The simulation of molecular clouds formation in the Milky Way

S.A. Khoperskov, 1 E.O. Vasiliev, 2 A.M. Sobolev, 3 A.V. Khoperskov 4

1 Institute of Astronomy Russian Academy of Sciences, Pyatnitskaya st., 48, 119017, Moscow, Russia
2 Institute of Physics, Department of Physics, Southern Federal University, Stachki Ave. 194, 344090 Rostov-on-Don, Russia
3 Ural Federal University, Lenin ave. 51, Ekaterinburg 620000, Russia
4 Volgograd State University, Universitetskii pr., 100, Volgograd 400062, Russia

Accepted 3004 December 15. Received 2004 December 14; in original form 2004 December 31

ABSTRACT

Using 3D hydrodynamic calculations we simulate formation of molecular clouds in the Galaxy. The simulations take into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential accounts for contributions from the stellar bulge, two and four armed spiral structure, stellar disk, dark halo and takes into account self-gravitation of the gaseous component. Gas clouds in our model form in the spiral arms due to shear and wiggle instabilities and turn into molecular clouds after \(t \sim 100 \) Myr. At the times \(t \sim 100 - 300 \) Myr the clouds form hierarchical structures and agglomerations with the sizes of 100 pc and greater. We analyze physical properties of the simulated clouds and find that synthetic statistical distributions like mass spectrum, “mass-size” relation and velocity dispersion are close to those observed in the Galaxy. The synthetic \(l - v \) (galactic longitude - radial velocity) diagram of the simulated molecular gas distribution resembles observed one and displays a structure with appearance similar to Molecular Ring of the Galaxy. Existence of this structure in our modelling can be explained by superposition of emission from the galactic bar and the spiral arms at \(\sim 3-4 \) kpc.

Key words: galaxies: ISM — Galaxy: structure — ISM: clouds

1 INTRODUCTION

Molecular clouds represent one of the major constituents of our galaxy (Dame et al. 2001). Their masses and sizes vary in a wide range (e.g. Solomon et al. 1987). Molecular clouds play very important role in determination of the structure and evolution of the Galaxy. This can be illustrated by the fact that the stars and their clusters originate from molecular clouds (Shu et al. 1987). McKee & Ostriker 2007; Lada & Lada 2003. The dynamical time of disintegration for molecular clouds in the Milky Way is much shorter than the rotation period of the galaxy (e.g. Blitz & Shu 1980). So, explanation of the observational fact of existence of the rich population of molecular clouds requires involvement of efficient mechanisms leading to formation of molecular clouds in the Galaxy. Special interest is paid to formation of the giant molecular clouds (GMC) which have masses \(\gtrsim 10^5 M_\odot \) (Dame et al. 1986). Two main theories of the GMC formation were proposed. The first one explains formation of the GMCs by large scale magnetic and/or gravitational instabilities (Elmegreen 1979; Balbus & Cowie 1985; Elmegreen 1994; Chou et al. 2000; Kim & Ostriker 2006). In the second one the GMCs are built up by coalescence of the smaller molecular clouds (Field & Saslaw 1965; Levinson & Roberts 1981; Tomisaka 1984; Roberts & Stewart 1987; Kwan & Valdes 1987) or interaction of the turbulent flows (e.g. Ballesteros-Paredes et al. 2007). In reality both types of processes are expected to play significant role (Zhang & Song 1999; Dobbs 2008).

Large scale perturbations in a gas of the Galactic disk can be generated not only by magnetic fields or self-gravity, but also by the galactic spiral shock wave (Roberts 1969; Nelson & Matsuda 1977). A simple analysis of the global galactic shock wave shows that such shocks are unstable (Misurinov & Suchkov 1975). Obviously, large scale shear flows in the Galactic shocks lead to the development of both wiggle and Kelvin-Helmholz instabilities (Wada 2001; Wada & Kodama 2004). Such hydrodynamic instabilities are expected to give a birth to spurs, gaseous fragments and turbulent flows (Wada 1994; Wada et al. 2000; Dobbs & Bonnel 2006; Shetty & Ostriker 2006). The gravitational and thermal (in general, thermo-chemical) instabilities are expected to develop further fragmentation, which leads to formation of the population of molecular clouds.

