Measurement of the top quark pair production cross section with ATLAS in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV using final states with an electron or a muon and a hadronically decaying \(\tau \) lepton

The ATLAS Collaboration

Abstract

A measurement of the cross section of top quark pair production in proton–proton collisions recorded with the ATLAS detector at the LHC at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb\(^{-1}\). Events with an isolated electron or muon and a \(\tau \) lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a \(b \) quark. The measured cross section, \(\sigma_{\tau\tau} = 186 \pm 13 \text{ (stat.)} \pm 20 \text{ (syst.)} \pm 7 \text{ (lumi.)} \text{ pb} \), is in good agreement with the Standard Model prediction.
Measurement of the top quark pair cross section with ATLAS in pp collisions at $\sqrt{s} = 7$ TeV using final states with an electron or a muon and a hadronically decaying τ lepton

The ATLAS Collaboration

Abstract

A measurement of the cross section of top quark pair production in proton–proton collisions recorded with the ATLAS detector at the LHC at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb$^{-1}$. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, $\sigma = 186 \pm 13$ (stat.) ± 20 (syst.) ± 7 (lumi.) pb, is in good agreement with the Standard Model prediction.

Keywords: top-quark physics, cross section, lepton identification

1. Introduction

Measuring the top quark pair (tt) production cross section (σ_{tt}) in different decay channels is of interest because it can open a window to physics beyond the Standard Model (SM). In the SM, the top quark decays with a branching ratio close to 100% into a W boson and a b quark, and tt pairs are identified by either the hadronic or leptonic decays of the W bosons and the presence of additional jets. ATLAS has previously used the single-lepton channel [1] and the dilepton channels including only electrons and muons [2] to perform cross-section measurements.

The large cross section for tt production at the LHC provides an opportunity to measure σ_{tt} using final states with an electron or a muon and a τ lepton with high precision. The σ_{tt} in this channel has been measured at the Tevatron with 25% precision [3] and recently by the CMS Collaboration at the LHC with 18% precision [4]. A deviation from σ_{tt} measured in other channels would be an indication of non-Standard Model decays of the top quark, such as a decay to a charged Higgs (H^+) and a b quark with H^+ decaying to a τ lepton and a τ neutrino, or contributions from non-Standard Model processes [3, 4, 5]. ATLAS has set upper limits on the branching ratio of top quark decays to an H^+ bosons decaying to a τ lepton and a neutrino [6].

This analysis uses 2.05 fb$^{-1}$ of data collected by ATLAS at the LHC from pp collisions at a centre-of-mass energy of 7 TeV between March and August 2011. After application of kinematic selection criteria that require one top quark to decay via $W \rightarrow \ell \nu$ (where ℓ is either a muon or an electron) and identification of a jet as originating from a b quark (b-tag), the dominant background to the $tt \rightarrow \ell + \tau + X$ channel is the $tt \rightarrow \ell + \tau + \text{jets}$ channel in which a jet is misidentified as a hadronic τ lepton decay. Therefore, τ lepton identification (τ ID) is critical for separating signal and background. The τ ID methodology employed in this analysis exploits a multivariate technique to build a discriminant [9]. A boosted decision tree (BDT) algorithm is used [10]. The number of τ leptons in a sample is extracted by fitting the distributions of BDT outputs to background and signal templates. The results are checked using an alternative method, referred to as the “matrix method”, based on a cut on the BDT output.

2. ATLAS Detector

The ATLAS detector [1] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic (EM) and hadronic calorimeters, and an external muon spectrometer incorporating three large superconducting toroid magnet assemblies. The inner tracking detector provides tracking information in a pseudorapidity range $|\eta| < 2.5$. The liquid-argon (LAr) EM sampling calorimeters cover a range of $|\eta| < 3.2$ with fine granularity. An iron–scintillator tile calorimeter provides hadronic energy measurements in the central rapidity range ($|\eta| < 1.7$). The endcap and forward regions are instrumented with LAr calorimeters for both EM and hadronic energy measurements covering $|\eta| < 4.9$. The muon spectrometer provides precise tracking information in a range of $|\eta| < 2.7$.

1 Atlas uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. The x-axis points to the centre of the LHC ring, and the y-axis points upwards. The azimuthal angle ϕ is measured around the beam axis and the polar angle θ is the angle from the beam axis. The pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$. The distance ΔR in $\eta - \phi$ space is defined as $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$.
ATLAS uses a three-level trigger system to select events. The level-1 trigger is implemented in hardware using a subset of detector information to reduce the event rate below 75 kHz. This is followed by two software based-trigger levels, level-2 and the event filter, which together reduce the event rate to about 300 Hz recorded for analysis.

3. Simulated Event Samples

Monte Carlo (MC) simulation samples are used to optimise selection procedures, to calculate the signal acceptance and to evaluate contributions from some background processes.

For the \(\bar{t} \) and single top-quark final states, the next-to-leading-order (NLO) generator MC@NLO \[12\] is used with a top-quark mass of 172.5 GeV and with the NLO parton distribution function (PDF) set CTEQ6L \[13\]. The “diagram removal scheme” is used to remove overlaps between the single top-quark and the \(\bar{t} \) final states. The \(\bar{t} \) cross section is normalised to the prediction of HATHOR (164\(^{+11}_{-16}\) pb) \[14\], which employs an approximate next-to-next-to-leading-order (NNLO) perturbative QCD calculation.

