Tri-Bimaximal Neutrino Mixing and Discrete Flavour Symmetries

Guido Altarelli1,2∗, Ferruccio Feruglio3∗∗, and Luca Merlo4,5∗∗∗

1 Dipartimento di Fisica ‘E. Amaldi’, Università di Roma Tre, INFN, Sezione di Roma Tre, I-00146 Rome, Italy. Preprint: RM3-TH/12-8
2 CERN, Department of Physics, Theory Division, CH-1211 Geneva 23, Switzerland. Preprint: CERN-PH-TH/2012-138
4 Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany. Preprint: TUM-HEP-835/12
5 Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, D-85748 Garching, Germany

Received XXXX, revised XXXX, accepted XXXX
Published online XXXX

Key words Tri-Bimaximal Pattern, Neutrino Mixing, Discrete Symmetries.

We review the application of non-Abelian discrete groups to Tri-Bimaximal (TB) neutrino mixing, which is supported by experiment as a possible good first approximation to the data. After summarizing the motivation and the formalism, we discuss specific models, mainly those based on A_4 but also on other finite groups, and their phenomenological implications, including the extension to quarks. The recent measurements of θ_{13} favour versions of these models where a suitable mechanism leads to corrections to θ_{13} that can naturally be larger than those to θ_{12} and θ_{23}. The virtues and the problems of TB mixing models are discussed, also in connection with lepton flavour violating processes, and the different approaches are compared.

Copyright line will be provided by the publisher

1 Introduction

Neutrino mixing [1–6] is important because it could in principle provide new clues for the understanding of the flavour problem. Even more so since neutrino mixing angles show a pattern that is completely different than that of quark mixing. The bulk of the data on neutrino oscillations are well described in terms of three active neutrinos. By now all three mixing angles have been measured, although with different levels of accuracy (see Tab. 1 [7, 8]). In particular, we have experimental evidence for a non vanishing value of the smallest angle θ_{13} (see Tab. 2 [9–12]): considering the most precise results from DOUBLE CHOOZ, Daya Bay and RENO, we get

$$\sin^2 \theta_{13} = 0.0253 \pm 0.0035,$$

for both the mass orderings.

Models of neutrino mixing based on discrete flavour groups have received a lot of attention in recent years [14–19]. There are a number of special mixing patterns that have been studied in that context. Most of these mixing matrices have $\sin^2 \theta_{23} = 1/2$, $\sin^2 \theta_{13} = 0$, values that are a good approximation to the data, and differ by the value of the solar angle $\sin^2 \theta_{12}$. The observed $\sin^2 \theta_{12}$, the best measured mixing angle,
charged leptons. This is in line with the well-known empirical observation that mixing, with \(\sin^2 \theta_{GR} \), see Refs. [29, 30]). On a different perspective, one has considered models with Bi-Maximal (BM) mixing, which is very close, from below, to the so-called Tri-Bimaximal (TB) value [20–24] which is \(\frac{\sqrt{2}}{3} \). Altarelli, F. Feruglio, and L. Merlo: TB Mixing and Discrete Symmetries. The reactor angle measurements from the recent experiments T2K [9], MINOS [10], DOUBLE CHOOZ [11], Daya Bay [12] and RENO [13], for the normal (inverse) hierarchy.

Table 1 Recent fits to neutrino oscillation data from [7, 8]. In the brackets the IH case. \(\ast \) In this case the full \((0, 2\pi)\) is allowed.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Fogli et al. [7]</th>
<th>Schwetz et al. [8]</th>
</tr>
</thead>
</table>
| \(\Delta m^2_{\text{sun}} \) (10^{-5} eV^2) | 7.54 \pm 0.26
| | 7.62 \pm 0.19 | |
| \(\Delta m^2_{\text{atm}} \) (10^{-3} eV^2) | 2.43 \pm 0.07
| | 2.53 \pm 0.08 | |
| \(\sin^2 \theta_{12} \) | 0.307 \pm 0.018 |
| \(\sin^2 \theta_{23} \) | 0.398 \pm 0.026 |
| \(\sin^2 \theta_{13} \) | 0.0245 \pm 0.0034 |
| \(\delta_{CP}/\pi \) | 0.89 \pm 0.29 |

Table 2 The reactor angle measurements from the recent experiments T2K [9], MINOS [10], DOUBLE CHOOZ [11], Daya Bay [12] and RENO [13], for the normal (inverse) hierarchy.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>(\sin^2 2\theta_{13})</th>
<th>(\sin^2 \theta_{13})</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2K [9]</td>
<td>0.11 \pm 0.11 (\odot 0.14)</td>
<td></td>
</tr>
<tr>
<td>MINOS [10]</td>
<td>0.041 \pm 0.004 (\odot 0.079)</td>
<td></td>
</tr>
<tr>
<td>DC [11]</td>
<td>0.086 \pm 0.041 \pm 0.030</td>
<td></td>
</tr>
<tr>
<td>DYE [12]</td>
<td>0.092 \pm 0.016 \pm 0.005</td>
<td></td>
</tr>
<tr>
<td>RENO [13]</td>
<td>0.113 \pm 0.013 \pm 0.019</td>
<td></td>
</tr>
</tbody>
</table>

is very close, from below, to the so-called Tri-Bimaximal (TB) value [20, 24] which is \(\sin^2 \theta_{13} = 1/3 \) (see Fig. [1]). Alternatively it is also very close, from above, to the Golden Ratio (GR) value [25, 28] which is \(\sin^2 \theta_{12} = \frac{1}{\sqrt{30}} = \frac{2}{5+\sqrt{5}} \sim 0.276 \), where \(\phi = (1 + \sqrt{5})/2 \) is the GR (for a different connection to the GR, see Refs. [29, 30]). On a different perspective, one has considered models with Bi-Maximal (BM) mixing, with \(\sin^2 \theta_{12} = 1/2 \), i.e. also maximal, as the neutrino mixing matrix before diagonalization of charged leptons. This is in line with the well-known empirical observation that \(\theta_{12} + \theta_C \sim \pi/4 \), where \(\theta_C \) is the Cabibbo angle, a relation known as quark-lepton complementarity [31–51]. Probably the exact complementarity relation becomes more plausible if replaced with \(\theta_{12} + \theta_C \sim \pi/4 \) (which we call “weak” complementarity). One can think of models where, because of a suitable symmetry, BM mixing holds in the neutrino sector at leading order and the necessary, rather large, corrective terms for \(\theta_{12} \) arise from the diagonalization of the charged lepton mass matrices [31–57]. These coincidences cannot all be relevant and perhaps all of them are pure accidents. But if one or the other of these coincidences is taken seriously then one is led to consider models where TB or GR or BM mixing are naturally predicted as a good first approximation.

In the following we will concentrate on TB mixing which is perhaps the most plausible and certainly the most studied first approximation to the data. The simplest symmetry that, in leading order (LO), leads to TB is \(A_4 \), the group of even permutations of 4 objects, a subgroup of \(S_4 \) that includes all 4-object permutations. Thus, in the following, we will devote a special attention to \(A_4 \) models, but alternative theories of TB mixing will also be briefly considered. The plan of the paper is as follows. In Sect. 2 we recall the definitions of TB, GR and BM mixing and the symmetries of the corresponding mass matrices. In Sect. 3 we summarize the group theory of \(A_4 \). In Sect. 4 we review the structure of \(A_4 \) models of lepton masses and mixings and, in two separate subsections, we first describe the baseline models and then those special models [58, 59] where additional dynamical ingredients allow that the angle \(\theta_{13} \) can naturally be of different (and larger) order of magnitude than the deviations of \(\theta_{12} \) from the TB value. We also discuss the comparison with present data of the two options. In Sect. 5 we discuss the possible extension of the TB
models to include quarks, possibly also in a GUT context. Our speculations on the origin of A_4 either as a subgroup of the modular group or as a remnant of an extra dimensional spacetime symmetry are presented in Sect. 8. A number of alternative theories of TB mixing are briefly considered in Sect. 7. Sect. 8 contains a summary on the implications for lepton flavour violation of the different models described in Ref. [58]. Finally in Sect. 9 we derive our conclusions.

2 Special Patterns of Neutrino Mixing

Starting from the PNMS mixing matrix U (we refer the reader to Ref. [1, 5] for its general definition and parametrisation), the general form of the neutrino mass matrix, in terms of the (complex) mass eigenvalues m_1, m_2, m_3, in the basis where charged leptons are diagonal, is given by

$$m_\nu = U^* \text{diag}(m_1, m_2, m_3) U^\dagger. \quad (2)$$

We present here some particularly relevant forms of U and m_ν that are important in the following. We start by the most general mass matrix that corresponds to $\theta_{13} = 0$ and θ_{23} maximal, that is to U given by (in a particular phase convention)

$$U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12}/\sqrt{2} & c_{12}/\sqrt{2} & -1/\sqrt{2} \\ -s_{12}/\sqrt{2} & c_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, \quad (3)$$

with $c_{12} \equiv \cos \theta_{12}$ and $s_{12} \equiv \sin \theta_{12}$. By applying eq. (2) we obtain a matrix of the form [60–75]:

$$m = \begin{pmatrix} x & y & y \\ y & z & w \\ y & w & z \end{pmatrix}, \quad (4)$$

with complex coefficients x, y, z, w. This matrix is the most general one that is symmetric under 2-3 (or $\mu - \tau$) exchange or

$$m_\nu = A_{23} m_\nu A_{23}^\dagger, \quad (5)$$

where A_{23} is given by

$$A_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}. \quad (6)$$

We absorb the Majorana phases in the mass eigenvalues m_ν, rather than in the mixing matrix U. The dependence on these phases drops in neutrino oscillations.

Fig. 1 The values of $\sin^2 \theta_{12}$ for TB or GR or BM mixing are compared with the data at 1σ.

1 We absorb the Majorana phases in the mass eigenvalues m_ν, rather than in the mixing matrix U. The dependence on these phases drops in neutrino oscillations.
The solar mixing angle θ_{12} is given by
\[
\sin^2 2\theta_{12} = \frac{8|x^*y + y^*(w + z)|^2}{8|x^*y + y^*(w + z)|^2 + (|w + z|^2 - |x|^2)^2} = \frac{8y^2}{(x - w - z)^2 + 8y^2},
\]
where the second equality applies to real parameters. Since $\theta_{13} = 0$, in this limit there is no CP violation in neutrino oscillations, and the only physical phases are the Majorana ones, accounted for by the general case of complex parameters. We restrict here our consideration to real parameters. There are four of them in eq. (4) which correspond to the three mass eigenvalues and one remaining mixing angle, θ_{12}.