The properties of molecular clouds (mass, size, density, temperature etc.) are intensively studied both observationally (Solomon et al. 1987; Falgarone et al. 1992; Lada et al. 2003).
2 MODEL

2.1 Gas dynamics and galaxy potential

The dynamics of the chemically reacting gas mixture in our model of the Galaxy can be written in the single-fluid approximation as follows:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0, \]
\[\frac{\partial \rho \chi_i}{\partial t} + \nabla \cdot (\rho \mathbf{u} \chi_i) = \rho \dot{s}_i, \quad i = 1, \ldots, n_s, \]
\[\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) = -\frac{\nabla p}{\rho} - \nabla (\Psi_{\text{ext}} + \Psi_g), \]
\[\frac{\partial E}{\partial t} + \nabla \cdot (E + p) \mathbf{u} = -\mathbf{u} \cdot \nabla (\Psi_{\text{ext}} + \Psi_g) - (\Lambda - \Gamma), \]

where \(\rho \) is the gas density, \(p \) is the gas pressure, \(\mathbf{u} = (u, v, w) \) is the gas velocity vector, \(n_s \) is the number of components in the gas mixture (in our model \(n_s = 2 \)), \(\chi_i = \rho_i/\rho \) is the mass fraction of \(i \)-th component of gas, \(\sum_{i=1}^{n_s} \chi_i = 1, s_i \) is the formation/destruction rate of \(i \)-th component, \(E = \rho (e + \mathbf{u}^2/2) \) is the total energy, \(e \) is the specific internal energy, \(\Lambda \) and \(\Gamma \) are the cooling and heating rates, correspondingly, \(\Psi_g \) is the gravitational potential of gas, \(\Psi_{\text{ext}} \) is the total external gravitational potential produced by the massive dark halo \(\Psi_{\text{halo}} \), the stellar bulge \(\Psi_{\text{bulge}} \) and the stellar disk \(\Psi_{\text{disk}} \). The latter includes the potentials of the spiral structure and the bar. The potential of the gaseous component is determined by the Poisson equation:

\[\Delta \Psi_g = 4\pi G \rho. \]

Hereafter we assume \(G = 1 \). The external gravitational potential can be written as follows:

\[\Psi_{\text{ext}} = \Psi_{\text{halo}} + \Psi_{\text{bulge}} + \Psi_{\text{disk}}. \]

Figure 1 presents the rotation curve of the gas components adopted in our model of the Galaxy. For the maximum rotation velocity of the Milky Way we adopt a value obtained from the analysis of the recent observational data on the Galactic masers (Boliev & Bajkova 2010). The external gravitational potential of the Galactic subsystems, e.g. stellar bulge, stellar disk and dark halo, \(\Phi_{\text{ext}} \), produces this rotation curve with the parameters for the Galactic subsystems fitted by Khoperskov & Turina (2003). The detailed description of the gravitational potential components is given in Appendix.

In our calculations we use the value of the angular velocity \(\Omega_0 = 31 \text{ km s}^{-1} \text{ pc}^{-2} \) as a fiducial value. This value is realized at the radius of corotation \(R_c \sim 8 \text{ kpc} \) (Boliev & Bajkova 2010). Our simulations have shown that the variation of \(\Omega_0 \) in the range \(18 - 28 \text{ km s}^{-1} \text{ pc}^{-2} \) (Amores et al. 2009, Sofue et al. 2009, Lepine et al. 2001) does not produce significant changes in the general properties of evolution of gas in the simulated Galaxy.

2.2 Chemical kinetics

\(\text{H}_2 \) molecules in the interstellar medium are formed on the surface of the dust grains and dissociated by ultraviolet Lyman-Werner photons and cosmic rays. We suppose that the dust density is proportional to the gas density because the dust is well mixed with gas on the scales of our simulations. Thus, evolution of molecular hydrogen number density can be found from (Bergin et al. 2004)

\[\frac{dn_2}{dt} = R_{\text{gr}}(T)n_1 - \left[\zeta_{\text{cr}} + \zeta_{\text{diss}}(N_v, A) \right]n_2, \]
where \(n_1, n_2 \) are the number densities of atomic and molecular hydrogen, correspondingly, \(n = n_1 + 2n_2 \) is the total number density of hydrogen species, \(N_2 \) is the \(\text{H}_2 \) column density, \(R_{\text{eff}}(T) = 2.2 \times 10^{-18} \text{cm}^{1/2} \) s\(^{-1/2}\) is the \(\text{H}_2 \) formation rate on dust grains (Tielens \& Hollenbach 1985), \(S = 0.3 \) is the efficiency of the \(\text{H}_2 \) formation on dust (Cazaux \& Tielens 2004), \(\zeta_N = 6 \times 10^{-18} \) s\(^{-1}\) is the cosmic ray ionization rate, \(\zeta_V \) is the extinction. Following Draine \& Bertoldi (1996) the photodissociation rate can be estimated as:

