark mass of 172.5 GeV. In both cases the events are hadronized using the HERWIG shower model [38, 39]. Within the statistical uncertainty of the MC generation the yields of the SM $t\bar{t}$ and uncorrelated $t\bar{t}$ samples are the same. The background MC samples are described in Ref. [40].

Candidate events are selected in the dilepton topology. Channels with τ leptons are not explicitly considered, but reconstructed leptons can arise from leptonic τ decays and are included in the signal MC samples. The full object and event selection is discussed in Ref. [40]; therefore only a brief overview is given here. The analysis requires events selected online by an inclusive single-lepton trigger (e or μ). The detailed trigger requirements vary throughout data-taking, but the p_T threshold ensures that the triggered lepton candidate is in the efficiency plateau. Electron candidates are reconstructed using energy depositions in the EM calorimeter associated to reconstructed tracks of charged particles in the ID. Muon candidate reconstruction makes use of tracking in the MS and ID. Jets are reconstructed with the anti-k_t algorithm [41] with a radius parameter $R = 0.4$, starting from energy clusters of adjacent calorimeter cells. The symbol E_T^{miss} is used to denote the magnitude of the missing transverse momentum [42]. The following kinematic requirements are made:

- Electron candidates are required to have $p_T > 25$ GeV and $|\eta| < 2.47$, excluding electrons from the transition region between the barrel and end-cap calorimeters defined by $1.37 < |\eta| < 1.52$. Muon candidates are required to have $p_T > 20$ GeV and $|\eta| < 2.5$. Events must have exactly two oppositely-charged lepton candidates ($e^+e^-, \mu^+\mu^-, e^\pm\mu^\mp$).

- Events must have at least two jets with $p_T > 25$ GeV and $|\eta| < 2.5$.

- Events in the e^+e^- and $\mu^+\mu^-$ channels are required to have $m_{\ell\ell} > 15$ GeV to ensure compatibility with the MC samples and remove contributions from T and J/ψ production.

- Events in the e^+e^- and $\mu^+\mu^-$ channels must satisfy $E_T^{\text{miss}} > 60$ GeV to suppress backgrounds from $Z/\gamma^* + \text{jets}$ and $W + \text{jets}$ events. In addition, $m_{\ell\ell}$ must differ by at least 10 GeV from the Z-boson mass ($m_Z = 91$ GeV) to further suppress the $Z/\gamma^* + \text{jets}$ background.

- For the $e^\pm\mu^\mp$ channel, no E_T^{miss} or $m_{\ell\ell}$ cuts are applied. In this case, the remaining background from $Z/\gamma^* \rightarrow \tau\tau + \text{jets}$ production is further suppressed by requiring that the scalar sum of the p_T of all selected jets and leptons is greater than 130 GeV.
The event selection rejects $Z/\gamma^{*}+\text{jets}$ events with low invariant mass and those with invariant mass near the Z-boson mass. However $Z/\gamma^{*}+\text{jets}$ events with an $e^{+}e^{-}$ or $\mu^{+}\mu^{-}$ invariant mass outside of these regions can enter the signal sample when there is large E_{T}^{miss}, typically from mismeasurement. These events are difficult to properly model in simulations due to uncertainties on the non-Gaussian tails of the E_{T}^{miss} distribution, on the cross section for Z-boson production with multiple jets, and on the lepton energy resolution. The $Z/\gamma^{*}+\text{jets}$ background in dielectron and dimuon events is evaluated using a data-driven (DD) technique in which the MC simulation yield of $Z/\gamma^{*}+\text{jets}$ events is normalized to the data using a control region defined by a dilepton invariant mass within 10 GeV of the Z-boson mass.

The backgrounds from events with misidentified (fake) leptons, primarily from $W+\text{jets}$ events, are evaluated from data using a matrix method [43]. The matrix method makes use of the efficiency of real lepton identification and rate of lepton misidentification measured in several control regions, which are chosen to be enhanced in different sources of fake leptons [40]. Contributions from real leptons due to $W+\text{jets}$ events in the fake lepton control region are subtracted using MC simulation. Comparisons of data and MC simulation in control regions are used to tune the rates to the expected signal region composition. The fake lepton yield is then estimated by weighting each event in a sample containing one or two loosely-identified leptons.