Models with μ-τ symmetry have been extensively studied [60–77].

The particularly important case of TB mixing is obtained when $\sin^2 2\theta_{12} = 8/9$ or $x + y = w + z$.\(^2\) In this case the matrix m_ν takes the form
\[
m_\nu = \begin{pmatrix} x & y & y \\ y & x + v & y - v \\ y & y - v & x + v \end{pmatrix},
\]
In fact, in this case, $U = U_{TB}$ is given by [20–24]
\[
U_{TB} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}.
\]
Note that U_{TB} is a rotation matrix with special, fixed angles: indeed all the entries of U_{TB} are pure numbers. This property is related to the particular pattern of m_ν which belongs to the category of the form diagonalizable mass matrices [78]. These matrices are diagonalized by unitary transformations that are independent from the eigenvalues. At the LO discrete flavour models give rise to form diagonalizable mass matrices and the physical mixing angles are thus unrelated to masses. From eq. (2), one obtains
\[
m_\nu = m_1 \Phi_1^T + m_2 \Phi_2^T + m_3 \Phi_3^T,
\]
where
\[
\Phi_1^T = \frac{1}{\sqrt{6}}(2, -1, -1), \quad \Phi_2^T = \frac{1}{\sqrt{3}}(1, 1, 1), \quad \Phi_3^T = \frac{1}{\sqrt{2}}(0, -1, 1)
\]
are the respective columns of U_{TB} and m_1 are the neutrino mass eigenvalues. It is easy to see that the TB mass matrix in eqs. (10) and (11) is indeed of the form in eq. (8). All patterns for the neutrino spectrum are in principle possible. For a hierarchical spectrum $m_3 >> m_2 >> m_1$, $m_3^2 \sim \Delta m_{sol}^2$, $m_2^2 / m_3^2 \sim \Delta m_{atm}^2 / \Delta m_{solar}^2$ and m_1 could be negligible. But also degenerate masses and inverse hierarchy can be reproduced: for example, by taking $m_3 = -m_2 = m_1$ we have a degenerate model, while for $m_1 = -m_2$ and $m_3 = 0$ an inverse hierarchy case is realized (stability under renormalization group running strongly prefers opposite signs for the first and the second eigenvalue which are related to solar oscillations and have the smallest mass squared splitting [42,79,84].

Note that the mass matrix for TB mixing, in the basis where charged lepton are diagonal, as given in eq. (5), can be specified as the most general matrix which is invariant under $\mu - \tau$ (or 2-3) symmetry and, in addition, under the action of a unitary symmetric matrix S_{TB} (actually $S_{TB}^2 = 1$ and $[S_{TB}, A_{23}] = 0$):
\[
m_\nu = S_{TB} m_\nu S_{TB}^T, \quad m_\nu = A_{23} m_\nu A_{23},
\]
where S_{TB} is given by
\[
S_{TB} = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}.
\]
\(^2\) The other solution $x - y = w + z$ gives rise to TB mixing in another phase convention and is physically equivalent to $x + y = w + z$.\[\]
Similarly, it is useful to consider the product $m^2 = m_e^T m_e$, where m_e is the charged lepton mass matrix (defined as $\overline{\psi}_R U^T m_e \psi_L$), because this product transforms as $m^2 = U^T m^2 U$, with U the unitary matrix that rotates the left-handed (LH) charged lepton fields. The most general diagonal m^2 is invariant under a diagonal phase matrix with 3 different phase factors,

$$m_e^T m_e = T^T m_e^T m_e T,$$

and conversely a matrix $m_e^T m_e$ satisfying the above requirement is diagonal. If $T^n = 1$ the matrix T generates a cyclic group Z_n. In the simplest case $n = 3$ and we get Z_3 but $n > 3$ is equally possible. In the $n = 3$ case we have

$$T_{TB} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix},$$

where $\omega^3 = 1$, so that $T_{TB}^3 = 1$.

We are now in a position to explain the role of finite groups and to formulate the general strategy to obtain the special mass matrix of TB mixing. We must find a group G_f which, for simplicity, must be as small as possible but large enough to contain the S and T transformations. A limited number of products of S and T close a finite group G_f. Hence the group G_f contains the subgroups G_S and G_T generated by monomials in S and T, respectively. We assume that the theory is invariant under the spontaneously broken symmetry described by G_f. Then we must arrange a breaking of G_f such that, at leading order, G_f is broken down to G_S in the neutrino mass sector and down to G_T in the charged lepton mass sector. In a good model this step must be realized in a natural way as a consequence of the stated basic principles, and not put in by hand. The symmetry under A_{23} in some cases is also part of G_f (this the case of S_4, the permutation group of 4 objects) and then must be preserved in the neutrino sector along with S by the G_f breaking or it could arise as a consequence of a special feature of the G_f breaking (for example, in A_4 it is obtained by allowing only some transformation properties for the flavons with non vanishing VEV’s). The explicit example of A_4 is discussed in the next section. Note that, along the same line, a model with $\mu - \tau$ symmetry can be realized in terms of the group S_3 generated by products of A_{23} and T (see, for example, Ref. [85] [86]).

3 The A_4 Group

A_4 is the group of the even permutations of 4 objects. It has $4!/2 = 12$ elements. Geometrically, it can be seen as the invariance group of a tetrahedron (the odd permutations, for example the exchange of two vertices, cannot be obtained by moving a rigid solid). Let us denote a generic permutation $(1, 2, 3, 4) \rightarrow (n_1, n_2, n_3, n_4)$ simply by $\{n_1n_2n_3n_4\}$. A_4 can be generated by two basic permutations S and T given by $S = (4321)$ and $T = (2314)$. One checks immediately that

$$S^2 = T^3 = (ST)^3 = 1.$$ \hspace{1cm} (16)

This is called a “presentation” of the group. The 12 even permutations belong to 4 equivalence classes (h and k belong to the same class if there is a g in the group such that $ghg^{-1} = k$) and are generated from S and T as follows:

$$C_1: \quad I = (1234)$$
$$C_2: \quad T = (2314), ST = (4132), TS = (3241), STS = (1423)$$
$$C_3: \quad T^2 = (3124), ST^2 = (4213), T^2S = (2431), TST = (1342)$$
$$C_4: \quad S = (4321), T^2ST = (3412), TST^2 = (2143)$$ \hspace{1cm} (17)

Note that, except for the identity I which always forms an equivalence class in itself, the other classes are according to the powers of T (in C_4, S could as well be seen as ST^3).
Table 3 Characters of A_4

<table>
<thead>
<tr>
<th>Class</th>
<th>χ^1</th>
<th>$\chi^{1'}$</th>
<th>$\chi^{1''}$</th>
<th>χ^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>C_2</td>
<td>1</td>
<td>ω</td>
<td>ω^2</td>
<td>0</td>
</tr>
<tr>
<td>C_3</td>
<td>1</td>
<td>ω^2</td>
<td>ω</td>
<td>0</td>
</tr>
<tr>
<td>C_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

The characters of a group χ^R_g are defined, for each element g, as the trace of the matrix that maps the element in a given representation R. From the invariance of traces under similarity transformations it follows that equivalent representations have the same characters and that characters have the same value for all elements in an equivalence class. Characters satisfy $\sum_q \chi^R_g \chi^S_h = N \delta^{RS}$, where N is the number of transformations in the group ($N = 12$ in A_4). Also, for each element h, the character of h in a direct product of representations is the product of the characters: $\chi^R_h = \chi^R_g \chi^S_h$ and also is equal to the sum of the characters in each representation that appears in the decomposition of $R \otimes S$. In a finite group the squared dimensions of the inequivalent irreducible representations add up to N. The character table of A_4 is given in Tab. [3] From this table one derives that A_4 has four inequivalent representations: three of dimension one, $1, 1'$ and $1''$ and one of dimension 3.

It is immediate to see that the one-dimensional unitary representations are obtained by:

$$
1 \quad S = 1 \quad T = 1 \\
1' \quad S = 1 \quad T = e^{i2\pi/3} \equiv \omega \\
1'' \quad S = 1 \quad T = e^{i4\pi/3} \equiv \omega^2. \quad (18)
$$

Note that $\omega = -1/2 + i\sqrt{3}/2$ is the cubic root of 1 and satisfies $\omega^2 = \omega^*, 1 + \omega + \omega^2 = 0$.

The three-dimensional unitary representation, in a basis where the element $S = S'$ is diagonal, is built up from:

$$
S' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad T' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}. \quad (19)
$$

The multiplication rules are as follows: the product of two 3 gives $3 \times 3 = 1 + 1' + 1'' + 3 + 3$ and $1' \times 1' = 1'', 1' \times 1'' = 1, 1'' \times 1'' = 1'$ etc. If $3 \sim (a_1, a_2, a_3)$ is a triplet transforming by the matrices in eq. (19) we have that under S': $S'(a_1, a_2, a_3)^t = (a_1, -a_2, -a_3)^t$ (here the upper index t indicates transposition) and under T': $T'(a_1, a_2, a_3)^t = (a_2, a_3, a_1)^t$. Then, from two such triplets $3_u \sim (a_1, a_2, a_3), 3_u \sim (b_1, b_2, b_3)$ the irreducible representations obtained from their product are:

$$
1 = a_1 b_1 + a_2 b_2 + a_3 b_3 \\
1' = a_1 b_1 + \omega^2 a_2 b_2 + \omega a_3 b_3 \\
1'' = a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3 \\
3 \sim (a_2 b_3, a_3 b_1, a_1 b_2) \\
3 \sim (a_3 b_2, a_1 b_3, a_2 b_1) \quad (20)
$$

In fact, take for example the expression for $1'' = a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3$. Under S' it is invariant and under T' it goes into $a_2 b_3 + \omega a_3 b_1 + \omega^2 a_1 b_2 = \omega^2 [a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3]$ which is exactly the transformation corresponding to $1''$.