For the background channels, MC samples of W/Z, single top-quark events and diboson WW, WZ, and ZZ events (all in association with jets) are used. W+jets events and Z/\(\gamma^* \)+jets events (with dilepton invariant mass \(m_{\ell\ell} \geq 40 \) GeV) are generated by the ALPGEN generator \[15\] with up to five outgoing partons from the hard scattering process, in addition to the vector bosons.\(^2\) The MLM matching scheme of the ALPGEN generator is used to remove overlaps between matrix-element and parton-shower products. Parton evolution and hadronisation is handled by HERWIG \[16\], as is the generation of diboson events. The leading-order PDF set CTEQ6L is used for all backgrounds described above.

All samples that use HERWIG for parton shower evolution and hadronisation rely on JIMMY \[17\] for the underlying event model. The \(\tau \)-lepton decays are handled by TAUOLA \[18\].

The effect of multiple \(pp \) interactions per bunch crossing (“pile-up”) is modelled by overlaying simulated minimum bias events over the original hard-scattering event \[19\]. MC events are then reweighted so that the distribution of interactions per crossing in the MC simulation matches that observed in data. The average number of pile-up events in the sample is 6.3. After event generation, all samples are processed with the GEANT4 \[20\] simulation of the ATLAS detector, the trigger simulation and are then subject to the same reconstruction algorithms as the data \[21\].

4. Data and Event Selection

The event selection uses the same object definition as in the \(\bar{t} \) cross-section measurement in the dilepton channel \[2\] with the exception of a \(\tau \) candidate instead of a second electron or muon candidate and some minor adjustments. The electrons must be isolated and have \(E_T > 25 \) GeV and \(|\eta_{\text{cluster}}| < 2.47 \), excluding the barrel-endcap transition region (1.37 < \(|\eta_{\text{cluster}}| < 1.52 \)), where \(E_T \) is the transverse energy and \(\eta_{\text{cluster}} \) is the pseudorapidity of the calorimeter energy cluster associated with the candidate. The electron is defined as isolated if the \(E_T \) deposited in the calorimeter and not associated with the electron in a cone in \(\eta-\phi \) space of radius \(\Delta R = 0.2 \) is less than 4 GeV. The muons must also be isolated and have \(p_T > 20 \) GeV and \(|\eta| < 2.5 \). For isolated muons, both the corresponding \(E_T \) and the analogous track isolation transverse momentum \((p_T)^\text{iso} \) must be less than 4 GeV in a cone of \(\Delta R = 0.3 \). The track isolation \(p_T \) is calculated from the sum of the track transverse momenta for tracks with \(p_T > 1 \) GeV around the muon. Jets are reconstructed with the anti-\(k_t \) algorithm \[22\] with a radius parameter \(R = 0.4 \), starting from energy deposits (clusters) in the calorimeter reconstructed using the scale established for electromagnetic objects. These jets are then calibrated to the hadronic energy scale using \(p_T \) and \(\eta \)-dependent correction factors obtained from simulation \[23\]. The \(\tau \) jet candidates are required to have \(p_T > 25 \) GeV and \(|\eta| < 2.5 \). Jets identified as originating from a b quark \((b\text{-tag}) \) by a vertex tagging algorithm are those that pass a decay length significance cut corresponding to an efficiency of 70% for \(b \)-quark jets from \(\bar{t} \) events and a 1% efficiency for light-quark and gluon jets \[2, 24\].

The missing transverse momentum is constructed from the vector sum of all calorimeter cells with \(|\eta| < 4.5 \), projected onto the transverse plane. Its magnitude is denoted \(E_T^{\text{miss}} \). The hadronic energy scale is used for the energies of cells associated with jets; \(\tau \) candidates are treated as jets. Contributions from cells associated with electrons employ the electromagnetic energy calibration. Contributions from the \(p_T \) of muon tracks are included, removing the contributions of any calorimeter cells associated with the muon.

4.1. \(\tau \) Reconstruction and Identification

The reconstruction and identification of hadronically decaying \(\tau \) leptons proceeds as follows:

1. the \(\tau \) candidate reconstruction starts by considering each jet as a \(\tau \) candidate;
2. energy clusters in the calorimeter associated with the \(\tau \) candidate are used to calculate kinematic quantities (such as \(E_T \)) and the associated tracks are found;
3. identification variables are calculated from the tracking and calorimeter information;
4. these variables are combined into multivariate discriminants and the outputs of the discriminants are used to separate jets and electrons misidentified as \(\tau \) leptons decaying hadronically from \(\tau \) leptons.

Details are given in Ref. 9. In this analysis the outputs of BDT discriminants are used.