\[
\zeta_{\text{diss}}(\text{H}_2, \zeta_V) = \zeta_{\text{diss}}(0)f_{\text{shield}}(N(\text{H}_2))f_{\text{dust}},
\]

where \(\zeta_{\text{diss}}(0) = 4.17 \times 10^{-11} \) sec\(^{-1}\) is the unshielded photodissociation rate, \(f_{\text{shield}}(N(\text{H}_2)) \) is the \(\text{H}_2 \) self-shielding factor, \(f_{\text{dust}} \) is the dust absorption factor.

To calculate the factors \(f_{\text{shield}} \) and \(f_{\text{dust}} \) we need to know both molecular, \(N(\text{H}_2) \), and total, \(N_{\text{tot}} = N(\text{HI}) + 2N(\text{H}_2) \), hydrogen column densities. In order to do this accurately we should find a cumulative ultraviolet radiation field produced by the young stars and their clusters. Obviously, this problem is extremely complex, moreover, star formation processes are not included in our model. Hence, we follow a simplified approach introduced by Dobbs (2008). We use a simple estimate that the column densities of the chemical species are just the local densities of these species multiplied by the typical distance to a young star, \(l_{ph} \): \(N(\text{HI}, \text{H}_2) = l_{ph} \cdot n(\text{HI}, \text{H}_2) \). This distance is assumed to be a constant length scale for the whole disk. In our simulations we take \(l_{ph} = 30 \) pc, which is in agreement with the number of massive stars expected from the Salpeter initial mass function.

We assume that the Galactic gas has solar metallicity with the abundances given in Asplund et al. (2005): \([\text{C}/\text{H}] = 2.45 \times 10^{-4}, [\text{O}/\text{H}] = 4.57 \times 10^{-4}, [\text{Si}/\text{H}] = 3.24 \times 10^{-5} \). We assume that the dust depletion factors are equal to 0.72, 0.46 and 0.2 for C, O and Si, correspondingly. Chemical kinetics of the heavy elements is not solved in our model. We suppose that the carbon and silicon are singly ionized and oxygen stays neutral. This assumption is acceptable for the interstellar medium of the Milky Way due to existence of the strong ultraviolet radiation in the range \(\sim 10^{-13} \) eV (Habing 1968).

2.3 Cooling and heating processes

The cooling rates are computed separately for the temperatures below and above \(2 \times 10^4 \) K. In the low temperature range the cooling rate \(\Lambda \) in the energy equation (1) includes the typical processes of radiative losses for the interstellar medium: cooling due to recombination and collisional excitation and free-free emission of hydrogen (Cen 1992), molecular hydrogen cooling (Galli \& Palla 1998), cooling in the fine structure and metastable transitions of carbon, oxygen and silicon (Hollenbach \& McKee 1989), energy transfer in collisions with the dust particles (Wolfire et al. 2003) and recombination cooling on the dust (Bakes \& Tielens 1994).

In the high temperature range, \(T > 2 \times 10^4 \) K, the cooling rate for solar metallicity is taken from Sutherland \& Dopita (1993). We note that in our calculations the gas temperature is generally below \(10^4 \) K, higher temperature is reached only in small rarefied regions at the periphery of the disk.

The heating rate \(\Gamma \) in the equation (1) takes into account photoelectric heating on the dust particles (Bakes \&