Copyright line will be provided by the publisher
In eq. (19) we have the representation 3 in a basis where S is diagonal. We shall see that for our purposes it is convenient to go to a basis where instead it is T that is diagonal. This is obtained through the unitary transformation:

$$ T = V T' V^\dagger = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, $$

$$ S = V S' V^\dagger = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}. $$

where:

$$ V = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}. $$

The matrix V is special in that it is a 3×3 unitary matrix with all entries of unit absolute value. It is interesting that this matrix was proposed long ago as a possible mixing matrix for neutrinos [87, 88]. We shall see in the following that in the T diagonal basis the charged lepton mass matrix (to be precise the matrix $m^\dagger e m$) is diagonal. Notice that the matrices (S, T) of eqs. (21) and (22) coincide with the matrices (S_{TB}, T_{TB}) of the previous section.

In this basis the product rules of two triplets, (ψ_1, ψ_2, ψ_3) and $(\varphi_1, \varphi_2, \varphi_3)$ of A_4, according to the multiplication rule $3 \times 3 = 1 + 1' + 1'' + 3 + 3'$ are different than in the S diagonal basis (because for Majorana mass matrices the relevant scalar product is (ab) and not $(a^\dagger b)$) and are given by:

$$ \psi_1 \varphi_1 + \psi_2 \varphi_2 + \psi_3 \varphi_3 \sim 1, $$

$$ \psi_3 \varphi_3 + \psi_1 \varphi_2 + \psi_2 \varphi_1 \sim 1', $$

$$ \psi_2 \varphi_2 + \psi_3 \varphi_1 + \psi_1 \varphi_3 \sim 1'', $$

$$ \begin{pmatrix} 2\psi_1 \varphi_1 - \psi_2 \varphi_2 - \psi_3 \varphi_3 \\ 2\psi_3 \varphi_3 - \psi_1 \varphi_2 - \psi_2 \varphi_1 \\ 2\psi_2 \varphi_2 - \psi_1 \varphi_3 - \psi_3 \varphi_1 \end{pmatrix} \sim 3_S, $$

$$ \begin{pmatrix} \psi_2 \varphi_3 - \psi_3 \varphi_2 \\ \psi_1 \varphi_2 - \psi_2 \varphi_1 \\ \psi_3 \varphi_1 - \psi_1 \varphi_3 \end{pmatrix} \sim 3_A. $$

An obvious representation of A_4 is obtained by considering the 4×4 matrices that directly realize each permutation. For $S = (4321)$ and $T = (2314)$ we have

$$ S_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, $$

$$ T_4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. $$

The matrices S_4 and T_4 satisfy the relations in eq. (16), thus providing a representation of A_4. Since the only irreducible representations of A_4 are a triplet and three singlets, the 4×4 representation described by S_4 and T_4 is not irreducible. It decomposes into the sum of the invariant singlet plus the triplet representation. In fact the vector $(1, 1, 1, 1)^T$ is clearly invariant under permutations and similarly the 3-dimensional space orthogonal to it. In matrix terms this decomposition is realized by the unitary matrix [89] U given by

$$ U = \frac{1}{2} \begin{pmatrix} +1 & +1 & +1 & +1 \\ -1 & +1 & +1 & -1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \end{pmatrix}. $$

Copyright line will be provided by the publisher
This matrix maps S_4 and T_4 into matrices that are block-diagonal:

\[
US_4U^\dagger = \begin{pmatrix}
1 & 0 \\
0 & S
\end{pmatrix}, \quad UT_4U^\dagger = \begin{pmatrix}
1 & 0 \\
0 & T
\end{pmatrix},
\]

where S and T are the generators of the three-dimensional representation in eq. (19).

In the following we will work in the T diagonal basis, unless otherwise stated. In this basis the 12 matrices of the 3-dimensional representation of A_4 are given as follows:

\[
C_1: \quad 1 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

\[
C_2: \quad T = \begin{pmatrix}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^2
\end{pmatrix}, \quad ST = \frac{1}{3} \begin{pmatrix}
-1 & 2\omega & 2\omega^2 \\
2 & -\omega & 2\omega^2 \\
2\omega & 2 & -\omega^2
\end{pmatrix},
\]

\[
TS = \frac{1}{3} \begin{pmatrix}
-1 & 2 & 2 \\
2\omega & -\omega & 2\omega \\
2\omega^2 & 2\omega^2 & -\omega^2
\end{pmatrix}, \quad STS = \frac{1}{3} \begin{pmatrix}
-1 & 2\omega^2 & 2\omega \\
2 & -\omega^2 & 2\omega \\
2\omega & 2 & -\omega^2
\end{pmatrix},
\]

\[
C_3: \quad T^2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & \omega^2 & 0 \\
0 & 0 & \omega
\end{pmatrix}, \quad ST^2 = \frac{1}{3} \begin{pmatrix}
-1 & 2\omega & 2\omega \\
2 & -\omega^2 & 2\omega \\
2\omega & 2\omega^2 & -\omega
\end{pmatrix},
\]

\[
T^2S = \frac{1}{3} \begin{pmatrix}
-1 & 2 & 2 \\
2\omega & -\omega & 2\omega \\
2\omega^2 & 2\omega & -\omega
\end{pmatrix}, \quad TST = \frac{1}{3} \begin{pmatrix}
-1 & 2\omega & 2\omega \\
2 & -\omega^2 & 2\omega \\
2\omega & 2\omega^2 & -\omega
\end{pmatrix},
\]

\[
C_4: \quad S = \frac{1}{3} \begin{pmatrix}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{pmatrix}, \quad T^2ST = \frac{1}{3} \begin{pmatrix}
-1 & 2\omega & 2\omega \\
2 & -\omega^2 & 2\omega \\
2\omega & 2\omega^2 & -\omega
\end{pmatrix},
\]

\[
TST^2 = \frac{1}{3} \begin{pmatrix}
-1 & 2\omega & 2\omega \\
2 & -\omega^2 & 2\omega \\
2\omega & 2\omega^2 & -\omega
\end{pmatrix}.
\]

We can now see why A_4 works for TB mixing. In Sec. 2 we have already mentioned that the most general mass matrix for TB mixing in eq. (8), in the basis where charged leptons are diagonal, can be specified as one which is invariant under the 2-3 (or $\mu - \tau$) symmetry and under the S unitary transformation, as stated in eq. (12). This observation plays a key role in leading to A_4 as a candidate group for TB mixing, because S is a matrix of A_4. Instead the matrix A_{23} is not an element of A_4 (because the 2-3 exchange is an odd permutation). We shall see that in A_4 models the 2-3 symmetry of the neutrino mass matrix arises as an accidental symmetry of the LO Lagrangian by imposing that there are no flavons transforming as 1’ or 1” that break A_4 with two different VEV’s (in particular one can assume that there are no flavons in the model transforming as 1’ or 1”). It is also clear that a generic diagonal charged lepton matrix $m_1^l m_e$ is characterized by the invariance under T, or $T^\dagger m_1^l m_e T = m_1^l m_e$.

The group A_4 has two obvious subgroups: G_S, which is a reflection subgroup generated by S, and G_T, which is the group generated by T, which is isomorphic to Z_3. If the flavour symmetry associated to A_4 is broken by the VEV of a triplet $\varphi = (\varphi_1, \varphi_2, \varphi_3)$ of scalar fields, there are two interesting breaking pattern. The VEV

\[
\langle \varphi \rangle = (v_S, v_S, v_S)
\]
breaks A_4 down to G_S, while
\[\langle \phi \rangle = (v_T, 0, 0) \]
breaks A_4 down to G_T. As we will see, G_S and G_T are the relevant low-energy symmetries of the neutrino and the charged-lepton sectors, respectively. Indeed we have already seen that the TB mass matrix is invariant under G_S and a diagonal charged lepton mass $m^2_{e} m_{e}$ is invariant under G_T.

4 Applying A_4 to Lepton Masses and Mixings

In the lepton sector a typical A_4 model works as follows [90]. One assigns leptons to the four inequivalent representations of A_4: LH lepton doublets l transform as a triplet 3, while the RH charged leptons e^c, μ^c and τ^c transform as $1'$, $1''$ and $1'$, respectively. These models can be realized both with and without a see-saw mechanism. In the first case there are three right-handed neutrinos transforming as a triplet of A_4, while in the second case the source of neutrino masses is a set of higher dimensional operators violating the total lepton number. Here we consider a see-saw realization, so we also introduce conjugate neutrino fields $\bar{\nu}$ transforming as a triplet of A_4. The fact that LH lepton doublets l and, in the see-saw case, also the RH neutrinos ν^c, transform as triplets is crucial to realize the fixed ratios of mass matrix elements needed to obtain TB mixing. A drawback is that for the ratio r, defined by $\Delta m^2_{atm}/\Delta m^2_{solar}$ one would expect $\sqrt{r} \approx 0(1)$ to be compared with the experimental value is $\sqrt{r} \approx 0.2$, which implies a moderate fine-tuning.

