Search for magnetic monopoles in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb$^{-1}$ of pp collisions recorded at a center-of-mass energy of $\sqrt{s} = 7$ TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of $1.6/\epsilon$ fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where ϵ is the monopole reconstruction efficiency. The efficiency ϵ is high and uniform in the fiducial region given by pseudorapidity $|\eta| < 1.37$ and transverse kinetic energy $600–700 < E^{\text{kin}} \sin \theta < 1400$ GeV. The minimum value of 700 GeV is for monopoles of mass 200 GeV, whereas the minimum value of 600 GeV is applicable for higher mass monopoles. Therefore, the upper limit on the production cross section at 95% confidence level is 2 fb in this fiducial region. Assuming the kinematic distributions from Drell-Yan pair production of spin-$1/2$ Dirac magnetic monopoles, the efficiency is in the range 1%–10%, leading to an upper limit on the cross section at 95% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV. This limit is weaker than the fiducial limit because most of these monopoles lie outside the fiducial region.
Search for magnetic monopoles in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

The ATLAS Collaboration

This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb$^{-1}$ of pp collisions recorded at a center-of-mass energy of $\sqrt{s} = 7$ TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/\epsilon fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where \epsilon is the monopole reconstruction efficiency. The efficiency \epsilon is high and uniform in the fiducial region given by pseudorapidity $|\eta| < 1.37$ and transverse kinetic energy $600 - 700 < E^{\text{kin}} \sin \theta < 1400$ GeV. The minimum value of 700 GeV is for monopoles of mass 200 GeV, whereas the minimum value of 600 GeV is applicable for higher mass monopoles. Therefore, the upper limit on the production cross section at 95% confidence level is 2 fb in this fiducial region. Assuming the kinematic distributions from Drell-Yan pair production of spin-1/2 Dirac magnetic monopoles, the efficiency is in the range 1%–10%, leading to an upper limit on the cross section at 95% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV. This limit is weaker than the fiducial limit because most of these monopoles lie outside the fiducial region.

Recent searches for magnetic monopoles from astrophysical sources are complemented by searches at colliders. This Letter describes a search for magnetic monopoles in proton–proton collisions recorded at a center-of-mass energy of $\sqrt{s} = 7$ TeV using the ATLAS detector at the CERN Large Hadron Collider (LHC).

The Dirac quantization condition, given in Gaussian units, leads to a prediction for the minimum unit magnetic charge g:

$$\frac{ge}{\hbar c} = \frac{1}{2} \Rightarrow g = \frac{1}{2\alpha_e} \approx 68.5,$$

(1)

where e is the unit electric charge and α_e is the fine structure constant. With the introduction of a magnetic monopole, the duality of Maxwell’s equations implies a magnetic coupling:

$$\alpha_m = \frac{(g\beta)^2}{\hbar c} = \frac{1}{4\alpha_e} \beta^2,$$

(2)

where $\beta = v/c$ is the monopole velocity. For relativistic monopoles, α_m is very large, precluding any perturbative calculation of monopole production processes. Therefore, the main result of this analysis is a fiducial cross-section limit for Dirac monopoles of magnetic charge g derived without assuming a particular production mechanism. A cross-section limit assuming the kinematic distributions from Drell-Yan monopole pair production is also provided.

Monopoles are highly ionizing particles, interacting with matter like an ion of electric charge $68.5e$, according to Eq. (1). The high stopping power of the monopole ionization results in the production of a large number of δ-rays. These energetic “knock-on” electrons emitted from the material carry away energy from the monopole trajectory and further ionize the medium. In the mass and energy regime of this study, the δ-rays have kinetic energies ranging from 1 MeV to a maximum of ~ 100 MeV. The secondary ionization by these δ-rays represents a significant fraction of the ionization energy loss of the magnetic monopole. The dominant energy loss mechanism for magnetic monopoles in the mass and energy range considered herein is ionization. Furthermore, the monopole ionization is independent of the monopole speed β to first order, in contrast to the ionization of electrically charged particles.