3 DISK EVOLUTION

Figure 2 shows the surface gas density at 50, 100, 200 and 300 Myr. At the beginning the spiral shocks are formed due to the supersonic gas flow through the spiral gravitational potential of the stellar disk. After \(t = 50 \) Myr one finds a well-developed spiral structure in the gas disk (upper left panel). The width of the gas spirals is significantly smaller than that of the stellar density wave due to higher stellar velocity dispersion. Owing to shear and wiggle instabilities the shock front becomes perturbed, and as a result the spurs and fragments are formed. Such spurs and fragments can be found at \(t = 50 \) Myr (upper left panel) and are clearly seen at \(t = 100 \) Myr (upper right panel). On one hand, higher density in such fragments stimulates molecular hydrogen formation and, as a consequence, efficient cooling of gas in the fragments. On the other hand, the cooling can lead to further fragmentation. We find that the efficient molecule formation starts at \(t \sim 30 - 50 \) Myr, which corresponds to the time scale of molecular hydrogen formation and, therefore, efficient cooling of gas in the fragments. A major part of the \(\text{H}_2 \) molecules is formed in such fragments, which are the progenitors of molecular clouds. Note that a number of fragments formed may have super-Jeans masses. So, further fragmentation is expected to be amplified by both thermal instability and self-gravity.

A large number of clouds is formed as a result of further evolution: a flocculent structure in the spiral arms can be clearly seen at \(t = 200 \) Myr (lower left panel of Figure 2). In the course of collisions the clouds can merge and form bigger ones or can be disrupted completely. In the latter case
Figure 2. The evolution of the surface density of gas ($g \text{ cm}^{-2}$) at $t = 50$ Myr (upper left), $t = 100$ Myr (upper right), $t = 200$ Myr (lower left) and $t = 300$ Myr (lower right). The cross shows position of the Sun (8 kpc).
they produce a number of smaller cloudlets. The clouds moving supersonically through the interstellar medium can be stripped due to the Kelvin-Helmholtz instability. Though H\textsubscript{2} molecules are formed and destroyed due to these processes, the total mass of molecular gas in the Galaxy increases until \(t \sim 200 \) Myr. Then it saturates because the quasi-stationary regime is established between the molecule formation on dust and their destruction by the UV radiation from OB stars (lower left panel of Figure 2). So, at \(t \sim 200 \) Myr one finds a population of clouds with sizes varying in the range \(\sim 10 - 100 \) pc and typical lifetime about 10 Myr (in the next section we analyze the properties of the clouds in more detail).

At \(t = 200 \) Myr groups of clouds are settled along the spiral arms (Figure 2). During further evolution these groups become larger both in size and mass. Gradually they stand apart from each other in the spiral arms. Such agglomerations of clouds have sizes more than 100 pc and the distance between such associations at \(t = 300 \) Myr reaches several hundred parsecs. The agglomerations consist of several clouds with the typical number density \(\gtrsim 1 \) cm\(^{-3}\). The typical thermal pressure \(p_{\text{th}} \) inside such clouds is about \(2-4 \ M_\odot \) pc\(^{-2}\) K which corresponds to the temperatures \(T \sim 80 - 200 \) K. Actual values of the gas temperature are lower because considerable portion of the internal energy is spent on the turbulent motions. However numerical resolution of our simulations is not high enough to resolve the inner structure of the molecular clouds and the turbulent flows. The turbulence (especially small scale one) represents a common and complex problem. At this stage we are not able to extract the turbulent part of the internal energy.

The velocity dispersion in a gas around molecular clouds is about 3-7 km s\(^{-1}\) and the velocity field around clouds shows a complex turbulent structure. To consider this we pick out a cloud with coordinates (-4.9 kpc, -4.9 kpc) at \(t = 300 \) Myr. Figure 3 shows velocity field around such cloud. The velocities are shown in the comoving coordinate system connected to the most dense part of the cloud. One can see the irregular form of the cloud and the colliding gaseous flows in the regions with enhanced density. The structure and physical parameters of the cloud locations obtained in our numerical simulations are close to those observed in the giant molecular clouds and their surroundings (Roman-Duval et al. 2010).

Thermo-chemical processes taken into account in our simulations lead to formation of the two phases of the simulated gas with stable points around \(\sim 100 \) K and \(\sim 10^4 \) K (Figure 4 see note on the value of the temperature above). A gas with \(T \sim 100 \) K corresponds to the dense molecular clouds, i.e they have both high number density \(n \sim 100 - 300 \) cm\(^{-3}\) and high H\textsubscript{2} molecule abundance \(x(\text{H}_2) \sim 0.3 - 0.5 \). These clouds concentrate to the spiral arms. A gas belonging to the warmer phase with \(T \sim 10^4 \) K is a rarefied atomic gas which resides mainly between the arms. A gas of the coldest phase \((T \sim 10 \) K) occupies negligibly small volume of space and is not considered here.