Reconstructed \(\tau \) candidates are required to have 20 GeV < \(E_T < 100 \) GeV. They must also have \(|\eta| < 2.3 \), and one, two or three associated tracks. A track is associated with the \(\tau \) candidate if it has \(p_T > 1 \) GeV and is inside a cone of \(\Delta R < 0.4 \) around the jet axis. The associated track with highest \(p_T \) must
have \(p_T > 4 \) GeV. The charge is given by the sum of the charges of the associated tracks, and is required to be non-zero. The probability of misidentifying the \(\tau \) lepton charge sign is about 1%. The charge misidentification rate for muons and electrons is negligible.

If the \(\tau \) candidate overlaps with a muon (\(p_T > 4 \) GeV, no isolation required) or an electron candidate within \(\Delta R(\ell, \tau) < 0.4 \), the \(\tau \) candidate is removed. To remove electrons misidentified as \(\tau \) leptons, an additional criterion is used that relies on a BDT trained to separate \(\tau \) leptons and electrons (BDT\(_\tau\)) using seven variables shown to be well modelled by comparing \(Z \rightarrow e^+e^- \) and \(Z \rightarrow \tau^+\tau^- \) events in data and in MC simulation. The variables were chosen after ranking a large set by their effectiveness.\(^3\) The most effective variables for BDT\(_\tau\) are \(E/p \), the EM fraction (the ratio of the \(\tau \) candidate energy measured in the EM calorimeter to the total \(\tau \) candidate energy measured in the calorimeter), and the cluster-based shower width. The BDT output tends to be near 1 (0) if the \(\tau \) candidate is a \(\tau \) lepton (electron). The \(\tau \) candidate is required to satisfy BDT\(_\tau > 0.51\); 85% of reconstructed \(\tau \) leptons decaying hadronically satisfy that requirement as measured in \(Z \rightarrow \tau^+\tau^- \) events. The additional rejection for electrons is a factor of 60.

The majority of objects reconstructed as \(\tau \) candidates in a multi-jet environment are jets misidentified as \(\tau \) leptons (fake \(\tau \)). Another BDT (BDT\(_J\)) based on eight variables is used to separate \(\tau \) leptons in \(\tau \) candidates with one track (denoted \(\tau_1 \)) from such jets. For candidates with more than one track (denoted \(\tau_3 \)) BDT\(_J\) includes ten variables. The most effective variables for BDT\(_J\) are calorimeter and track isolation, cluster-based jet mass, and the fraction of energy within \(\Delta R = 0.1 \) of the jet axis. The BDT\(_J\) distributions are fit with templates for background and signal to extract the number of \(\tau \) leptons in the sample. Details are given in Section 6. The fake \(\tau \) background in the \(\tau_1 \) sample is significantly higher than in the \(\tau_3 \) sample, leading to very different BDT\(_J\) distributions. Hence independent measurements are carried out for \(\tau_1 \) and \(\tau_3 \) candidate events and the results are combined at the end. If there is a \(\tau_1 \) and a \(\tau_3 \) candidate in the event, the \(\tau_1 \) candidate is kept as the probability that the \(\tau_1 \) is a \(\tau \) lepton is much higher. If there are two \(\tau_1 \) or \(\tau_3 \) candidates, both are kept.

4.2. Event Selection

For this analysis, events are selected using a single-muon trigger with a \(p_T \) threshold of 18 GeV or a single-electron trigger with a \(p_T \) threshold of 20 GeV, rising to 22 GeV during periods of high instantaneous luminosity. The offline requirements are based on data quality criteria and optimised using Monte Carlo simulation:

- a primary vertex with at least five tracks, each with \(p_T > 400 \) MeV, associated with it;
- one and only one isolated high-\(p_T \) muon and no identified electrons for the \(\mu + \tau \) channel, or one and only one isolated electron and no isolated muons for the \(e + \tau \) channel;
- at least one \(\tau \) candidate (as defined in Section 4.1);
- at least two jets not overlapping with a \(\tau \) candidate, i.e. \(\Delta R(\tau, \text{jet}) > 0.4 \);
- \(E_{\text{miss}}^{\ell} > 30 \) GeV to reduce the multi-jet background, and the scalar sum of the \(p_T \) of the leptons (including \(\tau \)), jets, and \(E_{\text{miss}}^{\ell} \) must be greater than 200 GeV, to reduce the \(W + \text{jets} \) background.

The \(\ell + \tau \) samples are divided into events with no jets identified as a \(b \)-quark jet (0 \(b \)-tag control sample) and those with at least one such jet (\(\geq 1 \) \(b \)-tag \(\bar{b} \) sample). The 0 \(b \)-tag sample is used to estimate the background in the \(\geq 1 \) \(b \)-tag \(\bar{b} \) sample. Each sample is split into two, one with the \(\tau \) candidate and \(\ell \) having the opposite sign charge (OS), and the other one with \(\tau \) and \(\ell \) having the same sign charge (SS). While the \(\tau \) candidates in the SS samples are almost all fake \(\tau \) leptons, the OS samples have a mixture of \(\tau \) leptons and fake \(\tau \) leptons. The numbers of observed and expected events in the above samples are shown in Table 1. All processes contribute more events to OS than SS because of the correlation between a leading-quark charge and the lepton charge, except for the multi-jet channel contribution which has equal number of OS and SS events within the uncertainties. The \(\ell + \text{jets} \) entry includes the contribution from events with \(\tau \) leptons when the \(\tau \) candidate is actually a fake \(\tau \). The \(\tau \) entries require the reconstructed \(\tau \) candidate be matched to a generated \(\tau \) lepton. The matching criterion is \(\Delta R < 0.1 \) between the \(\tau \) candidate and the observable component of the generated \(\tau \) lepton.