In the ATLAS detector, the monopole signature can be easily distinguished using the transition radiation tracker (TRT) in the inner detector and the liquid argon (LAr) sampling electromagnetic (EM) calorimeter. The TRT is a straw-tube tracker that comprises a barrel ($|\eta| < 1.0$) with 4 mm diameter straws oriented parallel to the beam-line, and two endcaps ($0.8 < |\eta| < 2.0$) with straws orientated radially. A minimum ionizing particle deposits ~ 2 keV of energy in a TRT straw. Energy deposits in a TRT straw greater than 200 eV (called “low-threshold hits”) are used for tracking, while those that exceed 6 keV (called “high-threshold hits”) typically occur due to the transition radiation emitted by highly relativistic electrons when they penetrate the radiator layers between the straws. As a result, an electron of energy 5 GeV or above has a 20% probability of producing a high-threshold hit in any straw it traverses. The high-threshold hits can also indicate the presence of a highly ionizing particle. A 2 T superconducting

PACS numbers: 14.80.Hv, 13.85.Rm, 29.20.db, 29.40.Cs

Monopoles, the duality of Maxwell’s equations implies a structure constant. With the introduction of a magnetic monopole, the high-threshold hits can also indicate the presence of a magnetic monopole. A 2 T superconducting
monopoles are produced in pairs from the initial Drell-Yan process, it is assumed that spin-1/2 magnetic coupling in LAr \[26\]. Lacking a dedicated monopole trigger, most of their energy there. Only one third of the de-energy deposit in the LAr EM calorimeter (EM cluster) in conjunction with a region of high ionization density in the TRT. A search for particles with large electric charge, which yield a similar signature, was performed previously \[21\] and production cross-section limits for such particles were set \[22\].

The trajectory of an electrically neutral magnetic monopole in the inner detector is straight in the \(r-\phi\) plane and curved in \(r-z\). The behavior of magnetic monopoles in the ATLAS detector is described by a Geant4 \[23\] simulation \[24\] which includes the equations of motion, the ionization, the \(\delta\)-ray production and a modified Birks’ Law \[29\] to model recombination effects in LAr due to highly ionizing particles \[20\]. Equation 5.5 in Ref. \[16\] gives the \(\delta\)-ray production cross section and Eq. 5.7 describes the derivation of the magnetic monopole ionization; both equations are implemented in Geant4.

Simulated Monte Carlo (MC) single-monopole samples are used to determine the efficiency as a function of the transverse kinetic energy \(E_{T}^{\text{kin}} = E_{T}^{\text{kin}} \sin \theta\) and pseudorapidity \(\eta\) for various monopole masses. For the Drell-Yan process, it is assumed that spin-1/2 magnetic monopoles are produced in pairs from the initial \(p\bar{p}\) state via quark-antiquark annihilation into a virtual photon. MadGraph \[27\] is used to model this process by assuming leading-order Drell-Yan heavy lepton pair production but making the replacement \(e \rightarrow g\beta\) to reflect the magnetic coupling in Eq. 2. In the absence of a consistent theory describing the coupling of the monopole to the Z boson, such a coupling is set to zero in the MadGraph model. In the Drell-Yan samples, the CTEQ6L1 \[28\] parton distribution functions are used and Pythia version 6.425 \[29\] is used for the hadronization and the underlying event. Only Drell-Yan monopoles with transverse momentum \(p_{T} > 200\ \text{GeV}\) are processed by the simulation since lower \(p_{T}\) monopoles fail to reach the calorimeter. For all the simulated samples, both the monopoles and the antimonopoles are assumed to be stable and all final-state particles are processed by the simulation of the ATLAS detector. Additional \(p\bar{p}\) collisions in each event are simulated according to the distribution of \(p\bar{p}\) interactions per bunch crossing in the selected data period.

A simple algorithm is used to preselect events with monopole candidates for further study. Monopoles with \(E_{T}^{\text{kin}}\) above approximately 500 GeV traverse the inner detector and penetrate to the LAr calorimeter, depositing most of their energy there. Only one third of the deposited energy is recorded due to the recombination effects in LAr \[20\].