4 The Physical Properties of Molecular Clouds

In this section we consider physical and statistical properties of the molecular gas in our simulations. This gas resides in the clumps which are called molecular clouds. A border of the cloud can be defined as location where H\textsubscript{2} abundance or H\textsubscript{2} surface density exceeds given limit. The
clouds in our analysis are delimited using a surface density threshold: over the 2D computational grid of the Galactic plane we find isolated groups of cells with the column density exceeding given threshold. Such clumps normally have irregular form, and their effective linear size is estimated as a square root of their surface area.

For our analysis we have chosen two values of the molecular hydrogen surface density threshold: $\Sigma_{HI} = 1.5 \times 10^{-5}$ g cm$^{-2}$ and 1.5×10^{-4} g cm$^{-2}$. In both cases average density inside a cloud is greater than several dozens particles per cc, which is close to the typical value of H$_2$ number density obtained from observations of molecular clouds in the Galaxy (e.g. Shu et al. 1987).

We are using two thresholds for H$_2$ surface density at the border of the cloud in order to show that our basic conclusions on the statistical properties of clouds are independent of exact value of the threshold. This is important because there is no single value of H$_2$ surface density which exactly reproduces definition of a molecular cloud in observations.

Figure 5 presents the distribution of masses of the clouds for the H$_2$ surface density thresholds $\Sigma_{HI} = 1.5 \times 10^{-5}$ g cm$^{-2}$ (solid line) and 1.5×10^{-4} g cm$^{-2}$ (dash line) at $t = 300$ Myr. The line corresponds to the empirical dependence $N \sim M^{-1.64}$ obtained by Roman-Duval et al. (2010).

![Figure 5](image)

Figure 5. Distribution of masses of the clouds for the H$_2$ surface density thresholds $\Sigma_{HI} = 1.5 \times 10^{-5}$ g cm$^{-2}$ (solid line) and 1.5×10^{-4} g cm$^{-2}$ (dash line) at $t = 300$ Myr. The line corresponds to the empirical dependence $N \sim M^{-1.64}$ obtained by Roman-Duval et al. (2010).

whereas similar deficiency in the observations comes from the incompleteness of the data (Roman-Duval et al. 2010).

For the lower threshold the lack of clouds with $M \lesssim 10^5 M_\odot$ can be explained by clustering of smaller and denser clumps. In other words, choosing lower surface density level we pick out more extended clusters of clumps, which contain both smaller and denser clumps. In the case of the lower threshold we cover larger regions with lower density, so that the increase of density limit should lead to decrease of size of the cluster and excludes extended low-density regions from consideration of.

Figure 6 presents the dependence of mass of the cloud on its size (mass-size relationship) for the H$_2$ surface density thresholds $\Sigma_{HI} = 1.5 \times 10^{-5}$ g cm$^{-2}$ (crosses) and 1.5×10^{-4} g cm$^{-2}$ (circles) at $t = 300$ Myr. The sizes of the clouds vary between $\sim 10 - 60$ pc for the higher density threshold. The most massive clouds have masses about $2 \times 10^6 M_\odot$. These values are in good agreement with the observational data (Roman-Duval et al. 2010). In some cases the sizes of molecular clouds can be as large as $\sim 100 - 200$ pc (Kirsanova et al. 2008), but these regions can be considered as a tight group of smaller clouds. In our analysis such extended clouds can be found under the lower density threshold (crosses in Figure 6): there are groups or chains of clouds seen in the periphery of the Galaxy at 300 Myr (Figure 2).

The mass-size (or mass-area) relationship among molecular clouds, $M \sim R^2$, which is well-known as Larson’s third law, appears due to cloud evolution and numerous physical processes in the interstellar medium. Many efforts to obtain or explain this universal relation are given in Beaumont et al. (2012), who tried to interpret the relationship in terms of the column density distribution function. However, the scatter of the empirical fits is large (see lines in Figure 6) note that we pick out only several fits from the Table 1 presented in Beaumont et al. (2012). One can see

![Figure 6](image)