To estimate the multi-jet background from data, an event selection identical to the \(\mu + \tau \) (\(e + \tau \)) event selection except for an inverted muon (electron) isolation cut is used to obtain a multi-jet template for the shape of the transverse mass, \(m_T \).\(^4\) The normalization of each selected data sample is obtained by fitting the \(m_T \) distribution of the selected data samples with the multi-jet template and the sum of non-multi-jet processes predicted by MC, allowing the amount of both to float. The uncertainty on the multi-jet background is estimated to be 30%. However, because of the subtraction method discussed in Section 5 the multi-jet background plays no role in the cross-section measurement. There are small differences between the total number of events predicted and observed which motivate using data as much as possible to estimate the background.

As one can see from Table 1 the \(\tau \) leptons are almost all in the OS sample and come mainly from two sources: \(Z \rightarrow \tau^+\tau^- \), which is the dominant source in the sample with 0 \(b \)-tag, and \(\bar{b} \rightarrow \ell + \tau + X \) which is the dominant source in the sample \(\geq 1 \) \(b \)-tag. The sources of fake \(\tau \) leptons are also quite distinct between the 0 \(b \)-tag and the \(\geq 1 \) \(b \)-tag samples: the first is mainly \(W/Z+\text{jets} \) with small contributions from other channels, the second is mainly \(\bar{b} \).

\(^3\) The effectiveness is quantified by quadratically summing over the change in the purity between the mother and daughter leaves for every node in which the given variable is used in a decision tree.

\(^4\) \(m_T = \sqrt{(E_T^\ell + E_{\text{miss}}^{\ell})^2 - (p_T^\ell + E_{\text{miss}}^{\ell})^2} \).
5. Background Models

The jet origin can strongly influence the τ-lepton fake probability. Due to their narrow shower width and lower track multiplicity, light-quark jets have a higher probability of faking a τ lepton than other jet types. Thus the BDT\textsubscript{τ} distributions have a strong dependence on the jet type. It is therefore crucial to build a background model which properly reflects the jet composition in order to correctly estimate the fake τ contamination in the signal region. Deriving this background model from control regions in data rather than MC simulation is preferable in order to avoid systematic effects related to jet composition in the MC models.

The gluon component of the fake τ leptons is charge symmetric; therefore it is expected to have the same shape in SS events as in OS events and should contribute the same number of fake τ leptons in each sample. The contribution of fake τ leptons from gluons can be removed by subtracting the distribution of any quantity for SS events from the corresponding distribution for OS events. The multi-jet background also cancels, as can be seen in Table 1. The resulting distributions are labeled OS-SS. Similarly, since each sample is expected to have an almost equal contribution from b-jets and \bar{b}-jets, the small b-jet component should also be removed by OS-SS (asymmetric single b production is negligible compared to \bbbar production). The only jet types remaining in the OS-SS distributions are light-quark jets. MC studies indicate that the BDT\textsubscript{τ} distributions of c-quark jets misidentified as τ leptons are not noticeably different from those of light-quark jets.

One can construct a background BDT\textsubscript{τ} distribution from the 0 b-tag data sample by subtracting the expected amount of true τ signal. The signal is mainly from Z → τ\+τ\− events and can be reliably predicted from MC. A control sample dominated by W+jets events is considered as a check. The latter sample is selected by requiring events with a muon and a τ of same charge as the initial quark. MC studies of the ratio E\textsubscript{T}\text{miss} > 30 GeV and 40 GeV < m_{T}\text{jet} < 100 GeV. According to MC simulation, in W+jets events where exactly one jet is required, 90% of the fake τ leptons are from light-quark jets and 10% from gluons. This sample is labeled W + 1 jet.

The BDT\textsubscript{τ} background shapes for the OS-SS 0 b-tag and ≥ 1 b-tag data samples are not identical to the W + 1 jet distributions for two reasons: (1) the shape depends on the jet multiplicity, (2) different OS/SS ratios are observed in the samples. The dependence on the OS/SS ratio comes from the differences in jet fragmentation for a leading particle with the opposite charge and the same charge as the initial quark. MC studies of the ratio of OS-SS BDT\textsubscript{τ} background distributions derived from W + 1 jet and ≥ 1 b-tag show that significant corrections are needed (30% for BDT\textsubscript{τ} > 0.8, a region dominated by the true τ signal). For the 0 b-tag sample the corresponding corrections are much lower.

Table 1: Number of τ + τ candidates for Monte Carlo samples and data.