Lacking a dedicated monopole trigger, only events collected with a single-electron trigger with transverse energy threshold \(E_{T} > 60\ \text{GeV}\) are considered. This trigger requires a track in the inner detector within \(|\Delta \eta| < 0.01\) and \(|\Delta \phi| < 0.02\) of the LAr energy deposit. Monopoles that fulfill the 60 GeV energy requirement travel fast enough to satisfy the tracking and timing requirements of the trigger. Very high energy monopoles (i.e., those with \(E_{T}^{\text{kin}} \gtrsim 1400–1900\ \text{GeV}\), where the value of 1400 GeV is for monopoles of mass 1500 GeV and the value of 1900 GeV is for monopoles of mass 200 GeV) exit the EM calorimeter and are rejected by a veto on hadronic energy that is intrinsic to the single-electron trigger. This trigger was operational during the first six months of 2011 data-taking and recorded an integrated luminosity of 2.0 fb\(^{-1}\), defining the dataset used for this search.

The reconstructed EM cluster is then required to have \(E_{T} > 65\ \text{GeV}\) and \(|\eta| < 1.37\). The trigger efficiency is independent of \(E_{T}\) for \(E_{T} > 65\ \text{GeV}\), motivating the former requirement. The \(\eta\) requirement ensures that the EM cluster is in the barrel region of the LAr calorimeter, where the two-dimensional spatial resolution is uniform. If two or more EM clusters in an event satisfy these criteria, only the cluster with the highest energy is considered as a monopole candidate.

In the barrel region, the monopole typically traverses 35 TRT straws and its high ionization ensures that most of these register high-threshold hits. Furthermore, as each \(\delta\)-ray produced by the monopole ionization deposits \(\sim 2\ \text{keV}\) in a straw, the combined energy deposited by multiple \(\delta\)-rays crossing a single TRT straw gives rise to additional high-threshold hits. The large number of \(\delta\)-rays bend in the 2 T magnetic field in the \(r-\phi\) plane; therefore, the monopole trajectory appears as a \(\sim 1\)-cm-wide swath of high-threshold TRT hits. The fraction of TRT hits that exceed the high threshold in the vicinity of the path of an ionizing particle is therefore a powerful discriminator between the monopole signal and the background. The \(\phi\) position of the EM cluster is used to define a road of width \(\Delta \phi = \pm 0.05\ \text{rad}\) from the beam-line to the cluster. At least twenty high-threshold TRT hits must be present in the road. In addition, at least 20% of the TRT hits in the road must be high-threshold hits.

After the preselection, a more refined TRT hit counting algorithm is used to distinguish the signal from the backgrounds. A histogram with a bin width of 0.8 mrad is filled with the \(\phi\) distribution of the high-threshold hits in the previously defined road. The location of the highest bin is used to calculate the center of a new road. In the TRT barrel, a rectangular road of \(\pm 4\ \text{mm}\) in the \(r-\phi\) plane is used and the hits are counted. In the TRT end-cap, a wedge-shaped road of width \(\Delta \phi = \pm 0.006\ \text{rad}\) is used. These roads are wide enough to encompass two neighboring straws, taking into account the monopole trajectory and the associated \(\delta\)-rays, but sufficiently nar-
row to ensure that the fraction of hits that exceed the high threshold, f_{HT}, is insensitive to the presence of neighboring tracks. In the barrel region, the number of hits in the road is required to be greater than 54. An η-dependent requirement on the number of hits in the road is applied in the endcap and barrel–endcap transition region to account for the TRT geometry.

Energy loss by bremsstrahlung and e^+e^- pair production is negligible for magnetic monopoles in the mass and energy range considered herein. Therefore, magnetic monopoles give rise to a narrow ionization energy deposit in the LAr calorimeter, the size of which provides another powerful discriminator of the monopole signal from backgrounds such as electrons and photons, which induce an EM shower via bremsstrahlung and e^+e^- pair production. The variable used is σ_R, the energy-weighted two-dimensional η-ϕ cluster dispersion in the second layer of the EM calorimeter, which has the highest two-dimensional spatial resolution. The dispersion σ_R is calculated from the energies deposited in a 3×7 array of cells centered around the most energetic cell of the EM cluster: $\sigma_R = \sqrt{\sigma_\phi^2 + \sigma_\eta^2}$, where $\sigma_\phi^2 = \Sigma (E_i \delta\phi_i^2) / \Sigma E_i - [\Sigma (E_i \delta\phi_i) / \Sigma E_i]^2$, $\delta\phi_i$ is the deviation in ϕ between cell i and the most energetic cell and E_i is the energy of cell i; σ_η^2 is defined similarly.