Figure 6. Mass-size dependence for the H$_2$ surface density thresholds $\Sigma_{HI} = 1.5 \times 10^{-5}$ g cm$^{-2}$ (crosses) and 1.5×10^{-4} g cm$^{-2}$ (circles) at $t = 300$ Myr. The lines correspond to several theoretical and empirical fits ($M/M_\odot = \gamma(A/pc^2)^(\beta)$) given in Beaumont et al. (2012) ($\gamma, \beta = 240, 0.95$ (Larson 1981), ($\gamma, \beta = 300, 1.5$ (Elmegreen & Falgarone 1996), ($\gamma, \beta = 150, 1.3$ (Roman-Zúñiga et al. 2010) and ($\gamma, \beta = 228, 1.36$ (Roman-Duval et al. 2010) shown by dotted, dashed, solid and dash-dotted lines, correspondingly.)
that the properties of clouds obtained in the numerical simulations are close to the power-law relation between the radius and mass of the cloud $M \sim R^{2.36}$, which was obtained by applying a χ^2-square minimization for the observed radii and masses of the Galactic molecular clouds (Roman-Duval et al. 2010). There is a significant dispersion of our simulated data around this fit. We find that our best fit of the simulated data $M \sim R^{2.14 \pm 0.16}$ (the ranges correspond different density thresholds) is close to that obtained in observations. Note that our fit has a power-law index close to 2 for both density thresholds considered here.

Finally, we note that the velocity dispersion for the majority of clouds varies in the range $\sigma_v \sim 1-2$ km s$^{-1}$ in our numerical simulations, that is a good agreement with the observational data (Roman-Duval et al. 2010).

Thus, we have found that the physical properties of clouds obtained from our simulation are close to those observed in the Galaxy. Our conclusions are costrained by the numerical resolution, because we can consider clouds with sizes larger than 10 pc, whereas even the parsec-size clouds are observed (Roman-Duval et al. 2010). Anyhow, our numerical results provide possibility to consider the global properties of molecular and atomic gas in the Galaxy.

5 THE l–v DIAGRAM

5.1 Molecular hydrogen

Large-scale distribution of molecular gas in the Galaxy can be represented using the 'longitude-velocity' diagram (henceforth l–v diagram) constructed from observations of the CO(1-0) line emission (Dame et al. 2001). The CO molecule is usually used as a tracer of molecular gas (Maloney & Black 1988) because emission of much more abundant H$_2$ molecule cannot be observed in the cold and warm regions. Current model of molecular kinetics in our simulations does not provide us with possibility to calculate abundance of CO molecule and the distribution of molecular gas is judged from the distribution of H$_2$. Certainly, the CO-H$_2$ conversion factor depends on many physical parameters (Shetty et al. 2011; Feldmann et al. 2012). However, there are no doubts that the general conclusion on agreement between synthetic and observational distributions of molecular gas in the Galaxy can be drawn from comparison of l–v diagram for H$_2$ molecule in the model with CO data of Dame et al. (2001).

Figure 7 presents the l–v diagram for molecular gas at $t = 300$ Myr. The diagram is constructed for an observer located at the Sun position (see Figure 2). One can find the large-scale structures corresponding to Perseus, Outer and Carina spiral arms. In the central part of the diagram, $l \pm (30-40)^\circ$, an intense and extended structure with the strong velocity gradient that passes through the origin is clearly seen. This structure by its location and general appearance resembles so-called Galactic Molecular Ring (Stecker et al. 1975; Cohen & Thaddeus 1977; Roman-Duval et al. 2010). However, Figure 2 shows that there is no pronounced ring of molecular material in our simulations. In our model the structure in the Molecular Ring locus of points of the l–v diagram is associated with the Galactic bar and the spiral arms at ~ 3–4 kpc. Thus, our results are in agreement with conclusions on the absence of the Molecular Ring drawn from the simple fitting technique Dobbs & Burkert (2012) and previous hydrodynamical simulations (Englmaier & Gerhard 1999; Rodriguez-Fernandez & Combes 2008; Baba et al. 2010). Note that the previous simulations did not include molecular chemical kinetics.

We have to note on the existence of numerous small-scale structures in the diagram. They are obviously associated with spurs, agglomerations of clouds and individual clouds. But we make no comment on that here because our consideration is concentrated on the extended structures scales of which greatly exceed our numerical resolution.