One adopts a supersymmetric (SUSY) context also to make contact with Grand Unification (flavour symmetries are supposed to act near the GUT scale). In fact, as well known, SUSY is important in GUT’s for offering a solution to the hierarchy problem, for improving coupling unification and for making the theory compatible with bounds on proton decay. But, in models of lepton mixing, SUSY also helps for obtaining the vacuum alignment, because the SUSY constraints are very strong and limit the form of the superpotential very much. Thus SUSY is not necessary but it is a plausible and useful ingredient. The flavour symmetry is broken by two sets of flavons Φ_x and Φ_{μ}, invariant under the SM gauge symmetry, that at the LO break A_4 down to G_T and G_S, respectively. At this order Φ_x couples only to the charge lepton sector and Φ_{μ} to the neutrino sector. Typically Φ_x and Φ_{μ} include triplets and invariant singlets under A_4, but models with flavons transforming as $1'$ and $1''$ have also been considered [96,97]. For example Φ_x can consist of the triplet ϕ_T with the vacuum alignment in eq. (29) and Φ_{μ} can include the triplet ϕ_S with the vacuum alignment in eq. (28) and two invariant singlets ξ, ξ. Two Higgs doublets $h_{u,d}$, invariant under A_4, are also introduced. One can obtain the observed hierarchy among m_u, m_d and m_e by introducing an additional $U(1)_{FN}$ flavour symmetry [98] under which only the RH lepton sector is charged (recently some models were proposed with a different VEV alignment such that the charged lepton hierarchies are obtained without introducing a $U(1)$ symmetry [99,100]). We recall that $U(1)_{FN}$ is a simple flavour symmetry where particles in different generations are assigned (in general) different values of an Abelian charge. Also Higgs fields may get a non zero charge. When the symmetry is spontaneously broken the entries of mass matrices are suppressed if there is a charge mismatch and more so if the corresponding mismatch is larger. We assign FN-charges 0, q and $2q$ to τ^c, μ^c and e^c, respectively. There is some freedom in the choice of q. Here we take $q = 2$. By assuming that a flavon θ, carrying a negative unit of FN charge, acquires a VEV $\langle \theta \rangle / \Lambda \equiv \lambda_C < 1$, where $\lambda_C \equiv \sin \theta_C$, the Yukawa couplings become field dependent quantities $y_{e,\mu,\tau} = y_{e,\mu,\tau}(\theta)$ and we have
\[y_{e} \approx O(1), \quad y_{\mu} \approx O(\lambda^2_C), \quad y_{\tau} \approx O(\lambda^4_C). \]
Had we chosen $q = 1$, we would have needed $\langle \theta \rangle / \Lambda$ of order λ^2_C, to reproduce the above result. The superpotential term for lepton masses, w_l, is given by
\[w_l = y_{e} e^c(\phi_T l') + y_{\mu} \mu^c(\phi_T l')' + y_{\tau} \tau^c(\phi_T l')'' + g(\nu^c l') + (x_A \xi + x_B \tilde{\xi})(\nu^c \nu^c) + x_D (\nu_S \nu^S \nu^c) + \ldots \]

3 When the flavour symmetry is broken contextually with the electroweak one, such as in Refs. [61,93], strong constraints from FCNC transitions are usually present [94,95], that can eventually rule out the model.
with dots denoting higher dimensional operators that lead to corrections to the LO approximation. In our notation, the product of 2 triplets \((33)\) transforms as 1, \((33)\)' transforms as 1' and \((33)\)'' transforms as 1''. To keep our formulae compact, we omit to write the Higgs and flavon fields \(h_{u,d}, \theta\) and the cut-off scale \(\Lambda\). For instance \(y_e e^c (\phi_T^T)\) stands for \(y_e e^c (\phi_T^T) h_d \theta^4 / \Lambda^5\). The parameters of the superpotential \(w\) are complex, in particular those responsible for the heavy neutrino Majorana masses, \(x_{A,B}\). Some terms allowed by the \(A_4\) symmetry, such as the terms obtained by the exchange \(\phi_T \leftrightarrow \phi_S\), (or the term \(\nu^c \nu^c\)) are missing in \(w\). Their absence is crucial and, in each version of \(A_4\) models, is motivated by additional symmetries.

The LO superpotential in eq. (31) leads to a diagonal mass matrix \(m_{e(i)}^{(0)}\) for the charged leptons\(^4\)

\[
m_e^{(0)} = v_d \begin{pmatrix} y_e & 0 & 0 \\ 0 & y_\mu & 0 \\ 0 & 0 & y_\tau \end{pmatrix} \eta \quad \text{with} \quad \eta \equiv \frac{\nu_T}{\Lambda}, \quad (32)
\]

and to a neutrino mass matrix \(m_\nu^{(0)}\) of the same form as that of eq. (8). As for the neutrino spectrum both normal and inverted hierarchies can be realized. It is interesting that \(A_4\) models with the see-saw mechanism typically lead to a light neutrino spectrum which satisfies the sum rule (among complex masses):

\[
\frac{1}{m_3} = \frac{1}{m_1} - \frac{2}{m_2}. \quad (33)
\]

A detailed discussion of a spectrum of this type can be found in Refs. [90,100–102]. The above sum rule gives rise to bounds on the lightest neutrino mass. As a consequence, for example, the possible values of \(|m_{ee}|\) are restricted. For normal hierarchy we have

\[
|m_{ee}| \approx \frac{4}{3\sqrt{3}} \Delta m_{\text{sun}}^2 \approx 0.007 \, \text{eV}. \quad (34)
\]

while for inverted hierarchy

\[
|m_{ee}| \geq \sqrt{\frac{\Delta m_{\text{atm}}^2}{8}} \approx 0.017 \, \text{eV}. \quad (35)
\]

In a completely general framework, without the restrictions imposed by the flavour symmetry, \(|m_{ee}|\) could vanish in the case of normal hierarchy. In this model \(|m_{ee}|\) is always different from zero, though its value for normal hierarchy is probably too small to be detected in the next generation of 0νββ experiments.

In the leading approximation \(A_4\) models lead to exact TB mixing. In these models TB mixing is implied by the symmetry at the leading order approximation which is corrected by non-leading effects. Given the set of flavour symmetries and having specified the field content, the non leading corrections to TB mixing, arising from higher dimensional effective operators, can be evaluated in a well defined expansion.

The departure from the LO approximation depends on the subleading contributions \(\delta m_e^{(1)}, \delta m_\nu^{(1)}\), to the charged lepton and the neutrino mass matrices, respectively:

\[
m_e = m_e^{(0)} + \delta m_e^{(1)} + \ldots, \quad m_\nu = m_\nu^{(0)} + \delta m_\nu^{(1)} + \ldots, \quad (36)
\]

which can vary according to the model considered. In all models considered here [59,90,100,103] the NLO corrections to the charged lepton mass matrix are of the following type:

\[
\delta m_e^{(1)} = v_d \begin{pmatrix} O(y_e) & O(y_e) & O(y_e) \\ O(y_\mu) & O(y_\mu) & O(y_\mu) \\ O(y_\tau) & O(y_\tau) & O(y_\tau) \end{pmatrix} \eta \xi,
\]

\(^4\) We absorbed in \(y_f (f = e, \mu, \tau)\) the appropriate factor of \(\langle \theta \rangle / \Lambda\).
where ξ is a small adimensional parameter given by the ratio between the flavon VEVs and Λ. The transformation needed to diagonalize m_ν is $V_\nu^T m_\nu U_\nu = m_\nu^{\text{diag}}$ where

$$U_\nu = \begin{pmatrix} 1 & \xi c_{12} & \xi c_{13} \\ -\xi c_{12} & 1 & \xi c_{23} \\ -\xi c_{13} & -\xi c_{23} & 1 \end{pmatrix}.$$ \hfill (37)

To discuss the NLO contribution to m_ν, we distinguish two cases.

4.1 Typical A_4 Models

In “typical” A_4 models, the NLO contribution $\delta m_\nu^{(1)}$ in eq. (36) is a generic symmetric matrix with entries suppressed, compared to the corresponding entries in $m_\nu^{(0)}$, by a relative factor ξ', ξ'' of the order of the ratio between a flavon VEV and Λ. This occurs both with and without the see-saw mechanism. The generic transformation that diagonalizes m_ν is $U_\nu^T U_B^T m_\nu U_B U_\nu$ where

$$U_\nu = \begin{pmatrix} 1 & \xi' c_{12} & \xi' c_{13} \\ -\xi' c_{12} & 1 & \xi' c_{23} \\ -\xi' c_{13} & -\xi' c_{23} & 1 \end{pmatrix},$$ \hfill (38)

where c_{12}^ν, c_{13}^ν and c_{23}^ν are complex parameters of order one in absolute value. Barring a fine-tuning of the Lagrangian parameters, in these models the suppression factors ξ and ξ' are expected to be of the same order of magnitude. For example, beyond the LO the equations satisfied by $\langle \Phi_e \rangle$ and $\langle \Phi_\nu \rangle$ are no longer decoupled and the corrections to the LO flavon VEVs turn out to be of the same size, for both Φ_e and Φ_ν. All the elements of the mixing matrix get corrections of the same size $\xi \approx \xi'$. We expect On the contrary, the expressions in eq. (40) show explicitly the dependence of the NLO mixing angles on the corrections from both the neutrino and charged lepton sectors:

$$\sin^2 \theta_{23} = \frac{1}{2} + \Re(c_{23}^\nu) \xi + \frac{1}{\sqrt{3}} \left(\Re(c_{13}^\nu) - \sqrt{2} \Re(c_{23}^\nu) \right) \xi$$

$$\sin^2 \theta_{12} = \frac{1}{3} - \frac{2}{3} \Re(c_{12}^\nu + c_{13}^\nu) \xi + \frac{2 \sqrt{3}}{3} \Re(c_{12}^\nu) \xi$$

$$\sin \theta_{13} = \frac{1}{6} \left(3 \sqrt{2} (c_{12}^\nu - c_{13}^\nu) + 2 \sqrt{3} \left(\sqrt{2} c_{13}^\nu + c_{23}^\nu \right) \right) \xi.$$

According to these expressions, in order to reach the central value for the reactor angle in agreement with eq. (1), the parameter ξ is expected to be $O(0.1)$. A precise value can be found by studying the success rate to reproduce all the three mixing angles inside the corresponding 3σ ranges, depending on the value of ξ. As shown in ref. [58], in a scan with the c_{ij}^ν parameters that multiply ξ treated as random complex numbers with absolute values following a Gaussian distribution around 1 with variance 0.5, the value of ξ that maximizes the success rate is found to be 0.075(0.078) for the NH (IH). The corresponding success rate is $\sim 12\%$, which is not large but not hopeless small either. For this value of ξ in Fig. 2 we quantitatively analyze the expressions in eq. (40) and their correlations: in the plots on the left (right), we show the correlation between $\sin^2 \theta_{13}$ and $\sin^2 \theta_{12}$ ($\sin^2 \theta_{23}$). In the plots we show only the NH case. The IH case is similar.

As we can see, the plots are representing the general behaviour of this class of models: $\sin^2 \theta_{13}$ increases with ξ, but correspondingly also the deviation of $\sin^2 \theta_{12}$ from $1/3$ does. As a result, even for the value

$$\sin \theta_{23} = \frac{1}{\sqrt{2}} (1 + a), \quad \sin \theta_{12} = \frac{1}{\sqrt{3}} (1 + s), \quad \sin \theta_{13} = \frac{r}{\sqrt{2}},$$

with a, s and r real numbers. The expressions in Eq. (40) show explicitly the dependence of the NLO mixing angles on the corrections from both the neutrino and the charged lepton sectors.

