Higgs Excitation in Cold Atoms with Spin-orbit Coupling

Fei-Jie Huang, Qi-Hui Chen, and Wu-Ming Liu
National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

We investigate the Higgs excitation in cold atoms induced by non-Abelian gauge potential. We demonstrate that when a non-Abelian gauge potential reduces to Abelian potential, only its Abelian part suits to construct spin-orbit coupling, and its non-Abelian part emerges as a Higgs excitation. The Higgs excitation induces the generation of mass of the non-Abelian gauge field, and it can affect the spin Hall currents which are emerged by the spin-orbit coupling. We also discuss the observation of these phenomena in real experiment.

PACS numbers: 03.75.Ss, 03.65.Vf, 67.85.Lm, 67.85.De

Introduction.— Spin-orbit (SO) coupling, which is the interaction between the spin and the momentum of a particle, relates to many effects in condensed physics, especially it is essential for realizing spin-Hall effect [1, 2] and topological insulators [3, 4] in solid systems. Recently, with realizing artificial gauge potentials [5], the cold atom systems, which have been proven to be perfect quantum emulators [6, 7], also can be allowed to simulate SO coupling [8–10]. This opens a new arena to explore various effects in cold atom systems [11–14]. The key to simulate SO coupling in cold atom systems is the generation of non-Abelian gauge potentials, which are synthesized from the interaction between the atoms and the lasers [8]. It is well known that the non-Abelian gauge potentials play a crucial role in understanding the fundamental interactions in particle physics. In condensed physics, the non-Abelian gauge potentials also appear in learning the mechanisms of high Tc superconductors [15] and graphene [16]. Generally, the non-Abelian gauge potentials in solid systems are concerned with spin. It is no doubt that, to emerge SO coupling, the minimal symmetry of the gauge potentials is required to be SU(2).

The generation mechanism of mass is one of the core issues for the whole physics, the richness of the world depends on the existence of mass particles. The mass generation mechanisms refer to the Higgs field. Various experiments have been designed to search the Higgs particle to confirm the Higgs field. Recently, the Large Hadron Collider (LHC) announced that they had found the suspected Higgs particle, and that may be the most breakthrough in particle physics in two decades [17, 18]. One of the advantage of introducing the Higgs field is that it can solve the mass generation mechanisms of the gauge field. Either through Higgs mechanism or through the symmetry reduction of gauge potential, the mass of gauge field can be obtained by the Higgs field. When referring to the reduction of SU(2) gauge potential, if the reduction dose not satisfy a translation condition, the mass of gauge field will be generated by the Higgs excitation [19–23], which is induced by the Higgs field [24, 25]. Yet generally in particle physics, the meaningful reduction is to emerge a gauge charge, such as the ’t Hooft monopole [26], which normally satisfies the translational condition and couples to gauge field only. In order to generate the mass of gauge field, a more broad charge should be taken into account. Therefore, the SO coupling is an option. In presence of SO coupling, the spin can be viewed as a charge which not only couples to the gauge field, but also to the orbit of the system.

In this Letter, we will investigate the Higgs excitation, as the generation of mass of the gauge field, by constructing the SO coupling in a cold atom system with non-Abelian gauge potential. In cold atom systems, for their unprecedented controllability, the reduction of symmetry would own its unique features. It is well known that the SO coupling appears in U(1) system, so to construct SO coupling, one should reduce the SU(2) gauge potential to U(1) potential. On the other hand, the spin can be viewed as a charge which not only couples to the gauge field but also to the orbit. Thus we can expect that through the reduction of SU(2) gauge potential, an excitation may appear in constructing of SO coupling, and the mass of the gauge field can be generated.