5.2 Atomic hydrogen

The atomic gas in our model is the main part of the gaseous component of the spiral arms and its distribution traces large-scale structures in the Galaxy. Figure 8 presents the synthetic l–v diagram for atomic gas at $t = 300$ Myr. The diagram is constructed for an observer located at the Sun position (see Figure 2). The structures corresponding to the spiral arms are clearly seen in this Figure. The synthetic diagram does not show any prominent structure at the locus of points corresponding to the Galactic Molecular Ring Figure 7. Results of our modelling show that the atomic
gas in the simulated Galaxy is distributed much more uniformly than the molecular gas. The synthetic \(l - v \) diagram shows reasonably good agreement with the observational data (see, e.g. \(l - v \) diagrams in [Kalberla & Dedes 2008 McClure-Griffiths et al. 2004]). So, our model reproduces main features of the observed distribution of the neutral gas in the Galaxy.

6 CONCLUSION

In this paper we have studied formation of gas clouds in the model of our Galaxy. The 3D simulations have taken into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential have been used. It included contributions of self-gravitating gaseous component, stellar bulge, two and four armed spiral structure, stellar disk and dark halo. We have analyzed general properties of the simulated clouds and have compared them with statistical distributions taken from the recent surveys of molecular clouds [Roman-Duval et al. 2010].

Our results can be summarized as follows:

- The following stages of evolutionary sequence of the molecular cloud system formation were distinguished in our modelling: a) spurs and fragments (progenitors of molecular clouds) are formed in the spiral arms due to shear and wiggle instabilities at the times \(t \lesssim 50 \) Myr; b) numerous molecular clouds start to form after \(t \gtrsim 50 \) Myr which corresponds to the time scale of molecular hydrogen formation on dust grains; c) a well-developed hierarchical structure of the clouds is formed at \(t \approx 200 \) Myr; d) at the moment of time \(t \approx 300 \) Myr the clouds agglomerate into extended associations with sizes exceeding 100 pc while the sizes of individual clouds vary in the range \(10 - 100 \) pc;
- the total mass of molecules in the Galaxy increases until \(t \approx 200 \) Myr, when it saturates; the major part of molecule hydrogen is locked in molecular clouds where the \(H_2 \) molecule abundance reaches \(x(\text{H}_2) \sim 0.3 - 0.5; \)
- the statistical dependencies, e.g. the mass spectrum of clouds, the "mass-size" relation and the velocity dispersion of clouds, obtained in our simulations are close to those observed in the Galaxy [Roman-Duval et al. 2010];
- the structure is clearly seen in the Galactic Molecular Ring’s locus of points on the simulated \(l - v \) diagram of molecular gas; this structure doesn’t correspond to a real ring of molecular gas and likely arises due to superposition of emission from the galactic bar and the spiral arms at \(\sim 3-4 \) kpc, which supports conclusion made by [Dobbs & Burkert 2012]; no prominent structure in the Galactic Molecular Ring locus of points is distinguished in the simulated \(l - v \) diagram of the HI gas.

7 ACKNOWLEDGEMENTS

We thank A.V. Zasov and Yu.A. Shchekinov for thoughtful comments on the manuscript. This work was supported partially by Russian Foundation for Basic Research (grants 11-02-12247-of-m-2011, 10-02-00231, 12-02-00685-a) and the President of the Russian Federation grant (SS-3602.2012.2). S.A.K. and E.O.V. thank to the foundation "Dynasty" (Dmitry Zimin) for financial support. E.O.V. thanks to Russian Foundation for Basic Research (grant 11-02-01332). AMS was partly supported by the Russian federal task program Research and operations on priority directions of development of the science and technology complex of Russia for 2007-2012 (state contract 16.518.11.7074). The numerical simulations were made on the supercomputer facilities of NIVC MSU "Lomonosov" and "Chebyshev".

References

APPENDIX A: EXTERNAL GRAVITATIONAL POTENTIAL MODEL

The dark matter halo gravitational potential is taken in the quasi-isothermal form [Begeman et al. 1991]:

\[\Psi_{\text{halo}} = \frac{M_h}{C_h} \cdot \left\{ \ln(\xi) + \frac{\arctg(\xi)}{\xi} + \frac{1}{2} \ln \left(1 + \frac{\xi^2}{\xi^2} \right) \right\}, \quad (A1) \]

where \(\xi = r/a_h \), \(M_h \) is the mass of the dark halo within a radius \(r_h \), \(a_h \) is the scale of the halo and \(C_h = a_h (r_h/a_h - \arctg(r_h/a_h)) \). In our model we take \(r_h = 12 \) kpc, \(a_h = 6 \) kpc, \(M_h = 0.64 \cdot 10^{11} M_\odot \).