<table>
<thead>
<tr>
<th>(\mu + \tau)</th>
<th>(\tau_{1})</th>
<th>(\tau_{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>SS</td>
<td>OS</td>
</tr>
<tr>
<td>(#(\mu + \tau))</td>
<td>60 \pm 2</td>
<td><1</td>
</tr>
<tr>
<td>(#(\mu + e))</td>
<td>308 \pm 4</td>
<td>163 \pm 3</td>
</tr>
<tr>
<td>(\mu) + jets</td>
<td>5010 \pm 70</td>
<td>3020 \pm 60</td>
</tr>
<tr>
<td>Multi-jets</td>
<td>470 \pm 140</td>
<td>540 \pm 160</td>
</tr>
<tr>
<td>(W(\mu + \tau))</td>
<td>7 \pm 1</td>
<td><1</td>
</tr>
<tr>
<td>(Z \rightarrow\tau\tau)</td>
<td>301 \pm 13</td>
<td>2 \pm 1</td>
</tr>
<tr>
<td>Total</td>
<td>6160 \pm 160</td>
<td>3730 \pm 170</td>
</tr>
<tr>
<td>Data</td>
<td>5450</td>
<td>3700</td>
</tr>
<tr>
<td>(e + \tau)</td>
<td>OS</td>
<td>SS</td>
</tr>
<tr>
<td>(#(e + \tau))</td>
<td>54 \pm 7</td>
<td>1 \pm 1</td>
</tr>
<tr>
<td>(#(e + e))</td>
<td>2 \pm 1</td>
<td><1</td>
</tr>
<tr>
<td>(#(e + jets))</td>
<td>273 \pm 17</td>
<td>146 \pm 12</td>
</tr>
<tr>
<td>e + jets</td>
<td>3950 \pm 60</td>
<td>2590 \pm 50</td>
</tr>
<tr>
<td>Multi-jets</td>
<td>600 \pm 180</td>
<td>620 \pm 190</td>
</tr>
<tr>
<td>(Z \rightarrow ee)</td>
<td>92 \pm 10</td>
<td>3 \pm 2</td>
</tr>
<tr>
<td>(W(e + \tau))</td>
<td>7 \pm 3</td>
<td><1</td>
</tr>
<tr>
<td>(Z \rightarrow \tau\tau)</td>
<td>217 \pm 15</td>
<td>2 \pm 1</td>
</tr>
<tr>
<td>Total</td>
<td>5190 \pm 190</td>
<td>3360 \pm 200</td>
</tr>
<tr>
<td>Data</td>
<td>5111</td>
<td>3462</td>
</tr>
</tbody>
</table>
smaller (5% in the same region). Both the 0 b-tag and the $W + 1$ jet data samples are used to obtain statistically independent estimates of the background in the $\geq 1 \ b$-tag sample.

Two different approaches are used for constructing backgrounds in the $\geq 1 \ b$-tag data sample. One, used by the fit method (Section 6), is to reweight the BDT$_j$ distribution of the background bin-by-bin using the MC-based ratio of the $\geq 1 \ b$-tag background to the background model. In this case the 0 b-tag sample is preferred as it requires smaller corrections derived from MC simulation; the $W + 1$ jet is used as a cross check. The other approach is to split the background into bins of some variable within which the shapes of BDT$_j$ distributions of the background model are close to those from the $\geq 1 \ b$-tag background. This approach, used in the Matrix Method cross check (Section 6.1), avoids using MC corrections, but assumes the data and MC simulation behave similarly as function of the binning variable.

6. Fits to BDT$_j$ Distributions

The contribution from $\tau \rightarrow \ell + \tau + X$ signal is derived from the $\geq 1 \ b$-tag data sample by a χ^2 fit to the OS–SS BDT$_j$ distribution with a background template and a signal template. The parameters of the fit are the amount of background and the amount of signal. The shapes of the templates are fixed.

Two background templates corrected by MC, as discussed in Section 5 are used: one derived from 0 b-tag data, the other from the $W + 1$ jet data sample. The signal BDT$_j$ templates for 0 b-tag and $\geq 1 \ b$-tag are derived from τ leptons in τ and $Z \rightarrow \tau^+\tau^-$ MC simulation. Contributions to the BDT$_j$ distributions from electrons passing the BDT$_j$ cut cannot be distinguished from τ leptons so they are treated as part of the signal.

The uncertainty on the background templates is determined by the numbers of data and MC simulated events. The signal template for the 0 b-tag control sample also has non-negligible statistical uncertainty (2% for τ_1, 5% for τ_2) because of the low acceptance.

The fitting procedure was tested extensively with MC simulation before applying it to data. In the fits to the $\geq 1 \ b$-tag data, applying MC corrections to the 0 b-tag background template increases the statistical uncertainty but raises the measured cross section by only 1%.

Figure 1 shows the BDT$_j$ (OS-SS) distributions of $\ell + \tau$ events with 0 b-tag and the 0 b-tag background template after subtracting the expected number of τ leptons and applying the MC corrections. The τ signal is mostly $Z \rightarrow \tau^+\tau^-$ events with a small contamination of electrons faking τ leptons (from $\tau \rightarrow \ell + e + X$ and $Z \rightarrow e^+e^-$) and a small contribution from τ to $\ell + \tau + X$. The uncertainty on the background templates includes the statistical uncertainty of the correction, the statistical uncertainty from MC and the 0 b-tag data uncertainty.