FIG. 1. (Color online) (a) Atoms with Λ-level configuration interact with laser beams. | g1⟩ and | g2⟩ are the ground states, | e ⟩ is the excited state. Ω1 and Ω2 are the Rabi frequencies, Δ is a large detuning. The non-Abelian potential is arisen by two degenerate eigenstates which are induced by the large detuning. (b) The configuration of laser fields. The laser fields have the same wave numbers k, there is an angle φ between them. Two inner laser fields (the blue arrows) are arranged to form Rabi frequency Ω1 = √2Ω[exp(ik · r) + exp(i k′ · r)], other two lasers (the red arrows) are arranged to form Ω2 = √Ω[exp(ik · r) − exp(i k′ · r)].
can be redefined as Ω_1 shown in Fig. 1b. The total Rabi frequency is given by Ω_0, and the two lower internal eigenstates will give rise an $|\sigma(0)\rangle$. (b) After a time t, the base vectors change to $\sigma_q(t), \sigma_g(t)$ and $\sigma_2(t)$ directions. The direction vector $\sigma_q(x)$ changes along with the base vectors and points to B. If the path AB satisfies the equation of motion of spin, the $SU(2)$ potential A_0 will induce the appearance of SO coupling. If not, then excepting for SO coupling, the gauge covariant potential B also appears. The potential B will induce the Higgs excitation.

also discuss the signatures of these phenomena in real experiment.

The spin-orbit coupling in non-Abelian gauge potential.— We consider a cold atom system with Λ-type level as shown in Fig. 1a. The lasers are arranged to couple to two ground states $|g_1\rangle$ and $|g_2\rangle$ to an excited state $|e\rangle$. The Rabi frequencies are taken as $\Omega_1 = \frac{\Omega}{2}\text{exp}(i\mathbf{k} \cdot \mathbf{r}) + \text{exp}(i\mathbf{k}' \cdot \mathbf{r})$ and $\Omega_2 = \frac{\Omega}{2}\text{exp}(i\mathbf{k} \cdot \mathbf{r}) - \text{exp}(i\mathbf{k}' \cdot \mathbf{r})$, in which \mathbf{k} and \mathbf{k}' are the wave vectors of lasers, $\mathbf{k}' = e^{i\varphi}\mathbf{k}$, \mathbf{r} is the position vector, φ is the angle between the lasers as shown in Fig. 1b. The total Rabi frequency is given by $\Omega = (\Omega_1^2 + \Omega_2^2)^{1/2}$.

Defining the total wave vector $\mathbf{Q} = \mathbf{k} + \mathbf{k}'$ and the relative wave vector $\mathbf{q} = \mathbf{k} - \mathbf{k}'$, the Rabi frequencies can be redefined as $\Omega_1 = \frac{\Omega}{2}\cos\theta\text{exp}(i\phi_2)$ and $\Omega_2 = \frac{\Omega}{2}\sin\theta\text{exp}(i\phi_2)$, in which the parameters are $\theta = \frac{\pi}{4}\mathbf{q} \cdot \mathbf{r}$, $\phi_1 = \phi_2 = \frac{\pi}{4}\mathbf{Q} \cdot \mathbf{r}$. The Hamiltonian of the system reads

$$H = H_k + H_g + V_{\text{trapping}},$$

where $H_k = \frac{p^2}{2m}$ is the kinetic energy, V_{trapping} is a trapping potential. The interacting Hamiltonian is given by $H_I = 2\Delta |e\rangle\langle e| + (\Omega_1 |g_1\rangle\langle g_2| + \Omega_2 |g_2\rangle\langle g_1| + \Omega_2 |e\rangle\langle g_2| + h.c.)$, where Δ is the detuning. The eigenstates of the interacting Hamiltonian can be written as

$$|\chi_{D_1}\rangle = -\sin\theta |g_1\rangle + \cos\theta |g_2\rangle, |\chi_{D_2}\rangle = \cos\delta\cos\theta |g_1\rangle + \cos\delta\sin\theta |g_2\rangle - \sin\delta e^{-i\phi_1} |e\rangle, |\chi_3\rangle = \sin\delta\cos\theta |g_1\rangle + \sin\delta\sin\theta |g_2\rangle + \cos\delta e^{-i\phi_1} |e\rangle,$$