For the stellar bulge potential we adopt the King’s model with the cutoff at radius \(r_b^{\text{max}} \) [Fridman & Khoperskov 2011].

\[\Psi_{\text{bulge}} = -\frac{M_b}{r C_b} \ln \left(\frac{r}{r_b} + 1 + \left(\frac{r}{r_b} \right)^2 \right), \quad (A2) \]

with the following parameters \(M_b = 0.092 \cdot 10^{11} M_\odot \), \(r_b = 0.2 \) kpc, \(r_b^{\text{max}} = 12 \) kpc, where

\[C_b = \ln(r_b^{\text{max}}/r_b + \sqrt{1 + (r_b^{\text{max}}/r_b)^2}) - (r_b^{\text{max}}/r_b)/(\sqrt{1 + (r_b^{\text{max}}/r_b)^2}). \]

For the three-dimensional stellar disk we take the exponential distribution of surface density, then the stellar disk potential can be written as follows [Binney & Tremaine 2008].

\[\Psi_{\text{disk}} = \pi \sigma_d \cdot \ln \left(\cosh(z/d) \right) - \pi \sigma_r d \cdot y \cdot (I_0(y) K_1(y) - I_1(y) K_0(y)), \quad (A3) \]

where \(y = \frac{r}{2 \cdot r_d} \), \(\sigma_d = \frac{M_d}{2 \pi \cdot r_d^2} \) is the central surface density, \(M_d = 0.4 \cdot 10^{11} M_\odot \), the radial scale of disk \(r_d = 3 \) kpc, the vertical scale \(z_d = 100 \) pc, \(I_0(y), K_0(y), I_1(y), K_1(y) \) are the cylindrical Bessel functions of the first and second kind, respectively.

Taking account the gravitational potentials of bar and spiral structure of stellar component we can obtain more realistic distribution of gas in the Galaxy. Following Cox & Gomez [2002] the perturbed potential of stellar disk \(\Psi_{\text{disk}} \) can be written in the form of superposition of potentials generated by the bar and the two and four-armed logarithmic spiral patterns:

\[\Psi_{\text{disk}} = \Psi_{\text{disk}} \cdot \left(1 + \epsilon(t) \cdot \Psi_{\text{arms}} \right), \quad (A4) \]

where \(\epsilon(t) \) describes the evolution of the relative amplitude of the spirral stellar density wave. We assume a linear increase of the amplitude \(\epsilon(t < \tau) = 0.1 \cdot \frac{t}{\tau} \) during \(\tau = 220 \) Myr, after that time the amplitude is constant: \(\epsilon(t > \tau) = 0.1 \).
The relative perturbation Ψ_{arms} is adopted in the form \cite{Wada2004}:

$$\Psi_{\text{arms}} = \frac{\kappa_1 \cos(\Theta_1)}{\left(1 + \kappa_1\right)^{3/2}} + \frac{\kappa_2 \cos(\Theta_2)}{\left(1 + \kappa_2\right)^{3/2}} + \frac{\kappa_4 \cos(\Theta_4)}{\left(1 + \kappa_4\right)^{3/2}}, \quad (A5)$$

where $\kappa_1 = \left(\frac{r}{r_{a1}}\right)^2$, $\kappa_2 = \left(\frac{r}{r_{a2}}\right)^2$, $\kappa_4 = \left(\frac{r}{r_{a4}}\right)^2$; $r_{a1} = 2$ kpc, $r_{a2} = 7$ kpc, $r_{a4} = 7$ kpc are the radial scales for bar, two-armed and four-armed spiral patterns, respectively. The functions Θ_i are:

$$\Theta_1 = 2 \cdot (\phi - f_1),$$

$$\Theta_2 = 2 \cdot (\phi - f_2 - \cot(i_2) \cdot \ln \left(\frac{r}{r_{02}}\right)), $$

$$\Theta_4 = 4 \cdot (\phi - f_4 - \cot(i_4) \cdot \ln \left(\frac{r}{r_{04}}\right)),$$

$f_1 = f_2 = f_4 = 50^\circ$ are the phases of bar and spiral patterns, $r_{02} = r_{04} = 3.5$ kpc, $i_2 = i_4 = 18^\circ$ are the scales and the pitch angles of two-armed and four-armed components.