\footnote{Eq. (40) is a particular case of the general parametrization presented Ref. [104]:}

$$\sin \theta_{23} = \frac{1}{\sqrt{2}} (1 + a), \quad \sin \theta_{12} = \frac{1}{\sqrt{3}} (1 + s), \quad \sin \theta_{13} = \frac{r}{\sqrt{2}},$$ \hfill (39)
of ξ that maximizes the success rate, the requirement for having a reactor angle inside its 3σ error range corresponds to a prediction for the solar angle that spans all the 3σ experimental error bar and is often not even in agreement with the data.

4.2 Special A_4 Models

In these models $δm_\nu^{(1)}$ in eq. (36) is protected by the assumed symmetries so that it remains invariant under S and its relative size, compared to $m_\nu^{(0)}$, can be bigger than ξ. For instance, in Ref. [59] $⟨Φ_e⟩$ and $⟨Φ_ν⟩$ satisfy decoupled equations up to NLO so that it is possible to achieve $⟨Φ_e⟩ < ⟨Φ_ν⟩$. Moreover $⟨Φ_ν⟩$ couples to charged leptons only at the NNLO so that the dominant source of corrections to the neutrino mixing pattern is $δm_\nu^{(1)}$. Including these NLO corrections we have

$$m_\nu = \begin{pmatrix} x & y - w & y + w \\ y - w & x + z + w & y - z \\ y + w & y - z & x + z - w \end{pmatrix},$$

(41)

where w represents the part of the NLO corrections that cannot be absorbed by a redefinition of x, y and z. The parameter w is smaller that x, y, z, but not necessarily much smaller. The crucial property of m_ν [58] is that it is still invariant under the action of S (but not any more of A_{23}):

$$S^T m_\nu S = m_\nu.$$

(42)

Actually it can be directly proven that the matrix in eq. (41) is the most general one invariant under S. The matrix m_ν can be diagonalized in two steps. First we transform m_ν by a Tri-Bimaximal rotation:

$$m_\nu' = U_{TB}^T m_\nu U_{TB} = \begin{pmatrix} x - y & 0 & \sqrt{3}w \\ 0 & x + 2y & 0 \\ \sqrt{3}w & 0 & x - y + 2z \end{pmatrix},$$

(43)

Second, we perform a unitary transformation in the (1,3) plane:

$$V = \begin{pmatrix} α & 0 & ξ' \\ 0 & 1 & 0 \\ -ξ' & 0 & α^* \end{pmatrix},$$

(44)
\[V^T m_\nu' V = m_\nu^{diag} \]

(45)

The exact rotation is given by:

\[
\frac{2\alpha' \xi'}{|\alpha|^2 - |\xi'|^2} = \frac{u^* (u^* - v)}{|v|^2 - |u|^2}, \quad \text{with} \quad u \equiv \frac{2\sqrt{3} w}{x - y}, \quad \text{and} \quad v \equiv \frac{2\sqrt{3} w}{x - y + 2z}.
\]

(46)

The unitary matrix that diagonalizes \(m_\nu \) is

\[
U_{TB} = \begin{pmatrix}
\frac{\sqrt{2/3} \alpha}{\sqrt{3}}, & 1/\sqrt{3} & -\alpha' / \sqrt{6} - \xi' / \sqrt{6} \\
-\alpha' / \sqrt{6} + \xi' / \sqrt{6}, & 1/\sqrt{3} & +\alpha' / \sqrt{6} - \xi' / \sqrt{6}
\end{pmatrix}.
\]

(47)

It is not restrictive to choose \(\alpha \) real and positive and we have: In eq. (47) it is not restrictive to choose \(\alpha \) real and positive and we have:

\[
\delta_{CP} \approx \arg \xi' \quad \text{(48)}
\]

\[
\sin \theta_{13} = \left| \sqrt{\frac{2}{3}} \xi' + \frac{c_{12} - e_{13}}{\sqrt{2}} \xi' \right| \quad \text{(49)}
\]

\[
\sin^2 \theta_{12} = \frac{1}{3 - 2|\xi'|^2} - \frac{2}{3} \text{Re}(e_{12}^{c_1} + e_{13}^c) \xi = \frac{1}{3} + \frac{2}{9} |\xi'|^2 - \frac{2}{3} \text{Re}(e_{12}^{c_1} + e_{13}^c) \xi \quad \text{(50)}
\]

\[
\sin^2 \theta_{23} = \frac{1}{2} \left(1 + \frac{e_{12}^c}{\sqrt{3} \alpha} \right) \left(1 - \frac{2}{3} \left[1 + \frac{e_{12}^c}{\sqrt{3} \alpha} \right] \xi' \right) + \text{Re}(e_{23}^c) \xi = \frac{1}{2} + \frac{1}{\sqrt{3}} |\xi'| \cos \delta + \text{Re}(e_{23}^c) \xi \quad \text{(51)}
\]

where we have also included the effects coming from the diagonalization of the charged lepton sector, to first order in \(\xi \). The second equality shows the result expanded in powers of \(|\xi'| \), to the order \(|\xi'|^2 \). In these models \(|\xi'| \) is of order 0.1, bigger than \(\xi \) so that the contribution of eq. (57) are subdominant.

It is interesting to note that if we neglect the corrections proportional to \(\xi \), we have an exact relation between the solar and the reactor angle\(^6\):

\[
\sin^2 \theta_{12} = \frac{1}{3(1 - \sin^2 \theta_{13})}, \quad \sin^2 \theta_{23} = \frac{1}{2} + \frac{1}{\sqrt{2}} \sin \theta_{13} \cos \delta_{CP}.
\]

(52)

The first expression demonstrates that the unitary transformation \(V \) always increases the solar angle from the TB value, while the preferred 1σ interval is below the TB prediction. This is a small effect, of second order in \(\theta_{13} \), that can be compensated by the corrections proportional to \(\xi \). The second correlation involves the Dirac CP phase and is particularly interesting considering the recent hint of a CP phase close to \(\pi \) for the NH case: when considering the 1σ (2σ) ranges for the mixing angles, one sees an indication that \(\cos \delta_{CP} \) lies in the interval \([-1, -0.5]\), while no indication arises when the 3σ error band for \(\sin^2 \theta_{23} \) is taken into account. Although these results for the CP phase is modified by the inclusion of the subleading \(\xi \) contributions, these correlations will allow an interesting test for such models once \(\delta_{CP} \) is measured and the precision on \(\sin^2 \theta_{23} \) is improved.

The success rate to reproduce all the three mixing angles inside their corresponding 3σ error ranges, as a function of \(|\xi'| \), is studied in ref.\(^{[58]}\). The parameters are chosen such that \(\xi \) is a real number in \([0.005, 0.06]\) and \(e_{ij}^c \) are random complex numbers with absolute values following a Gaussian distribution around 1 with variance 0.5. The value of \(|\xi'| \) that maximizes the success rate for both the hierarchies is

\(^6\) It has been shown in Ref.\(^{[105]}\), from general group theoretical considerations, that these correlations are a general feature of flavour models when the symmetry group of the charged lepton (neutrino) mass matrix is \(Z_3(Z_2) \).
found to be 0.183. The corresponding success rate is much larger in these models (~ 64%) than for the typical A_4 models. For the stated range of ξ and the optimal value of ξ' the deviations in eqs. [50] and [51] and their correlations are quantitatively analyzed in Fig. 3, in the plots on the left (right) column, we show the correlations in eqs. [50] and [51] between $\sin^2 \theta_{13}$ and $\sin^2 \theta_{12}$ or $\sin^2 \theta_{23}$, respectively. We see that, for this choice of the parameters, the model can well describe all three angles inside the corresponding 3σ interval, and its success rate is much larger than that of the typical TB models.

Fig. 3 Special A_4 Models. $\sin^2 \theta_{13}$ as a function of $\sin^2 \theta_{12}$ ($\sin^2 \theta_{23}$ is plotted on the left (right), following eqs. [50] and [51]. The dashed-black lines represent the 3σ values for the mixing angles from the Fogli et al. fit [7]. Only the NH data sets is shown. The parameter ξ is a real number in $[0.005, 0.06]$; ξ' is a complex number with absolute values equal to 0.183; the parameters c_{ij} are random complex numbers with absolute values following a Gaussian distribution around 1 with variance 0.5.

One particularly interesting example realizing this scenario is provided by the Lin model [59] (see also [106]), formulated before the T2K, MINOS, DOUBLE CHOOZ, Daya Bay and RENO results were known. In the Lin model, the A_4 symmetry breaking is arranged, by suitable additional Z_3 parities, in such a way that, not only at LO but also at NLO, the corrections to the charged lepton and the neutrino sectors are kept separate. Then the contributions to neutrino mixing from the diagonalization of the charged leptons can be of $O(\lambda_{C}^2)$ while those in the neutrino sector can be of $O(\lambda_{C})$. In addition, in the Lin model these large corrections do not affect θ_{12} and satisfy the relations in eq. [51], with δ being the CKM-like CP violating phase of the lepton sector. Thus in the Lin model the NLO corrections to the solar angle θ_{12} and to the reactor angle θ_{13} can naturally be of different orders and $\theta_{13} \sim O(\lambda_{C})$ is not at all surprising.

A related scenario is provided by a framework based on a typical A_4 model as described at the beginning of this section, extended by the inclusion in Φ_{ν} of two additional singlets transforming as $1'$ and $1''$ [107]. Once these singlets and the triplet φ_{S} acquire a VEV, the resulting LO neutrino mass matrix $m_{\nu}^{(0)}$ is only invariant under the action of S and no more under A_{23}. Thus, already at the LO we have $m_{\nu}^{(0)}$ of the general form in eq. [41]. In this framework the smallness of θ_{13} is however unexplained.