where $\tan\delta = \frac{\Omega}{\beta}(\Delta^2 + \Omega_1^2)^{1/2} - \Delta$, the eigenvalues are $E_{D_1} = 0$, $E_{D_2} = [\Delta^2 + (\Delta^2 + \Omega_1^2)^{1/2}]$. For large detuning, $\tan\delta << 1$, the eigenvalue $E_{D_2} \to 0$, and the two lower internal eigenstates will give rise an effective $SU(2)$ gauge potential $A = \frac{1}{2}\sigma_g + \frac{\Omega}{\beta}\mathbf{Q} \cdot \sigma_2$. Redefining this effective $SU(2)$ gauge potential to a Lorentz scalar potential $A_0 = [\gamma, A]_+$, where dimensionless parameter $\gamma = p/\eta$ is an anti-commutator. Then neglecting the trapping potential and the constant terms, the effective Hamiltonian of the system can be written as

$$H = H_k + gA_0 + V,$$

where $H_k = \eta p$ is the kinetic energy, $g = \eta$ is an effective charge, $\eta = p/2m$ is a dimensionless strength factor referring to the non-relativistic approximation (assuming the light velocity $c = 1$). $V = \frac{1}{16\pi}\delta g^2 (Q^2 - (1 + \delta^2)(Q^2) + \delta^2)\sigma_z = M_0\sigma_z$ is a scalar potential which originates from constructing of A.

It is well known that the SO coupling turns up in a $U(1)$ gauge potential, so in order to construct SO coupling, let’s reduce the $SU(2)$ gauge potential to $U(1)$ symmetry. Firstly, we denote the unit direction $\mathbf{n} = (n_x, n_y, n_z)$ along the direction of magnetic field, and define the internal $SU(2)$ space direction vector as $\sigma(x) = n_i\sigma_i(x)$, $x = (t, x), i = x, y, z$, which means that we have chosen the same directions for the external and the internal space. Then along the direction vector $\sigma(x)$, A_0 will decompose to two gauge potentials $24, 27$, which can be read as $A_0 = A + B$, with

$$A = (\sigma(x) \cdot A_0)\sigma(x) + [\partial_0 \sigma(x), \sigma(x)],$$

$$B = [\sigma(x), \nabla_0 \sigma(x)],$$

where $\nabla_0 = \partial_0 + [A_0, \cdot]$ represents the time component of covariant differentiation, $[\cdot, \cdot]$ denotes the commutator. According to differential geometry theorem 28, when A_0 reduces to $U(1)$ potential, there should be $\nabla_0 \sigma(x) = 0$. Therefore, if A_0 is a $U(1)$ potential, $A_0 = A$. We view A is the Abelian part of A_0, and the potential B is the non-Abelian part.

Now let’s discuss the physical meaning of the constraint condition

$$\nabla_0 \sigma(x) = 0.$$
suit to construct SO coupling, because if the equation of motion of spin is absent, the SO coupling is also absent in the system. Therefore, the equation $A_0 = A$ sets the $SU(2)$ gauge potentials which are drawn up to construct SO coupling.

We now catch up on the scalar potential V into the effective Hamiltonian to check whether A_0 satisfies the constraint condition $\nabla_0 \sigma(x) = 0$ or not. The constraint condition can be rewritten as $\nabla_0 \sigma(x) = [\sigma(x), H] + [A_0, \sigma(x)]$. On this occasion, because the scalar potential is a non-Abelian potential, we find $\nabla_0 \sigma(x) \neq 0$. It indicates that the potential B will exist according to the Eq. (2). In this case, A_0 does not suit to construct SO coupling, thus the SO coupling term of the cold atoms system should be read as $H_{SO} = gA$, with its explicit expression

$$H_{SO} = \lambda \sigma_y + \nu \sigma_z.$$ \hspace{1cm} (4)