Figure 2 shows the result of the fit to the $\geq 1 \ b$-tag samples. The τ lepton signal is mostly $\tau \rightarrow \ell + \tau + X$ with a small contamination of misidentified electrons (estimated by applying fake probabilities derived from data), and small contributions from $Z \rightarrow \tau^+\tau^-$ events and single top-quark events (estimated from MC simulation). These contributions are subtracted from the number of signal events before calculating the cross section. The fit results using the background templates derived from 0 b-tag data and $W + 1$ jet data are shown in Table 2. The results are consistent with each other within the statistical uncertainties of the background templates. The BDT$_j$ distributions for τ_1 and τ_3 are fitted separately. The combined $\ell + \tau_1$ results are obtained by fitting the sum of the distributions. After adding $\ell + \tau_1$ and $\ell + \tau_3$ signals obtained from a χ^2 fit to the combined $e + \tau$ and $\mu + \tau$ distributions and subtracting the small contributions to the signal from $Z \rightarrow \tau^+\tau^-$, $Z \rightarrow e^+e^-$ and $t\bar{t} \rightarrow e + \ell$ (given in Table 1) the results are $840 \pm 70 (243 \pm 60) \tau \rightarrow \ell + \tau_1(\tau_3) + X$ events. The uncertainty is from the fit only and does not include systematic uncertainties. The results are in good agreement with the $780 \pm 50 (243 \pm 60)$ events obtained with the $W + 1$ jet background template and consistent with the number expected from MC simulation, 726 $\pm 19 (217 \pm 10)$. Note that the fit uncertainty is dominated by the uncertainty on the background template, thus the statistical uncertainties of the results with the two different background templates are not strongly correlated.

Figure 3 shows the OS-SS distribution of the number of jets for $\geq 1 \ b$-tag events adding all channels for two BDT$_j$ regions: BDT$_j$ < 0.7, which is dominated by $\tau \rightarrow \ell +$ jets, and BDT$_j$ >
The combined results are obtained by fitting the sum of the electrons misidentified as \(\tau \) contributions. The statistical uncertainties. The MC columns give the expected background template derived from \(W \) decaying to two jets in the BDT \(T_j < 0.7 \) region dominated by \(\ell \to \ell + t + \ell + \tau \). The mass distribution in the BDT \(T_j > 0.7 \) signal region is significantly broader as expected for \(\ell \to \ell + \tau + X \). The signal and background shown in these figures are based on the fit using the 0 b-tag background template.

Table 2: Results of template fits to \(\mu + \tau, e + \tau \) and the combined BDT \(T_j \) distributions. The combined results are obtained by fitting the sum of the \(\mu + \tau \) and \(e + \tau \) BDT \(T_j \) distributions. The first column gives the channel and the second the \(\tau \) type. The third column shows the extracted signal (sum of \(\tau \) leptons and electrons misidentified as \(\tau \) leptons) with the background template derived from 0 b-tag data distributions. The fourth column shows the extracted signal with the background template derived from \(W + t \) jet. The uncertainties are from the uncertainties in the fit parameters and do not include the systematic uncertainties. The MC columns give the expected \(\tau \) signal and the expected number of \(\ell + \tau \) events after subtracting the contribution from non-\(\tau \) events to the signal, assuming the theoretical \(\tau \) cross section (164 pb).

<table>
<thead>
<tr>
<th>(\mu + \tau)</th>
<th>Background template</th>
<th>MC Signal</th>
<th>Jet Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1)</td>
<td>490 ± 40 456 ± 32</td>
<td>432 388</td>
<td>(\ell)</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>135 ± 33 130 ± 50</td>
<td>126 116</td>
<td>(\ell)</td>
</tr>
<tr>
<td>(e + \tau)</td>
<td>440 ± 50 430 ± 50</td>
<td>388 338</td>
<td>(\ell)</td>
</tr>
<tr>
<td>(\tau_1)</td>
<td>116 ± 32 120 ± 28</td>
<td>114 101</td>
<td>(\ell)</td>
</tr>
<tr>
<td>Combined</td>
<td>930 ± 70 860 ± 50</td>
<td>820 726</td>
<td>(\ell)</td>
</tr>
<tr>
<td></td>
<td>260 ± 60 260 ± 40</td>
<td>239 217</td>
<td>(\ell)</td>
</tr>
</tbody>
</table>

0.7, in which the largest contribution is from \(\ell + \tau + X \). As expected, the multiplicity of jets peaks at four when BDT \(T_j < 0.7 \) and three when BDT \(T_j > 0.7 \) (the \(\tau \) is counted as a jet).

Figure 4 shows the invariant mass of a selected jet with the \(\tau \) candidate for BDT \(T_j < 0.7 \) and BDT \(T_j > 0.7 \) for events with a \(\tau \) candidate and three or more jets. The selected jet is the highest \(p_T \) untagged jet in events with more than one b-tag and the second highest \(p_T \) untagged jet in events with one b-tag. The distribution shows clearly the presence of a \(W \) decaying to two jets in the BDT \(T_j < 0.7 \) region dominated by \(\ell \to \ell + t + \ell + \tau \). The mass distribution in the BDT \(T_j > 0.7 \) signal region is significantly broader as expected for \(\ell \to \ell + \tau + X \). The signal and background shown in these figures are based on the fit using the 0 b-tag background template.