4.3 Summary on A_4 models for lepton mixing

In summary, in the absence of specific dynamical tricks, in a generic A_4 model, all the three mixing angles receive corrections of the same order of magnitude. Since the experimentally allowed departures of θ_{13} from the TB value, $\sin^2 \theta_{12} = 1/3$, are small, numerically not larger than $O(\lambda_{C}^2)$, it follows that both θ_{13} and the deviation of θ_{23} from the maximal value are expected to also be typically of the same general size. The central values $\sin \theta_{13} \approx 0.15$ that can be derived from the experimental results in Tab. 2 are in between $O(\lambda_{C}^2) \sim O(0.05)$ and $O(\lambda_{C}) \sim O(0.23)$. Although models based on TB (or GR) mixing tend to lead to a smaller value of θ_{13} one can argue that they are still viable with preference for the lower side of the experimental range. But, as we have seen, one can introduce some additional theoretical input to
enhance the value of θ_{13} in an A_4 model (several models have been recently proposed in order to fulfill this goal \[86,97,105,107,153\]). As a result we now have examples of A_4 models where the departures from exact TB mixing are naturally larger for θ_{13} than for θ_{12} and θ_{23}.

5 A_4, Quarks and GUT’s

Much attention has been devoted to the question whether models with TB mixing in the neutrino sector can be suitably extended to also successfully describe the observed pattern of quark mixings and masses and whether this more complete framework can be made compatible with (supersymmetric) SU(5) or SO(10) Grand Unification.

The simplest attempts of directly extending models based on A_4 to quarks have not been satisfactory. At first sight the most appealing possibility is to adopt for quarks the same classification scheme under A_4 that one has used for leptons (see, for example, Ref. \[90\]). Thus one tentatively assumes that LH quark doublets Q transform as a triplet 3, while the antiquarks (u^c, d^c), (c^c, s^c) and (t^c, b^c) transform as $1, 1'$ and $1''$, respectively. This leads to $V_u = V_d$ and to the identity matrix for $V_{CKM} = V_d^3 V_d$ in the lowest approximation. This at first appears as very promising: a LO approximation where neutrino mixing is TB and $V_{CKM} = 1$ is a very good starting point. But there are some problems. First, the corrections to $V_{CKM} = 1$ turn out to be strongly constrained by the leptonic sector, because lepton mixing angles are very close to the TB values, and, in the simplest models, this constraint leads to a too small V_{ub} (i.e. the Cabibbo angle is rather large in comparison to the allowed shifts from the TB mixing angles). Also in these models, the quark classification which leads to $V_{CKM} = 1$ is not compatible with A_4 commuting with SU(5). An additional consequence of the above assignment is that the top quark mass arises from a non-renormalizable dimension-5 operator. In that case, to reproduce the top mass, we need to compensate the cutoff suppression by some extra dynamical mechanism. Alternatively, we have to introduce a separate symmetry breaking parameter for the quark sector, sufficiently close to the cutoff scale.

Due to this, larger discrete groups have been considered for the description of quarks. A particularly appealing set of models is based on the discrete group T^*, the double covering group of A_4 \[154-162\]. The representations of T^* are those of A_4 plus three independent doublets 2, 2' and 2''. The doublets are interesting for the classification of the first two generations of quarks \[163-165\]. For example, in Ref. \[155\] a viable description was obtained, i.e. in the leptonic sector the predictions of the A_4 model are maintained, while the T^* symmetry plays an essential role for reproducing the pattern of quark mixing. But, again, the classification adopted in this model is not compatible with Grand Unification.

As a result, the group A_4 was considered by many authors to be too limited to also describe quarks and to lead to a grand unified description. But it has been shown \[166\] that this negative attitude is not justified and that it is actually possible to construct a viable model based on A_4 which leads to a grand unified theory (GUT) of quarks and leptons with TB mixing for leptons and with quark (and charged lepton) masses and mixings compatible with experiment. At the same time this model offers an example of an extra dimensional SU(5) GUT in which a description of all fermion masses and mixings is accomplished. The formulation of SU(5) in extra dimensions has the usual advantages of avoiding large Higgs representations to break SU(5) and of solving the doublet-triplet splitting problem. The choice of the transformation properties of the two Higgses H_2 and H_1 has a special role in this model. They are chosen to transform as two different A_4 singlets 1 and 1'. As a consequence, mass terms for the Higgs colour triplets are not directly allowed and their masses are introduced by orbifolding, à la Kawamura \[167\]. In this model, proton decay is dominated by gauge vector boson exchange giving rise to dimension-6 operators, while the usual contribution of dimension-5 operators is forbidden by the selection rules of the model. Given the large M_{GUT} scale of SUSY models and the relatively huge theoretical uncertainties, the decay rate is within the present experimental limits. A see-saw realization in terms of an A_4 triplet of RH neutrinos ν^c ensures the correct ratio of light neutrino masses with respect to the GUT scale. In this model extra dimensional effects directly contribute to determine the flavour pattern, in that the two lightest triplets T_1 and T_2 are in the bulk (with a doubling T_i and T'_i, $i = 1, 2$ to ensure the correct zero mode spectrum),
whereas the pentaplets F and T_3 are on the brane. The hierarchy of quark and charged lepton masses and of quark mixings is determined by a combination of extra dimensional suppression factors and of $U(1)_{FN}$ charges, both of which only apply to the first two generations, while the neutrino mixing angles derive from A_4 in the usual way. If the extra dimensional suppression factors and the $U(1)_{FN}$ charges are switched off, only the third generation masses of quarks and charged leptons survive. Thus the charged fermion mass matrices are nearly empty in this limit (not much of A_4 effects remain) and the quark mixing angles are determined by the small corrections induced by the above effects. The model is natural, since most of the small parameters in the observed pattern of masses and mixings as well as the necessary vacuum alignment are justified by the symmetries of the model. However, in this case, like in all models based on $U(1)_{FN}$, the number of $O(1)$ parameters is larger than the number of measurable quantities, so that in the quark sector the model can only account for the orders of magnitude (measured in terms of powers of an expansion parameter) and not for the exact values of mass ratios and mixing angles. A moderate fine-tuning is only needed to enhance the Cabibbo mixing angle between the first two generations, which would generically be of $O(\lambda^2)$.

The problem of constructing GUT models based on $SU(5) \otimes G_f$ or $SO(10) \otimes G_f$ with approximate TB mixing in the leptonic sector has also been considered by many authors. Examples are: for $G_f = A_4$ Ref. [166, 168–175], for T' Ref. [156, 161], for S_4 Ref. [176–179]. As for the models based on $SO(10) \otimes G_f$ recent examples were discussed with $G_f = S_4$ [54, 146, 180–181] and $G_f = PSL_2(7)$ [182, 183]. Clearly the case of $SO(10)$ is even more difficult than that of $SU(5)$ because the neutrino sector is tightly related to that of quarks and charged leptons as all belong to the 16 of $SO(10)$. For a discussion of $SO(10) \otimes A_4$ models, see [184]. More in general see Refs. [119, 185–188]. In our opinion most of the models are incomplete (for example, the crucial issue of VEV alignment is not really treated in depth as it should) and/or involve a number of unjustified steps and ad-hoc fine-tuning of parameters.

6 Possible Origin of A_4

There is an interesting relation [90] between the A_4 model considered so far and the modular group. This relation could possibly be relevant to understand the origin of the A_4 symmetry from a more fundamental layer of the theory. The modular group Γ is the group of linear fractional transformations acting on a complex variable z:

$$z \rightarrow \frac{az + b}{cz + d}, \quad ad - bc = 1, \quad (53)$$

where a, b, c, d are integers. There are infinite elements in Γ, but all of them can be generated by the two transformations:

$$s : z \rightarrow -\frac{1}{z}, \quad t : z \rightarrow z + 1, \quad (54)$$

The transformations s and t in (54) satisfy the relations

$$s^2 = (st)^3 = 1 \quad (55)$$

and, conversely, these relations provide an abstract characterization of the modular group. Since the relations in eqs. (16) are a particular case of the more general constraint in eq. (55), it is clear that A_4 is a very small subgroup of the modular group and that the A_4 representations discussed above are also representations of the modular group. In string theory the transformations in eq. (54) operate in many different contexts. For instance the role of the complex variable z can be played by a field, whose VEV can be related to a physical quantity like a compactification radius or a coupling constant. In that case s in eq. (54) represents a duality transformation and t in eq. (54) represents the transformation associated to an “axionic” symmetry.
A different way to understand the dynamical origin of A_4 was presented in Ref. [89] where it is shown that the A_4 symmetry can be simply obtained by orbifolding starting from a model in 6 dimensions (6D). In this approach A_4 appears as the remnant of the reduction from 6D to 4D space-time symmetry induced by the special orbifolding adopted. There are 4D branes at the four fixed points of the orbifolding and the tetrahedral symmetry of A_4 connects these branes. The standard model fields have components on the fixed point branes while the scalar fields necessary for the A_4 breaking are in the bulk. Each brane field, either a triplet or a singlet, has components on all of the four fixed points (in particular all components are equal for a singlet) but the interactions are local, i.e. all vertices involve products of field components at the same space-time point. This approach suggests a deep relation between flavour symmetry in 4D and space-time symmetry in extra dimensions.

The orbifolding is defined as follows. We consider a quantum field theory in 6 dimensions, with two extra dimensions compactified on an orbifold T^2/Z_2. We denote by $z = x_5 + i x_6$ the complex coordinate describing the extra space. The torus T^2 is defined by identifying in the complex plane the points related by

$$z \rightarrow z + 1$$
$$z \rightarrow z + \gamma \quad \gamma = e^{i \pi/3},$$

where our length unit, $2\pi R$, has been set to 1 for the time being. The parity Z_2 is defined by

$$z \rightarrow -z$$

and the orbifold T^2/Z_2 can be represented by the fundamental region given by the triangle with vertices 0, 1, γ, see Fig. 4. The orbifold has four fixed points, $(z_1, z_2, z_3, z_4) = (1/2, (1 + \gamma)/2, \gamma/2, 0)$. The fixed point z_4 is also represented by the vertices 1 and γ. In the orbifold, the segments labelled by a in Fig. 4 (0, 1/2) and (1, 1/2), are identified and similarly for those labelled by b, (1, (1 + γ)/2) and (γ, (1 + γ)/2), and those labelled by c, (0, γ/2), (γ, γ/2). Therefore the orbifold is a regular tetrahedron with vertices at the four fixed points.

![Fig. 4 Orbifold T_2/Z_2. The regions with the same numbers are identified with each other. The four triangles bounded by solid lines form the fundamental region, where also the edges with the same letters are identified. The orbifold T_2/Z_2 is exactly a regular tetrahedron with 6 edges a, b, c, d, e, f and four vertices z_1, z_2, z_3, z_4, corresponding to the four fixed points of the orbifold.](image)

The symmetry of the uncompactified 6D space-time is broken by compactification. Here we assume that, before compactification, the space-time symmetry coincides with the product of 6D translations and
6D proper Lorentz transformations. The compactification breaks part of this symmetry. However, due to the special geometry of our orbifold, a discrete subgroup of rotations and translations in the extra space is left unbroken. This group can be generated by two transformations:

\[
\mathcal{S} : z \rightarrow z + \frac{1}{2} \\
\mathcal{T} : z \rightarrow \omega z \quad \omega \equiv \gamma^2 .
\] (58)

Indeed \(\mathcal{S} \) and \(\mathcal{T} \) induce even permutations of the four fixed points:

\[
\mathcal{S} : (z_1, z_2, z_3, z_4) \rightarrow (z_4, z_3, z_2, z_1) \\
\mathcal{T} : (z_1, z_2, z_3, z_4) \rightarrow (z_2, z_3, z_1, z_4) ,
\] (59)

thus generating the group \(A_4 \). From the previous equations we immediately verify that \(\mathcal{S} \) and \(\mathcal{T} \) satisfy the characteristic relations obeyed by the generators of \(A_4 \): \(\mathcal{S}^2 = \mathcal{T}^3 = (\mathcal{S}\mathcal{T})^3 = 1 \). These relations are actually satisfied not only at the fixed points, but on the whole orbifold, as can be easily checked from the general definitions of \(\mathcal{S} \) and \(\mathcal{T} \) in eq. (58), with the help of the orbifold defining rules in eqs. (56) and (57).

We can exploit this particular geometry of the internal space to build a model with \(A_4 \) flavour symmetry. There are 4D branes at the four fixed points of the orbifolding and the tetrahedral symmetry of \(A_4 \) connects these branes. The standard model fields have components on the fixed point branes while the scalar fields necessary for the \(A_4 \) breaking are in the bulk. Each brane field, either a triplet or a singlet, has components on all of the four fixed points (in particular all components are equal for a singlet) but the interactions are local, i.e. all vertices involve products of field components at the same space-time point. In the low-energy limit this model coincides with one of those presented in sec. [90]. Unfortunately in such a limit the 6D construction does not provide additional constraints or predictions.

This construction can be embedded in a SU(5) GUT [189]. Other discrete groups can arise from the compactification of two extra dimensions on orbifolds and the possibilities have been classified in Ref. [190] within a field theory approach. In string theory the flavour symmetry can be larger than the isometry of the compact space. For instance in heterotic orbifold models the orbifold geometry combines with the space group selection rules of the string, as shown in Ref. [191]. Discrete flavour symmetries from magnetized/intersecting D-branes are discussed in Ref. [192]. Discrete symmetries can also arise from the spontaneous breaking of continuous ones. Such a possibility has been discussed in Refs. [193,195].

7 Alternative routes to TB mixing

While \(A_4 \) is the minimal flavour group leading to TB mixing, alternative flavour groups have been studied in the literature and can lead to interesting variants with some specific features.

In Ref. [196], the claim was made that, in order to obtain the TB mixing “without fine-tuning”, the finite group must be \(S_4 \) or a larger group containing \(S_4 \). For us this claim is not well grounded being based on an abstract mathematical criterium for a natural model (see also Ref. [197]). For us a physical field theory model is natural if the interesting results are obtained from the most general lagrangian compatible with the stated symmetry and the specified representation content for the flavons. For example, in Ref. [90,103], a natural (in our sense) model for the TB mixing is built with \(A_4 \) (which is a subgroup of \(S_4 \)) by simply not including symmetry breaking flavons transforming like the \(1' \) and the \(1'' \) representations of \(A_4 \). This limitation on the transformation properties of the flavons is not allowed by the rules specified in Ref. [196], which demands that the symmetry breaking is induced by all possible kinds of flavons (note that, according to this criterium, the SM of electroweak interactions would not be natural because only Higgs doublets are introduced!). Rather, for naturalness we also require that additional physical properties like the VEV alignment or the hierarchy of charged lepton masses also follow from the assumed symmetry and are not obtained by fine-tuning parameters: for this actually \(A_4 \) can be more effective than \(S_4 \) because it possesses three different singlet representations \(1, 1' \) and \(1'' \).
Models of neutrino mixing based on S_4 have in fact been studied \cite{52,54,101,176,178,180,181,198,205,206,208}. The group of the permutations of 4 objects S_4 has 24 elements and 5 equivalence classes (the character table is given in Tab.4) that correspond to 5 inequivalent irreducible representations, two singlets, one doublet, two triplets: $1_1, 1_2, 2, 3_1$ and 3_2). Note that the squares of the dimensions of all these representations add up to 24.

Table 4 Characters of S_4

<table>
<thead>
<tr>
<th>Class</th>
<th>$\chi(1_1)$</th>
<th>$\chi(1_2)$</th>
<th>$\chi(2)$</th>
<th>$\chi(3_1)$</th>
<th>$\chi(3_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C_2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>C_3</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>C_4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C_5</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

For models of TB mixing, one starts from the S_4 presentation $A^3 = B^4 = (BA)^2 = 1$ and identifies, up to a similarity transformation, $B^2 = S$ and $A = T$, where S and T are given in eqs. (13) and (15). In this presentation one obtains a realisation of the 3-dimensional representation of S_4 where the matrices S and A_{23} in eq. (13), that leave invariant the TB form of m_ν in eq. (8), as well as the matrix T in eq. (15), of invariance for $m^4_{1\mu e}, m^4_{2\mu e}$ all explicitly appear \cite{204}. In S_4 the 1^\prime and $1^{\prime\prime}$ of A_4 are collected in a doublet. When the VEV of the doublet flavon is aligned along the G_S preserving direction the resulting couplings are 2-3 symmetric as needed. In A_4 the 2-3 symmetry is only achieved if the 1^\prime and $1^{\prime\prime}$ VEV’s are identical (which is the S_4 prediction). As discussed in Ref. \cite{204}, in the leptonic sector the main difference between A_4 and S_4 is that, while in the typical versions of A_4 the general neutrino mass matrix depends on 2 complex parameters (related to the couplings of the singlet and triplet flavons), in S_4 it depends on 3 complex parameters (because the doublet is present in addition to singlet and triplet flavons).

An interesting deformation of the TB mixing pattern arises from the series of groups $\Delta(6n^2)$ that generalize the permutation group S_4, isomorphic to $\Delta(24)$. Indeed the LO mixing pattern induced by S_4 is completely determined once the residual symmetries G_e and G_ν in the charged lepton sector and in the neutrino sector are specified and the TB mixing corresponds to the choice $G_e = Z_3, G_\nu = Z_2 \times Z_2$. By adopting as flavour group $\Delta(6n^2)$ ($n = 4, 8$), the same choice of residual symmetries leads instead to $U = U_{TB} V$, with V given in eq. (44), $|\xi/\alpha| = \tan(\pi/3n)$ and no CKM-like CP violation \cite{120,138}. For $n = 4.8$, the mixing pattern is close to the experimental data. Concrete models based on $\Delta(96)$ can be found in ref. \cite{142}. The analysis in Refs. \cite{120,138} accounts only the cases when the residual symmetry in the neutrino sector is $G_\nu = Z_2 \times Z_2$; in Refs. \cite{105,125,209}, a more general study has been presented, where the residual symmetry is $G_\nu = Z_2$, while the second Z_2 component arises accidentally.

Other flavour groups have been considered for models of TB mixing. Some of them include S_4 as a subgroup, like $PSL_2(7)$ (the smallest group with complex triplet representations) \cite{182,183,210}, while others, like $\Delta(27)$ (which is a discrete subgroup of $SU(3)$) \cite{211,215} or $Z_7 \times Z_3$ \cite{216}, have no direct relation to S_4 \cite{217}.

A different approach to TB mixing has been proposed and developed in different versions by S. King and collaborators over the last few years \cite{45,217,220}. The starting point is the decomposition of the neutrino mass matrix given in eqs. (10) and (11) corresponding to exact TB mixing in the diagonal charged lepton basis:

$$m_\nu = m_1 \Phi_1 \Phi_1^T + m_2 \Phi_2 \Phi_2^T + m_3 \Phi_3 \Phi_3^T$$

(60)

where $\Phi_1^T = \frac{1}{\sqrt{3}}(2, -1, -1)$, $\Phi_2^T = \frac{1}{\sqrt{3}}(1, 1, 1)$, $\Phi_3^T = \frac{1}{\sqrt{2}}(0, -1, 1)$, are the respective columns of U_{TB} and m_ν are the neutrino mass eigenvalues. Such decomposition is purely kinematical and does not possess any dynamical or symmetry content. In the King models the idea is that the three columns of $U_{TB} \Phi_i$ are
promoted to flavon fields whose VEVs break the family symmetry, with the particular vacuum alignments along the directions Φ_i, Eq. (60) directly arises in the see-saw mechanism, $m_\nu = m_D^{-1} M_D^{-1} m_D$, written in the diagonal RH neutrino mass basis, $M = \text{diag}(M_1, M_2, M_3)$ when the Dirac mass matrix is given by $m_D^{ij} = (v_1 \Phi_1, v_2 \Phi_2, v_3 \Phi_3)$, where v_i are mass parameters describing the size of the VEVs. In this way, to each RH neutrino eigenvalue M_i, a particular light neutrino mass m_i is assigned. In the case of a strong neutrino hierarchy this idea can be combined with the framework of “Sequential Dominance”, where the lightest RH neutrino, with its symmetry properties fixes the heaviest light neutrino and so on. For no pronounced hierarchy the correspondence between M_i and m_i can still hold and one talks of “Form Dominance” [221]. In these models the underlying family symmetry of the Lagrangian G_f is completely broken by the combined action of the Φ_i VEV’s, and the flavour symmetry of the neutrino mass matrix emerges entirely as an accidental residual symmetry of the quadratic form of eq. (60) [217]. The symmetry G_f plays a less direct role and the name “Indirect Models” is used by the authors.