The coupling strength factors λ and ν are $\lambda = \frac{1}{m} [\frac{1}{2} \mathbf{Q} \cdot \mathbf{p} + \delta^3 \Omega p (\mathbf{Q} \cdot \mathbf{p} / \mathbf{q} \cdot \mathbf{p})]$, $\nu = \frac{1}{m} (\frac{1}{2} \delta \Omega p + 2^{-2} \delta^2 \mathbf{Q} \cdot \mathbf{p}) + \frac{1}{4m} \delta^2 (Q^2 - q^2)p$, in which the direction of $\sigma(x)$ is chosen to consist with the initial direction of A_0. The Eq. (4) is a generalized expression of SO coupling, it shows that other than only one component, all components of momentum can participate in the SO coupling.

Higgs excitation in cold atom system. — Owning to the non-Abelian potential A_0 can not satisfy the constraint condition, after constructing SO coupling, there will be a surplus term left in the Hamiltonian. This term can be expressed as $H_{k,B} = gB$, with $B = -\frac{\mathbf{Q} \cdot \mathbf{p}}{q^2} \delta^3 \Omega \sigma_y + [2 \delta \Omega + \frac{1}{4m} \delta^2 (Q^2 - q^2)] \sigma_z$. The potential B is a gauge covariant potential, it can own a mass term $M_B^2 Tr[B \cdot B]$. By writing down the action of non-Abelian gauge field, the mass reads $M_B = (1 + (\mathbf{Q} \cdot \mathbf{p} / 2q \cdot \mathbf{p})^2 \delta^4)^{-\frac{1}{2}} M_0$. Thus the effective Hamiltonian of the system can be expressed as

$$H = H_k + H_{SO} + H_B.$$ \hspace{1cm} (5)

with

$$H_B = H_{k,B} + \eta' M_B \sigma_z.$$ \hspace{1cm} (6)

It is clear that an excitation appears in the Eq. (6). $H_{k,B} = gB$ describes the coupling between the kinetic energy of the excitation and the atoms. The scalar potential $V = \eta' M_B \sigma_z$ in fact describes the coupling between the mass of the excitation and the atoms, in which $\eta' = (1 + (\mathbf{Q} \cdot \mathbf{p} / 2q \cdot \mathbf{p})^2 \delta^4)^{-\frac{1}{2}}$ is a dimensionless coupling factor.

Let’s discuss the origin of the excitation. As shown in Fig. 2, the original direction of the direction vector $\sigma(x)$ presents $SU(2)$ symmetry in the internal space, its direction can be chosen in freely. Nevertheless, when A_0 is used to construct SO coupling, the direction of $\sigma(x)$ is constrained to the constraint condition, and the initial symmetry is broken. Yet in general, the whole A_0 can not used to construct SO coupling potential, so there is a trend to restore the initial symmetry. The potential B just plays as the excitation which excites to restore the initial symmetry. We treat this excitation as a Higgs excitation, in which $\sigma(x)$ plays as the Higgs field.

Due to the excitation, the mass of the gauge field A_0 is generated.

The trajectories of cold atoms contributed by the excitation can be obtained by the equation of motion $\dot{\mathbf{r}} = -i[\mathbf{r}, H_B]$. As shown in Fig. 3a, the contribution includes two opposite trajectories. The Fig. 3b shows the dispersion of H_B. The dispersion is linear, and the energy is not vanish at zero momentum due to the presence of the excited mass.
Next, let’s discuss the impact of the excitation to the cold atoms system. A two-dimensional harmonic potential $\frac{1}{2}m_0\omega^2(y^2 + z^2)$ is chosen to trap the cold atoms. The relationship between the particle number and the trap frequency under the impact of the excited mass can be obtained by solving the equation $N = \int d\mathbf{r}n(r, t = 0, T = 0)$, in which N is the atomic number, $n(r, t, T) = \frac{1}{(2\pi)^2} \int dp f_\sigma(p, r, t, T) + f_\bar{\sigma}(p, r, t, T)$ is the density of the cold atoms at the time t, T is the temperature, $f_\sigma = f_\pm(p, r, t, T) = [e^{\beta(H_{zp}(p, r, t) - \mu)} + 1]^{-1}$ are the spin-dependent Fermi distributions with $\beta = 1/k_BT$. The relationship is shown in Fig. 4.