The high-threshold TRT hit fraction, f_{HT}, and the cluster dispersion, σ_R, are thus chosen as the distinguishing variables between the signal and background, and are shown in Fig. 1. The main physics background sources are high-energy electrons, photons and jets, which exhibit no correlation between these variables in simulated processes. The background and monopole MC samples are used to define an approximate signal region. Then (σ_R, f_{HT}) parameter pairs are generated by randomly sampling the one-dimensional σ_R and f_{HT} distributions for data outside this approximate signal region. The borders of the signal region are tuned for maximal significance of observation of three signal events by replacing the background MC events with these parameter pairs. The final signal region A is defined by $\sigma_R \leq 0.017$ and $f_{\text{HT}} > 0.7$.

The efficiencies, which include trigger, reconstruction and selection effects, in the two-dimensional E_T^{kin} versus η plane are obtained from the simulated single-monopole samples. A fiducial region for each monopole mass is defined by the E_T^{kin} range in which the efficiency is 0.80 or higher in the $|\eta| < 1.37$ region. Figure 2 shows the efficiency versus E_T^{kin}, averaged over $|\eta| < 1.37$. For monopoles with a mass of 200 GeV, the minimum transverse kinetic energy (E_T^{kin})$_{\text{min}}$ where the efficiency rises above 0.80 is 700 GeV. For monopoles with a mass between 500 GeV and 1500 GeV, (E_T^{kin})$_{\text{min}}$ is 600 GeV. Monopoles with lower E_T^{kin} fail to penetrate to the EM calorimeter and therefore do not satisfy the trigger requirements. Monopoles with very high E_T^{kin} exit the EM calorimeter and are rejected by the hadronic veto of the electron trigger. A common upper value of E_T^{kin} = 1400 GeV is used for the fiducial region of all monopole masses. As the minimum efficiency is 0.80 in the fiducial region, a common value of 0.80 is used in the determination of the upper cross-section limit.

The efficiencies can be under- or over-estimated for several reasons. These effects are described below and the relative systematic uncertainties for each effect are given. 1) Cross-talk in the second EM layer in the ϕ direction is not modeled in the simulation. The energy is reweighted assuming 1.8% cross-talk and the cluster dispersion, σ_R, recomputed. The efficiency is reduced and the resulting relative shift of -1.7% for single monopoles is

![Figure 1](image1.png)

FIG. 1. High-threshold TRT hit fraction, f_{HT}, versus EM cluster dispersion, σ_R. The circles represent 1000 simulated single monopoles with mass 800 GeV. The crosses represent ATLAS data. The regions marked A-D are discussed in the text.

![Figure 2](image2.png)

FIG. 2. Efficiency versus E_T^{kin}, averaged over $|\eta| < 1.37$, for single monopoles of mass 200 GeV and mass 1500 GeV.
taken as a one-sided uncertainty. 2) The simulation underestimates the TRT occupancy in the data by up to 20%; therefore, the number of low-threshold hits (those unlikely to come from the monopole or related δ-rays) is increased by 20%. The resulting relative uncertainty is -1.3%. 3) The modification to Birks’ Law is varied between its upper and lower systematic uncertainties [26], yielding a relative uncertainty of $+1.8\%$ and $+1.5\%$, respectively. 4) The production of δ-rays is varied by 3% [16] and the resulting uncertainty is negligible. 5) The Geant4 “range cut” [28] controls the minimum kinetic energy threshold below which δ-rays are not propagated explicitly. This parameter is reduced from 50 μm to 25 μm in the TRT simulation. The resulting relative uncertainty is $+0.14\%$. 6) The material in the inner detector, in the barrel cryostat and in between the cryostat and the first layer of the EM calorimeter is increased by 5%, 10% and 5%, respectively, in the simulation [31]. The resulting -0.74% relative uncertainty is taken as symmetric. Including an uncertainty of $\sim1.7\%$ to account for the limited number of MC events, the total upper and lower relative uncertainties on the efficiency for single monopoles are $+2.6\%$ and -2.8%, respectively.