An alternative context in which the TB pattern has been implemented is the Holographic Composite Higgs Models: theories in extra dimensions that provide a weakly coupled description of certain 4 di-

8 Constraints from lepton flavour violating processes

As we have discussed in the previous sections the relatively large value of θ_{13} introduces a marked departure from the TB limit, while the values of θ_{12} and θ_{23} are very close to it. One challenge for flavour models in the lepton sector is to produce in a natural way a relatively large correction to θ_{13} without affecting too much the other mixing angles. Another challenge arises from the existing stringent bounds on lepton flavour violating processes. In particular, we refer to the recent improved MEG result [224] on the $\mu \rightarrow e\gamma$ branching ratio, $Br(\mu \rightarrow e\gamma) < 2.4 \times 10^{-12}$ at 95% C.L. and to other similar processes like $\tau \rightarrow (e \text{ or } \mu)\gamma$. One expects that lepton flavour-violating processes may have a large discriminating power in assessing the relative merits of the different models proposed for neutrino mixing. In fact, one must pay attention that the large corrective terms introduced to shift θ_{13} from the TB value could appear in the non-diagonal elements of the charged lepton and s-lepton mass matrices (in a basis where all kinetic terms are canonical) and could induce a too large $\mu \rightarrow e\gamma$ branching ratio [225–230]. This problem has been discussed in detail in ref. [58] within the simple CMSSM framework (Constrained MSSM). While this GUT-constrained version of supersymmetry is rather marginal after the results of the LHC searches, more so if the Higgs mass is confirmed to lay around $m_H = 125$ GeV, still we think that it can be used for our purposes in the present context.

The results derived in ref. [58] (see 5(a)) show that the typical A_4 models are well suited to satisfy the MEG experimental bound, as the non diagonal charged (s)-lepton matrix elements needed to best approximate the mixing angles are particularly small in these models. In fact, the size of the dangerous off diagonal terms is driven by the value of the parameter ξ whose optimal value in the procedure of sect. 4 was found to be $\xi \sim 0.07$. This value corresponds to a modest score in terms of success rate for reproducing the mixing angles in a scanning of the parameter space ($\sim 18\%$), but is sufficiently small to maintain the off diagonal charged (s)-lepton mass matrix elements within affordable limits given the bounds on lepton flavour violating processes. A comparable score is also achieved by the models of the Lin type (see see 5(b)), because the (on the average) larger correction to the mixing angle θ_{13} actually arises from the neutrino sector in these models, while the corrections from the charged lepton sector are naturally kept at a smaller level.
Fig. 5 Scatter plots of $BR(\mu \rightarrow e\gamma)$ as a function of $M_{1/2}$, for $\tan \beta = 2$, and $m_0 = 200$ GeV \cite{58}. The parameters ξ (for typical A_4) and ξ' (for special A_4) are chosen in order to maximize the success rate of each model ($\xi = 0.075$, $|\xi'| = 0.183$). For Blue (Red) points the lightest supersymmetric mass (LSP) is the lightest neutralino (stau). The percentage in each plot refers to the number of Blue points that satisfy the MEG bound over the total number of points. The horizontal line shows the current MEG bound. For larger values of $\tan \beta$ the success rate decreases, while increases for larger values of m_0, being more difficult for the stau to be the LSP.

In conclusion, when the fit to the mixing angles and the bounds on lepton flavour violating processes are combined, the typical A_4 models are rather weak on the mixing angles but, as discussed in detail in Ref. \cite{58}, are better suited to cope with the bounds on lepton flavour violating processes. The special A_4 models of the Lin type offer the best overall performance to the data as they are far better on the mixing angles and comparable, although at a lower level, on lepton flavour violating processes. As for the regions of the CMSSM parameter space that are indicated by our analysis the preference is for small $\tan \beta$ and large SUSY masses (at least one out of m_0 and $m_{1/2}$ must be above 1 TeV). As a consequence it appears impossible, in these models, at least within the CMSSM framework, to satisfy the MEG bound and, at the same time, to reproduce the muon $g-2$ discrepancy.

9 Conclusion

The recent rather precise measurements of θ_{13} make our present knowledge of the neutrino mixing matrix, except for the CP violating phases, sufficiently complete to considerably restrict the class of models that can reproduce the data. In spite of this process the range of possibilities remains unfortunately quite wide. On the one extreme, the rather large value measured for θ_{13}, close to the old CHOOZ bound, has validated the prediction of models based on anarchy $\cite{231,232}$, i.e. no symmetry in the leptonic sector, only chance, so that this possibility remains valid, as discussed, for example, in ref. $\cite{233}$. Anarchy can be formulated in a $SU(5) \otimes U(1)$ context by taking different Froggatt-Nielsen $\cite{98}$ charges only for the $SU(5)$ tenplets (for example $10 \sim (3, 2, 0)$, where 3 is the charge of the first generation, 2 of the second, zero of the third) while no charge differences appear in the $\bar{5}$ ($5 \sim (0, 0, 0)$). Anarchy can be mitigated by assuming that it only holds in the 2-3 sector with the advantage that the first generation masses and the angle θ_{13} are naturally small (see also the recent revisiting in ref. $\cite{234}$). In models with See-Saw, one can also play with the charges for the right-handed $SU(5)$ singlet neutrinos. If, for example, one takes $1 \sim (1, -1, 0)$, together with $5 \sim (2, 0, 0)$, it is then possible to get a normal hierarchy model with θ_{13} small and also with $r = \Delta m^2_{solar}/\Delta m^2_{atm}$ naturally small (see, for example, Ref. $\cite{235}$). In summary anarchy and its variants, all based on chance, offer a rather economical class of models that are among those encouraged by the new θ_{13} result. On the other extreme, stimulated by the fact that the data suggest some special mixing patterns as good first approximations, in particular TB mixing, models based on discrete flavour symmetries, like A_4 or S_4, have been proposed and widely studied.
In A_4 models, the A_4 symmetry is broken down to two different subgroups in the charged lepton sector and in the neutrino sector, and the mixing matrix arises from the mismatch between the two different residual symmetries. The breaking can be realized in a natural way through the specific vacuum alignments of a set of scalar flavons. There are many variants of models where TB mixing is indeed derived at leading order (in particular with or without see-saw) with different detailed predictions for the spectrum of neutrino masses and for deviations from the TB values of the mixing angles. The starting LO approximation is completely fixed (no chance), but the NLO corrections introduce a number of undetermined parameters. In general at NLO the different mixing angles receive corrections of the same order of magnitude, which are constrained to be small due to the experimental results which are close to the TB values. Indeed the small experimental error on θ_{12}, with a central value that is close to the value predicted by TB mixing, suggests that the NLO corrections should be of order of few percent, at most. The recent data on θ_{13} and the MEG new upper bound on the LFV process $\mu \rightarrow e\gamma$ impose a reappraisal of these models [58]. In particular, the relatively large value of θ_{13} introduces a marked departure from the TB limit, while the values of θ_{12} and θ_{23} are very close to it. The challenge is to produce in a natural way a relatively large correction to θ_{13} without affecting too much the other mixing angles. But one must pay attention that these larger corrective terms introduced to shift θ_{13} from the TB value could appear in the non-diagonal elements of the charged lepton (and s-lepton) mass matrix and could induce a too large $\mu \rightarrow e\gamma$ branching ratio.

As a result of a detailed analysis [58] we find that, for reproducing the mixing angles, the Lin type A_4 models have the best performance, as expected, but the typical A_4 models can also accommodate the data with a reasonable probability. As for lepton flavor violating processes, the problem has been studied by adopting the simple CMSSM framework. While this over constrained version of supersymmetry is rather marginal after the results of the LHC searches, more so if the Higgs mass really is around $m_H = 125$ GeV, still we think it can be used here for indicative purposes. The typical A_4 models turn out to be the best suited to satisfy the MEG experimental bound, as the non diagonal charged lepton matrix elements needed to reproduce the mixing angles are rather small. A slightly worse score, but still rather good, is achieved by the models of the Lin type, where the main corrections to the mixing angles arise from the neutrino sector. When the fit to the mixing angles and the bounds on LFV processes are combined, the A_4 models emerge well from our analysis and in particular those of the Lin type are remarkably successful in the lepton sector. As for the regions of the CMSSM parameter space that are indicated by our analysis the preference is for small $\tan \beta$ and large SUSY masses (at least one out of m_0 and $m_{1/2}$ must be above 1 TeV). As a consequence it appears impossible, at least within the CMSSM model, to satisfy the MEG bound and, at the same time, to reproduce the muon $g-2$ discrepancy.

It is remarkable that neutrino and quark mixings have such a different qualitative pattern. An obvious question is whether some additional indication for discrete flavour groups can be obtained by considering the extension of the models to the quark sector, perhaps in a Grand Unified context. The answer appears to be that, while the quark masses and mixings can indeed be reproduced in models where TB (or GR or BM) mixing is realized in the leptonic sector through the action of discrete groups, there are no specific additional hints in favor of discrete groups that come from the quark sector [14].

Finally, one could have imagined that neutrinos would bring a decisive boost towards the formulation of a comprehensive understanding of fermion masses and mixings. In reality it is frustrating that no real illumination was sparked on the problem of flavour. We can reproduce the observations in many different ways, in a wide range of models that goes from anarchy to discrete flavour symmetries, but we have not yet been able to single out a unique and convincing baseline for the understanding of fermion masses and mixings. In spite of many interesting ideas and the formulation of many elegant models the mysteries of the flavour structure of the three generations of fermions have not been much unveiled.

Acknowledgements

We recognize that this work has been partly supported by the Italian Ministero dell’Università e della Ricerca Scientifica, under the COFIN program (PRIN 2008), by the European Commission, under the
networks “Heptools”, “Quest for Unification”, “LHCPHENONET” and European Union FP7 ITN IN-VISIBLES (Marie Curie Actions, PITN- GA-2011- 289442) and contracts MRTN-CT-2006-035505 and PITN-GA-2009-237920 (UNILHC), and by the Technische Universität München – Institute for Advanced Study, funded by the German Excellence Initiative.

References