We now discuss the spin Hall currents of the system. To generate spin Hall current, the wave vectors of the lasers is chosen to $k_z = k'_z = 0$, the internal space rotates $\pi/2$ around the x direction. In this case, the SO coupling reads $H_{SO} = \lambda \sigma_z$. This term describes the spin Hall currents in which the spin polarizes to z direction and the currents move along y direction. The spin Hall currents can be expressed as

$$J_{\sigma z}^y = \frac{1}{(2\pi)^2} \int d\mathbf{p} f_{\sigma z}(\mathbf{p}) j_{\sigma z}^y,$$

where $j_{\sigma z}^y = \langle \tilde{j}_{\sigma z}^y \rangle$ is the single particle current. The spin current operator $\tilde{j}_{\sigma z}^y = \frac{1}{\beta}[\sigma_z, v_y]_+, v_y = -i[y, H]$ is the velocity along y direction. The impact of the excitation to the spin Hall currents can be shown as Fig. 5a. It can be seen that the spin down current is suppressed by the increase of the excited mass, while the spin up is slightly grown. The evolution of the atomic density $n(r, t)$ is shown in Fig. 5b.

Experimental signatures of Higgs excitation.— Let’s discuss the observation of the Higgs excitation by detecting the spin Hall currents. We can choose 6Li atoms for a Λ-type level system, the particle number is about 10^4, the bias magnetic field is about $10G$ [10], and a $2\pi \times 10^6Hz$ harmonic potential is used to trap the atoms. The configuration of four laser fields is shown in Fig. 1b. The wave number of the lasers can be taken as $2\pi \times 1.0(\mu m)^{-1}$ [10]. For a large detuning, the Rabi frequency and the detuning is required to satisfy $\Omega^2/\Delta \sim 10^6Hz$. When the laser fields are turned on, a non-Abelian gauge potential is applied to the 6Li atoms. By tuning the angle ϕ between the lasers, different masses of excitation can be obtained.

To detect the spin current, we firstly initialize the atoms in $|g_1\rangle$ state. Then a Raman pulse is applied between the states $|g_1\rangle$ and $|g_2\rangle$ to transfer the atoms to spin up state $|\chi_{D1}\rangle$. The Rabi frequency of the Raman pulse is required to match the spatial variation of the $|\chi_{D1}\rangle$ state. Turning on the lasers, the cold atoms will experience the SO coupling, and couple to the excitation. After a time t, we turn off the lasers and transfer the atoms from $|\chi_{D1}\rangle$ state back to the initial state $|g_1\rangle$ by applied a reversal Raman pulse. In this case, by using the time of flight measurement, we can determine the spin up current of the system. The measurement of the spin down current (corresponding to the $|\chi_{D2}\rangle$ state) also can be detected in the same manner [29].

Conclusion.— In summary, by constructing SO coupling from non-Abelian gauge potential, we have investigated the Higgs excitation, which leads to the generation of mass of the gauge field, in cold atom system. We argue that when a non-Abelian gauge potential reduces to Abelian potential, only its Abelian part suits to construct SO coupling, and its non-Abelian part emerges as a Higgs excitation. The excitation can possess mass, and it can affect the spin Hall currents. We also discuss how to observe the excitation through the detection of spin Hall currents in experiment. We expect that the emergence of the Higgs excitation in cold atoms can help to understand the generation mechanics of mass, which is interesting from the fundamental interaction theories to condensed matter physics.

This work was supported by NKBRSFC un-