The efficiencies to reconstruct at least one of the monopoles in the pairs produced with Drell-Yan kinematic distributions are given in Table I for each mass. Only masses up to 1200 GeV are considered, taking into account the phase space limitations for pair production. The total relative uncertainties, which reflect the same systematic variations described above, are also given. The efficiencies and their associated systematic uncertainties reflect large losses due to acceptance, since many Drell-Yan monopoles have insufficient energy to reach the calorimeter.

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>200</th>
<th>500</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>0.011</td>
<td>0.048</td>
<td>0.081</td>
<td>0.095</td>
<td>0.095</td>
</tr>
<tr>
<td>Relative uncertainty</td>
<td>Upper (%)</td>
<td>+32</td>
<td>+24</td>
<td>+22</td>
<td>+23</td>
</tr>
<tr>
<td></td>
<td>Lower (%)</td>
<td>-36</td>
<td>-23</td>
<td>-22</td>
<td>-25</td>
</tr>
</tbody>
</table>

The background in the signal region is predicted directly from the data. The two-dimensional plane in Fig. 1 is divided into quadrants, one of which is dominated by signal (region A), and three others that are occupied mainly by background (regions B, C and D). The ratio of background events in signal region A to events in background region B is expected to be the same as the ratio of background events in regions C to D. This assumption is incorporated into a maximum likelihood fit to determine the estimated numbers of signal and background events in signal region A. The inputs to the fit include the observed event yields in quadrants A through D, which are 0, 5, 16 and 7001, respectively, the efficiencies and associated systematic uncertainties that have already been discussed, and the integrated luminosity and its 3.7% uncertainty [32]. For each monopole mass, the rate of appearance of signal events in quadrants B and C, as predicted by the simulation, is also taken into account. According to the simulation, no signal event appears in quadrant D for any monopole mass. The fit predicts 0.011 ± 0.007 background events in the signal region.

Using the results of the maximum likelihood fit, the upper limits on the production cross sections at 95% confidence level are calculated using the profile likelihood ratio as a test statistic [33]. The results are extracted using the CL$_s$ method [34]. The cross section limits can be expressed as a function of the efficiency, ϵ, which is shown in Fig. 2 for single monopoles and given in Table I for Drell-Yan pair-produced monopoles. The upper limit on the production cross section at 95% confidence level is found to be 1.6/ϵ fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV. Assuming the kinematic distributions from Drell-Yan pair production of spin-1/2 Dirac magnetic monopoles, this translates to an upper limit on the cross section at 95% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV, as shown in Fig. 3. Since the number of expected background events is very small and no event is observed in the signal region, only the observed limits are shown. To compare with previous experiments that have provided lower mass limits on spin-1/2 Dirac magnetic monopoles by assuming Drell-Yan pair production, such an approach would yield a lower mass limit of 862 GeV in the present search [35].

The monopole reconstruction efficiency is high and uniform in the fiducial region given by pseudorapidity $|\eta| < 1.37$ and transverse kinetic energy $(E_T^{\text{kin}})_{\text{min}} < E_T^{\text{kin}} \sin \theta < 1400$ GeV, where $(E_T^{\text{kin}})_{\text{min}}$ is 600 GeV for monopoles with a mass between 500 GeV and 1500 GeV. For monopoles with a mass of 200 GeV, $(E_T^{\text{kin}})_{\text{min}} = 700$ GeV. Therefore, the upper limit on the production cross section at 95% confidence level is 2 fb, as shown in Fig. 3 for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV in this fiducial region. The fluctuations of the observed limit in the fiducial region originate from variations of the nuisance parameters used in the profile likelihood ratio.

These results extend the upper limits on the production cross section for monopoles in this mass region established by preceding experiments. This is the first direct collider search that yields cross-section constraints on magnetic monopoles with masses greater than 900 GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We thank J. Apostolakis, V. Ivanenko, M. Horbatsch.
and V. Sanz for helpful discussions.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR, DFK, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSE, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

FIG. 3. Upper limits on the monopole production cross sections at 95% confidence level. The solid line is the limit for single monopoles in the fiducial region and the dashed line is the limit assuming the kinematic distributions from Drell-Yan (DY) monopole pair production.
Over the range of monopole masses from 200 GeV to 1200 GeV, the leading-order Drell-Yan production cross section drops from 10^5 fb to 1 fb, but has large theoretical uncertainties, due to the non-perturbative nature of the magnetic coupling.
Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern-und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
47 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
48 Section de Physique, Université de Genève, Geneva, Switzerland
49 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
50 (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
55 Department of Physics, Hampton University, Hampton VA, United States of America
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
57 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
58 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
59 Department of Physics, Indiana University, Bloomington IN, United States of America
60 Institut für Astro-und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
61 University of Iowa, Iowa City IA, United States of America
62 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
63 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
64 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
65 Graduate School of Science, Kobe University, Kobe, Japan
66 Faculty of Science, Kyoto University, Kyoto, Japan
67 Kyoto University of Education, Kyoto, Japan
68 Department of Physics, Kyushu University, Fukuoka, Japan
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
123 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
125 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Universit`a La Sapienza, Roma, Italy
132 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universit`a di Roma Tor Vergata, Roma, Italy
133 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Universit`a Roma Tre, Roma, Italy
134 (a) Facult´e des Sciences Ain Chock, R´eseau Universitaire de Physique des Hautes Energies - Universit´e Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Facult´e des Sciences Semlalia, Universit´e Cadi Ayyad, LPHEA-Marrakech; (d) Facult´e des Sciences, Universit´e Mohamed Premier and LPTPM, Oujda; (e) Facult´e des sciences, Universit´e Mohammed V-Agdal, Rabat, Morocco
135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
137 Department of Physics, University of Washington, Seattle WA, United States of America
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universit¨at Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby BC, Canada
142 SLAC National Accelerator Laboratory, Stanford CA, United States of America
143 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
146 Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
149 School of Physics, University of Sydney, Sydney, Australia
150 Institute of Physics, Academia Sinica, Taipei, Taiwan
151 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
156 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
157 Department of Physics, University of Toronto, Toronto ON, Canada
158 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
159 Institute of Pure and Applied Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
160 Science and Technology Center, Tufts University, Medford MA, United States of America
161 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
162 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
163 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Universit`a di Udine, Udine, Italy
164 Department of Physics, University of Illinois, Urbana IL, United States of America
165 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and
Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

167 Department of Physics, University of British Columbia, Vancouver BC, Canada

168 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

169 Department of Physics, University of Warwick, Coventry, United Kingdom

170 Waseda University, Tokyo, Japan

171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

172 Department of Physics, University of Wisconsin, Madison WI, United States of America

173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

174 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

175 Department of Physics, Yale University, New Haven CT, United States of America

176 Yerevan Physics Institute, Yerevan, Armenia

177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

16a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

16b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

16c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

16d Also at TRIUMF, Vancouver BC, Canada

16e Also at Department of Physics, California State University, Fresno CA, United States of America

16f Also at Novosibirsk State University, Novosibirsk, Russia

16g Also at Fermilab, Batavia IL, United States of America

16h Also at Department of Physics, University of Coimbra, Coimbra, Portugal

16i Also at Department of Physics, UASLP, San Luis Potosi, Mexico

16j Also at Università di Napoli Parthenope, Napoli, Italy

16k Also at Institute of Particle Physics (IPP), Canada

16l Also at Department of Physics, Middle East Technical University, Ankara, Turkey

16m Also at Louisiana Tech University, Ruston LA, United States of America

16n Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

16o Also at Department of Physics and Astronomy, University College London, London, United Kingdom

16p Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada

16q Also at Department of Physics, University of Cape Town, Cape Town, South Africa

16r Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

16s Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

16t Also at Manhattan College, New York NY, United States of America

16u Also at School of Physics, Shandong University, Shandong, China

16v Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

16w Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

16x Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

16y Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy

16z Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

16aa Also at Section de Physique, Université de Genève, Geneva, Switzerland

16ab Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

16ac Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

16ad Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

16ae Also at California Institute of Technology, Pasadena CA, United States of America

16af Also at Institute of Physics, Jagiellonian University, Krakow, Poland

16ag Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

16ah Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America

16ai Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

16aj Also at Department of Physics, Oxford University, Oxford, United Kingdom

16ak Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

16al Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

* Deceased