6.1. Check with Matrix Method

From Figures 3 and 4 one can see that a BDT \(T_j > 0.7 \) requirement separates well a region dominated by \(\ell \to \ell + t + \ell \) jets from a region dominated by \(\ell \to \ell + \tau + X \). One can extract the signal from the same OS-SS \(\geq 1 \) b-tag sample used by the fit method via a matrix method. All \(\tau \) candidates are labeled “loose”, and \(\tau \) candidates with BDT \(T_j > 0.7 \) are labeled “tight”. The probability that the loose \(\tau \) candidates are also tight \(\tau \) candidates, for
both τ leptons and fake τ leptons, is defined as

$$\epsilon_{\text{real}} = \frac{N_{\text{right}}}{N_{\text{data}}}, \quad \epsilon_{\text{fake}} = \frac{N_{\text{right}}}{N_{\text{data}}}$$

where the “real” subscript denotes τ lepton, the “fake” subscript denotes fake τ and N is the number of τ candidates. The number of “tight” τ leptons is then given by

$$N_{\text{right}} = N_{\text{data}} \epsilon_{\text{fake}} - N_{\text{data}} \epsilon_{\text{real}} = (N_{\text{data}} - N_{\text{fake}}) \epsilon_{\text{fake}} - (N_{\text{data}} - N_{\text{real}}) \epsilon_{\text{real}}.$$

The value of ϵ_{fake} is measured utilizing the OS-SS BDT$_j$ distributions from the background control samples; ϵ_{real} is derived from MC and was tested using $Z \rightarrow \ell^+\ell^-$ events. This method uses the binning approach described in Section 5 to estimate the background. Values of ϵ_{fake} and ϵ_{real} are measured separately for three EM-fraction bins. The EM-fraction, the ratio of the energy measured in the EM calorimeter to the total τ candidate energy measured in the calorimeter, is an effective variable for splitting the data into regions where the shapes of MC OS-SS BDT$_j$ distributions for the $W+1$ jet background template and the ≥ 1 b-tag background are similar. Table 3 shows the number of signal events obtained with the matrix method using the background derived from the 0 b-tag data sample and from the $W+1$ jet data sample. The numbers in each pair are in good agreement and consistent with the numbers obtained by fitting the OS-SS BDT$_j$ distributions.

6.2. Systematic Uncertainty

Several experimental and theoretical sources of systematic uncertainty are considered. Lepton trigger, reconstruction and selection efficiencies are assessed by comparing the $Z \rightarrow \ell^+\ell^-$ events selected with the same object criteria as used for the $t\bar{t}$ analyses in data and MC.

Scale factors are applied to MC samples when calculating acceptances to account for any differences between predicted and observed efficiencies. The scale factors are evaluated by comparing the observed efficiencies with those determined with simulated Z boson events. Systematic uncertainties on these scale factors are evaluated by varying the selection of events used in the efficiency measurements and by checking the stability of the measurements over the course of data taking.

The modeling of the lepton momentum scale and resolution is studied using reconstructed invariant mass distributions of $Z \rightarrow \ell^+\ell^-$ candidate events and used to adjust the simulation accordingly [23, 24].

The jet energy scale (JES) and its uncertainty are derived by combining information from test-beam data, LHC collision data and simulation [25]. For jets within the acceptance, the JES uncertainty varies in the range 4–8% as a function of jet p_T and η. Comparing MC and data the estimated systematic uncertainties are 10% and 1–2% for the jet energy resolution (JER) and the efficiency, respectively. The uncertainty on the efficiency of the b-tagging algorithm has been estimated to be 6% for b-quark jets, based on b-tagging calibration studies [26].

The uncertainty in the kinematic distributions of the $t\bar{t}$ signal events gives rise to systematic uncertainties in the signal acceptance, with contributions from the choice of generator, the modeling of initial- and final-state radiation (ISR/FSR)
and the choice of the PDF set. The generator uncertainty is evaluated by comparing the MC@NLO predictions with those of POWHEG [27, 28, 29] interfaced to either HERWIG or PYTHIA. The uncertainty due to ISR/FSR is evaluated using the AceaMC generator [30] interfaced to the PYTHIA shower model, and by varying the parameters controlling ISR and FSR in a range consistent with experimental data [21]. Finally, the PDF uncertainty is evaluated using a range of current PDF sets [31, 32, 33]. The dominant uncertainty in this category of systematic uncertainties is the modelling of ISR/FSR.

The τ ID uncertainty is derived from a template fit to a $Z \rightarrow \tau^+\tau^-$ data sample selected with the same μ and τ candidate requirements as the sample for this analysis, but with fewer than two jets and $m_{\tau} < 20$ GeV to remove $W + \text{jets}$ events. The fit relies on the $W + 1$ jet data sample for a background template and $Z \rightarrow \tau^+\tau^-$ MC events for a signal template. The uncertainty includes the statistical uncertainty of the data samples, the uncertainty in the Z/γ^{*} cross section measured by ATLAS [34] (excluding luminosity uncertainty) and jet energy scale uncertainty. It also includes the uncertainty on the number of misidentified electrons ($<0.5\%$, determined from $Z \rightarrow e^+e^-$ data).