The contributions from other electroweak backgrounds processes with two real leptons, such as single top, $Z \to \tau\tau$, WW, ZZ and WZ production are determined from MC simulations normalized to the theoretical predictions. The expected numbers of signal and background events are compared to data in Table I. The number of observed events in each channel is: 477 for the $e^{+}e^{-}$ channel, 906 for the $\mu^{+}\mu^{-}$ channel and 2930 for the $e^{\pm}\mu^{\mp}$ channel, which dominates the total yield due to the looser selection criteria.

A binned log-likelihood fit is used to extract the spin correlation from the $\Delta \phi$ distribution in data. The fit includes a linear superposition of the distribution from SM tt MC simulation with coefficient $^{f}_{\text{SM}}$, and from the uncorrelated tt MC simulation with coefficient $(1-f_{\text{SM}})$. The $e^{+}e^{-}$, $\mu^{+}\mu^{-}$ and $e^{\pm}\mu^{\mp}$ channels are fitted simultaneously with a common value of $^{f}_{\text{SM}}$, a tt normalization that is allowed to vary (per channel) and a fixed background normalization. The fitted tt normalizations are in agreement with the theoretical prediction of the production cross section [44]. Negative values of $^{f}_{\text{SM}}$ correspond to an anti-correlation of the top and antitop quark spins. A value of $^{f}_{\text{SM}} = 0$ implies that the spins are uncorrelated and values of $^{f}_{\text{SM}} > 1$ indicate a larger strength of the tt spin correlation than predicted by the SM. The extraction of $^{f}_{\text{SM}}$ using the fitting procedure has been verified over a wide range of possible values, $-1 \leq ^{f}_{\text{SM}} \leq 2$, using MC simulation pseudo-experiments with full detector simulation.

Figure 2 shows the reconstructed $\Delta \phi$ distribution for the sum of the three dilepton channels in data. SM and uncorrelated tt MC samples are overlaid along with the expected backgrounds.

![FIG. 2. Reconstructed charged lepton $\Delta \phi$ distribution for the sum of the three dilepton channels. The integrated number of events for both the SM and the uncorrelated tt samples is fixed to the value from the fit. MC background samples are normalized using their predicted cross sections and the DD method in the case of $Z/\gamma^{*}+\text{jets}$. The fake lepton background is evaluated from data.](image-url)

Systematic uncertainties are evaluated by applying the fit procedure to pseudo-experiments created from MC samples modified to reflect the systematic variations. The fit of $^{f}_{\text{SM}}$ is repeated to determine the effect of each systematic uncertainty using the nominal templates. The difference between the means of Gaussian fits to the results from many pseudo-experiments using nominal and modified pseudo-data is taken as the systematic uncer-
tainty on f^{SM}. The effect of the luminosity uncertainty is evaluated by scaling the number of signal and background events by the luminosity uncertainty, for backgrounds evaluated from MC simulation. Due to the finite size of the MC samples, the signal and background templates have statistical uncertainties. Each template bin is varied within its uncertainty, then f^{SM} is re-evaluated. The resulting distribution for f^{SM} is fitted with a Gaussian. The width is taken as the MC simulation statistical uncertainty.

The mis-modeling of the muon (electron) trigger, reconstruction and selection efficiencies in the simulation is corrected using scale factors derived from measurements of the efficiency in data. $Z \rightarrow \mu^+ \mu^- (Z \rightarrow e^+ e^-)$ decays are used to obtain scale factors as a function of the kinematic variables of the leptons. Systematic uncertainties on these scale factors are evaluated by varying the selection of events used in the efficiency measurements and by checking the stability of the measurements over the course of the data-taking period. The modeling of the lepton momentum scale and resolution is studied using the reconstructed dilepton invariant mass distributions of $Z/\gamma^* \rightarrow \mu^+ \mu^-$ and the simulation is adjusted accordingly.

The jet energy scale, jet energy resolution and reconstruction efficiency affect the acceptance. The jet energy scale and its uncertainty are derived by combining information from test-beam data, LHC collision data and simulation [43]. For jets within the acceptance, the jet energy scale varies in the range $4 - 10\%$ as a function of jet p_T and η, including an additional uncertainty due to multiple pp interactions. The energy resolution for jets is measured in dijet events and agrees with predictions from simulation within 10% for jets with $p_T > 30$ GeV. The jet reconstruction efficiency is evaluated using minimum bias and dijet events and depends on the p_T of the jet. Its systematic uncertainty is in the range $1 - 3\%$ based on the comparison of data and MC simulation. The uncertainties from these effects and resolution corrections for leptons and jets are propagated into the calculation of E_T^{miss}.

The uncertainty on the kinematic properties of the $t \bar{t}$ signal events gives rise to systematic uncertainties on the shape of the $\Delta \phi$ distribution and signal acceptance. This is evaluated by considering the choice of generator, the parton shower and fragmentation model, the modeling of initial and final state radiation (ISR/FSR), the PDF and top quark mass. The generator uncertainty is evaluated by comparing the MC@NLO predictions with those of POWHEG [44, 45] interfaced to HERWIG. To estimate the uncertainty due to the parton shower modeling and fragmentation, the difference between POWHEG interfaced to HERWIG (cluster fragmentation) and PYTHIA [49] (string fragmentation) is taken. The uncertainty due to ISR/FSR is evaluated using the ACRYLO generator [50] interfaced to the PYTHIA shower model, by varying the parameters controlling ISR and FSR in a range consistent with those used in the Perugia Hard/Soft tune variations [51]. The average of the absolute values of the upward and downward variations is taken as the systematic uncertainty. The impact of the choice of PDF in simulation was studied by reweighting the MC samples to three PDF sets (CTEQ6.6, MSTW2008NLO [52] and NNPDF20 [53]) and taking the largest of either the variation interval (from the error sets) or difference between the central values of any two PDF sets [52]. The systematic uncertainty associated with the top quark mass is assessed using MC@NLO samples generated assuming different top quark masses in the range 167.5 to 177.5 GeV in increments of 2.5 GeV. The values of f^{SM} are fitted as a linear function of the top quark mass and a conservative systematic uncertainty is obtained by evaluating this function at 172.5 \pm 2.5 GeV.

Overall normalization uncertainties on the backgrounds from single top quark and diboson production are taken to be 10% [54, 55] and 5% [56] respectively. The resulting uncertainty on f^{SM} is found to be negligible. The systematic uncertainties from the background evaluations derived from the data include the statistical uncertainties in these methods as well as the systematic uncertainties arising from lepton and jet identification and reconstruction, and the MC simulation estimates used. An uncertainty on the DD $Z/\gamma^* \rightarrow e^+ e^-$ estimation is evaluated by varying the E_T^{miss} cut in the control region by ± 5 GeV and is found to be negligible. A mis-modeling of the Z-boson p_T is observed in the Z-boson dominated control region. The Z-boson p_T distribution is weighted to achieve agreement with data and the difference between the unweighted and weighted MC simulation is taken as an additional, but negligible, modeling uncertainty on f^{SM}. For the DD fake lepton background the systematic uncertainty affects the shape of the E_T^{miss} distribution. Systematic uncertainties are derived by adjusting the signal region composition based on uncertainties estimated from MC simulation, and by comparing data and MC samples. The different sources of fake leptons have different shapes and the change in relative flavor composition of the sample gives an estimate of the shape uncertainty.

Due to a hardware failure a small rectangular region of the LAr calorimeter could not be read out in a subset of the data (0.87 fb$^{-1}$). This affects the electron, jet and E_T^{miss} reconstruction. Electrons within the affected region are rejected, as are events in which a jet with $p_T > 20$ GeV is in the affected region. The MC simulation is divided into subsamples based on the fraction of the total luminosity affected and treated in the same way as data. A systematic uncertainty is evaluated by comparing MC simulation with and without the jet and electron rejection.

The effect of the systematic uncertainties in terms of Δf^{SM} are listed in Table [11]. The total systematic uncer-

The measured value of $f_{SM}^{\text{configured}}$ for the combined fit is found to be $1.30 \pm 0.14 \text{ (stat)} +0.27^{+0.22}_{-0.22} \text{ (syst)}$. This can be obtained to use a value for $A_{\text{basis}}^{\text{measured}}$ by applying it as a multiplicative factor to the NLO QCD prediction of $A_{\text{basis}}^{\text{theory}}$. The subscript ‘basis’ indicates a chosen spin basis \([12]\). For the helicity basis this results in $A_{\text{helicity}}=0.40 \pm 0.04 \text{ (stat)} +0.08^{+0.12}_{-0.07} \text{ (syst)}$, and for the maximal basis $A_{\text{maximal}}=0.57 \pm 0.06 \text{ (stat)} +0.16^{+0.12}_{-0.06} \text{ (syst)}$, where the SM predictions are 0.31 and 0.44 respectively. MC simulation pseudo-experiments including systematic uncertainties are used to calculate the probability that a value of $f_{SM}^{\text{configured}}$ or larger is measured using the assumption of $f_{SM}^{\text{configured}}=0$. For the observed limit the value of $f_{SM}^{\text{configured}}$ measured in data is used and for the expected limit a value of $f_{SM}^{\text{configured}}=1$ is used. The hypothesis of zero $t\bar{t}$ spin correlation is excluded with a significance of 5.1 standard deviations. The expected significance is 4.2 standard deviations.

In conclusion, the first measurement of $t\bar{t}$ spin correlation at the LHC has been presented using 2.1 fb$^{-1}$ of ATLAS data in the dilepton decay topology. A fit template is performed to the Δo distribution and the measured value of $f_{SM}^{\text{configured}}=1.30 \pm 0.14 \text{ (stat)} +0.27^{+0.22}_{-0.22} \text{ (syst)}$ is consistent with the SM prediction. The data are inconsistent with the hypothesis of zero spin correlation with a significance of 5.1 standard deviations.

ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundations, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

The ATLAS coordinate system is right-handed with the pseudorapidity, η, defined as
η = −ln[tan(θ/2)], where the polar angle θ is measured with respect to the LHC beamline. The azimuthal angle, φ, is measured with respect to the x-axis, which points towards the center of the LHC ring. The z-axis is parallel to the anti-clockwise beam viewed from above. Transverse momentum and energy are defined as
p_T = p sinθ and E_T = E sinθ, respectively.

S. Frixione and B. R. Webber, JHEP 06, 029 (2002)

High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America

Department of Physics, University of Arizona, Tucson AZ, United States of America

Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America

Physics Department, University of Athens, Athens, Greece

Physics Department, National Technical University of Athens, Zografou, Greece

Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Physics Department, University of Athens, Athens, Greece

Department of Physics, National Technical University of Athens, Zografou, Greece

Department of Physics, University of Arizona, Tucson AZ, United States of America

Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America

Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America

Department of Physics, Humboldt University, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

Department of Physics, Brandeis University, Waltham MA, United States of America

Department of Physics, Boston University, Boston MA, United States of America

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

Science and Technology Center, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

Faculty of Science, Hiroshima University, Hiroshima, Japan

a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

d Also at TRIUMF, Vancouver BC, Canada

e Also at Department of Physics, California State University, Fresno CA, United States of America

f Also at Novosibirsk State University, Novosibirsk, Russia

Also at Fermilab, Batavia IL, United States of America

h Also at Department of Physics, University of Coimbra, Coimbra, Portugal

i Also at Universitá di Napoli Parthenope, Napoli, Italy

j Also at Institute of Particle Physics (IPP), Canada

k Also at Department of Physics, Middle East Technical University, Ankara, Turkey

l Also at Louisiana Tech University, Ruston LA, United States of America

m Also at Department of Physics and Astronomy, University College London, London, United Kingdom

n Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada

o Also at Department of Physics, University of Cape Town, Cape Town, South Africa

p Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

q Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
* Also at Manhattan College, New York NY, United States of America
* Also at School of Physics, Shandong University, Shandong, China
* Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
* Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
* Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
* Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
* Also at Section de Physique, Université de Genève, Geneva, Switzerland
* Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
* Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ab Also at California Institute of Technology, Pasadena CA, United States of America
ac Also at Institute of Physics, Jagiellonian University, Krakow, Poland
ad Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
af Also at Department of Physics, Oxford University, Oxford, United Kingdom
ag Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
ah Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
ai Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
* Deceased