Table 4: Relative systematic uncertainties, in %, for the cross-section measurement. The first column gives the source of systematic uncertainty, ID/Trigger stands for the combined uncertainty of lepton identification and lepton trigger. The τ ID uncertainty includes electrons misidentified as τ leptons. The second and third columns give the channel.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\mu + \tau$</th>
<th>τ ID</th>
<th>$e + \tau$</th>
<th>e ID/Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ (ID/Trigger)</td>
<td>$-1.1%+/1.5$</td>
<td>$-20.0%/+2.2$</td>
<td>$-1.9%/+2.8$</td>
<td></td>
</tr>
<tr>
<td>τ ID</td>
<td>$-3.0%/+3.2$</td>
<td>$-3.1%/+3.4$</td>
<td>$-2.7%/+3.0$</td>
<td></td>
</tr>
</tbody>
</table>

The effect of these variations on the final result is evaluated by varying each source of systematic uncertainty by $\pm 1\sigma$, applying the selection cuts and recalculating the cross section.

The uncertainties obtained for the fit method using the 0 b-tag background template are shown in Table 4. The systematic uncertainties for the matrix method are very similar. The uncertainty on the measured integrated luminosity is 3.7% [35].

7. Measuring the $t\bar{t}$ Cross Section

The cross section is derived from the number of observed OS-SS signal events in the $\geq 1 b$-tag data sample assuming the only top quark decay mode is $t \rightarrow W b$, and subtracting from that number the small contribution from $t \rightarrow e + \tau$ (from electrons faking τ leptons) and τ leptons from $Z \rightarrow \tau^+\tau^-$ (Table 1).

Table 5: Measured cross section from the τ_1 and τ_3 samples, as well as the combination ($\tau_1 + \tau_3$) for each channel separately. The uncertainty in the integrated luminosity (3.7%) is not included.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\mu + \tau$</th>
<th>τ ID</th>
<th>$e + \tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>189 ± 16 (stat.) ± 20 (syst.) pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_3</td>
<td>180 ± 40 (stat.) ± 21 (syst.) pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tau_1 + \tau_3$</td>
<td>186 ± 15 (stat.) ± 20 (syst.) pb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The systematic uncertainties are estimated as the quadratic sum of all uncertainties given in Table 4 which includes the uncertainty from the subtraction.

The results are given separately for τ_1 and τ_3 and then combined (weighted by their statistical uncertainty and assuming all systematic uncertainties other than from τ ID are fully correlated). The results using the 0 b-tag background template are shown in Table 5.

The results for the $\mu + \tau$ and $e + \tau$ channels are combined taking into account the correlated uncertainties using the BLUE (Best Linear Unbiased Estimator) technique [36]. Combining them does not improve the systematic uncertainty as the systematic uncertainties are almost 100% correlated.

The results for each lepton type are:

- $\mu + \tau$: $\sigma_{\mu + \tau} = 186 \pm 15$ (stat.) ± 20 (syst.) ± 7 (lumi.) pb,
- $e + \tau$: $\sigma_{e + \tau} = 187 \pm 18$ (stat.) ± 20 (syst.) ± 7 (lumi.) pb.

Combining both channels one obtains:

$\sigma_{\tau} = 186 \pm 13$ (stat.) ± 20 (syst.) ± 7 (lumi.) pb

To check the fit measurements, the cross sections can be calculated using the matrix method and the results obtained with the $W + 1$ jet background to minimize the correlation with the fit results. The combination of the matrix method and the fit results with the BLUE method show they are compatible at the 45% and 10% confidence level for $\mu + \tau$ and $e + \tau$, respectively.

8. Conclusions

The cross section for $t\bar{t}$ production in pp collisions at 7 TeV has been measured in the $\mu + \tau$ and the $e + \tau$ channels in which the τ decays hadronically. The number of τ leptons in these channels has been extracted using multivariate discriminators to separate τ leptons from electrons and jets misidentified as hadronically decaying τ leptons. These numbers were obtained by fitting the discriminator outputs and checked with a matrix method. Combining the measurements from $\mu + \tau$ and $e + \tau$ events, the cross section is measured to be

$\sigma_{\tau} = 186 \pm 13$ (stat.) ± 20 (syst.) ± 7 (lumi.) pb,
in good agreement with the cross section measured by ATLAS in other channels \(\frac{3}{2} \), with the cross-section measurement by the CMS Collaboration \(\frac{3}{2} \) and with the SM prediction, \(164^{+11}_{-16} \) pb \(\frac{1}{2} \).

9. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNF, DRSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNF, DRSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMWF, DFG, HGK, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; NRF, South Africa; MICINN, Spain; SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[8] ATLAS Collaboration, Search for charged Higgs bosons decaying via \(H^+ \) in top quark pair events using pp collision data at \(\sqrt{s} = 7 \) TeV with the ATLAS detector, arXiv:1204.2760 [hep-ex], submitted to JHEP.

27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL., United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto di Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom