Search for the standard model Higgs boson produced in association with top quarks using the full CDF data set

A search is presented for the standard model Higgs boson produced in association with top quarks using the full Run II proton-antiproton collision data set, corresponding to 9.45 fb$^{-1}$, collected by the Collider Detector at Fermilab. No significant excess over the expected background is observed, and 95% credibility-level upper bounds are placed on the cross section $\sigma(tH \rightarrow \text{lepton + missing transverse energy + jets})$. For a Higgs boson mass of 125 GeV/c^2, we expect to set a limit of 12.6, and observe a limit of 20.5 times the standard model rate. This represents the most sensitive search for a standard model Higgs boson in this channel to date.

PACS numbers: 13.85.Rm, 14.80.Bn

*Deceased

1With visitors from 4Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, 11University of Padova, I-35131 Padova, Italy

4Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, 11University of Padova, I-35131 Padova, Italy

41University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

42Istituto Nazionale di Fisica Nucleare Pisa, 99University of Pisa, Italy

43University of Siena and 44Scuola Normale Superiore, I-56127 Pisa, Italy

45University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

44Purdue University, West Lafayette, Indiana 47907, USA

46University of Rochester, Rochester, New York 14627, USA

47The Rockefeller University, New York, New York 10065, USA

48Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy

49University of Rome "La Sapienza", I-00185 Roma, Italy

50Instituto Nazionale di Fisica Nucleare, Sezione di Trieste, Udine, I-34100 Trieste, Udine, Italy

51University of Tsukuba, Tsukuba, Ibaraki 305, Japan

52Tufts University, Medford, Massachusetts 02155, USA

53University of Virginia, Charlottesville, Virginia 22906, USA

54Waseda University, Tokyo 169, Japan

55Wayne State University, Detroit, Michigan 48201, USA

56University of Wisconsin, Madison, Wisconsin 53706, USA

57Yale University, New Haven, Connecticut 06520, USA

(Dated: March 9, 2013)
ation with a top quark pair, via radiation or top-quark fusion \cite{2, 6}. Samples of top-quark pair events with a few percent-level contamination from other processes can be selected at CDF \cite{7}, offering smaller background uncertainties than in searches for the SM Higgs boson produced in association with a vector boson \cite{8}. Hence, the top-quark pair associated production channel provides an important contribution to SM Higgs boson physics. Furthermore, proposed extensions to the SM could significantly enhance the coupling between the top quark and the Higgs boson \cite{8}. This enhancement might allow the observation of a non-SM Higgs boson in this search before reaching sensitivity to a SM Higgs boson, and could help to distinguish a candidate Higgs boson in other searches from the SM Higgs boson.

This Letter reports a search for the SM Higgs boson produced in association with top quarks ($t\bar{t}H$). We utilize the full data set recorded with the CDF II detector. The data set consists of proton-antiproton collisions at a center-of-mass energy of $\sqrt{s} = 1.96$ TeV, and corresponds to an integrated luminosity of 9.45 fb$^{-1}$. The analysis described in this Letter extends and enhances a previous CDF search which used 319 pb$^{-1}$ \cite{11}, through a vastly increased data set, greater signal acceptance and improved background discrimination.

The CDF II detector is a general-purpose particle detector described in Ref. \cite{11}. It consists of a combined silicon and drift chamber tracking system with a large volume immersed in the 1.4 T field of a solenoid magnet \cite{12, 13}, lead- and iron-scintillator sampling calorimeters \cite{14, 15}, and charged particle detectors outside the calorimeter, which are used to identify muons \cite{16}. A right-handed cylindrical coordinate system is used with the origin in the center of the detector, with θ and ϕ denoting the polar and azimuthal angles, respectively. Pseudorapidity is defined as $\eta \equiv -\ln \tan(\theta/2)$, and transverse energy and momentum are $E_T \equiv E \sin \theta$ and $p_T \equiv p \sin \theta$, where E and p are the energy and momentum, respectively.

The decay of a pair of top quarks is expected to generate almost exclusively two W bosons and two b quarks. The W bosons may then decay to lepton-neutrino pairs, or pairs of quarks. We select events consistent with one leptonic and one hadronic W boson decay by requiring the presence of a single reconstructed lepton (electron or muon), missing transverse energy (E_T) \cite{17}, and four or more calorimeter energy clusters (jets). At least two of the jets in each event are required to be consistent with the fragmentation of a b quark (b-tagged). Because a low-mass ($m_H \leq 135$ GeV/c^2) SM Higgs boson is expected to decay mostly to pairs of b quarks, or pairs of W bosons, that will decay predominantly to pairs of $u, d, s, \text{ or } c$ quarks, large b-tag and jet multiplicities are requested by the selection. Approximately 90% of the selected search sample is composed of top-quark pairs, with the remainder consisting of W or Z bosons accompanied by jets ($W/Z + \text{jets}$), single top-quarks, dibosons, and strong force mediated (QCD) multijets. Table \ref{tab:composition} shows the expected composition of the data sample.

To select events during data taking we require the presence of a charged lepton (electron e or muon μ) candidate with transverse momentum $p_T \geq 18$ GeV/c. We further require that the lepton candidate satisfies identification quality requirements as in Ref. \cite{7}. We require that E_T be greater than 10 GeV, 20 GeV, or 25 GeV in events containing a muon candidate, an electron candidate satisfying $|\eta| \leq 1.1$, and an electron candidate satisfying $|\eta| > 1.1$, respectively. These E_T requirements are chosen to optimize the signal selection efficiency and the rejection of instrumental backgrounds, which differ in the three samples. Jets are reconstructed using a cone-based clustering algorithm, with a cone radius ($R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$) of 0.4 \cite{18}. Jet energies are corrected for instrumental effects \cite{19}, and the corrected jets are required to have $E_T > 20$ GeV and $|\eta| < 2.0$. We use two different algorithms to tag b jets as in Ref. \cite{20}. One algorithm relies on the reconstruction of secondary decay vertices from long-lived hadrons within the jet cone \cite{21}, while the other estimates the likelihood that not all tracks in the jet cone intersect the beam line \cite{22}. Jets identified by either algorithm are considered as tagged, offering higher tagging efficiency than obtained by the use of one algorithm alone.

We model the various backgrounds using a combination of Monte Carlo (MC) simulation and data. We simulate the $t\bar{t}$, diboson, $W/Z + \text{jets}$, and single-top backgrounds using the POWHEG \cite{23}, PYTHIA \cite{24}, ALPGEN \cite{25}, and MADEVENT \cite{26} generators, respectively. We model the QCD multijet background using a data-driven model \cite{27}. For backgrounds involving top quarks, we have used $m_t = 172.5$ GeV/c^2. Signal models are generated by PYTHIA, with Higgs boson masses in 5 GeV/c^2 increments in the range $100 \leq m_H \leq 150$ GeV/c^2. The CTEQ5L parton distribution functions \cite{28} and a detailed simulation of the response of the CDF II detector using GEANT3 \cite{29} is employed in all Monte Carlo samples.

The search sample is subdivided into independent categories of different expected signal-to-background ratio and background composition to maximize the search sensitivity \cite{29}. Under the selection requirements described above, the reconstructed jet multiplicity spectrum in $t\bar{t}H$ events peaks at five jets, while the reconstructed jet multiplicity spectrum for $t\bar{t}$ peaks at four jets. Hence, we separate events with four, five, or six or more jets. The jet multiplicity samples are then separated by b-tag multiplicity. The events with six or more jets, at least three of which are b-tagged, feature the largest expected signal-to-background ratio and provide the most sensitivity for a low-mass Higgs boson.

After defining our search sample, we enhance the isolation of a SM Higgs signal using artificial neural networks.
TABLE I: Expected number of events from the various processes composing our data sample, requiring two or more b tags, with background rates and uncertainties taken from the posterior likelihoods. Uncertainties shown are correlated. Signal yields are quoted assuming $m_H = 125$ GeV/c^2.

<table>
<thead>
<tr>
<th>Process</th>
<th>4 jets</th>
<th>5 jets</th>
<th>\geq 6 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t} +$ jets</td>
<td>962 \pm 89</td>
<td>294 \pm 27</td>
<td>77 \pm 7.1</td>
</tr>
<tr>
<td>$t\bar{t} + b\bar{b}$</td>
<td>32 \pm 27</td>
<td>17 \pm 14</td>
<td>8.2 \pm 6.9</td>
</tr>
<tr>
<td>$W/Z +$ jets</td>
<td>105 \pm 32</td>
<td>26 \pm 8.0</td>
<td>7.1 \pm 2.2</td>
</tr>
<tr>
<td>Multijet</td>
<td>31 \pm 16</td>
<td>0.0 \pm 1.0</td>
<td>0.0 \pm 1.0</td>
</tr>
<tr>
<td>Single top</td>
<td>19 \pm 2.2</td>
<td>3.7 \pm 0.43</td>
<td>0.61 \pm 0.070</td>
</tr>
<tr>
<td>Diboson</td>
<td>5.2 \pm 0.44</td>
<td>1.2 \pm 0.11</td>
<td>0.25 \pm 0.025</td>
</tr>
<tr>
<td>Total background</td>
<td>1150 \pm 106</td>
<td>340 \pm 33</td>
<td>93 \pm 11</td>
</tr>
</tbody>
</table>

Observed	1133	368	114
ttH	0.65 \pm 0.075	1.1 \pm 0.13	1.2 \pm 0.14
WH	0.52 \pm 0.061	0.07 \pm 0.008	negligible
ZH	0.09 \pm 0.011	0.02 \pm 0.002	negligible

FIG. 1: Invariant mass of the two jets without b tags, in events containing exactly four jets and exactly two b tags. The peak of the distribution is consistent with hadronic decays of the W boson. The effect of systematic uncertainties is not shown. In the signal model shown, a Higgs boson of $m_H = 125$ GeV/c^2 is assumed.

FIG. 2: The mass of the vector sum of the four-momenta of the identified charged lepton, the neutrino, and all reconstructed jets in events with exactly five jets and at least two b tags. The effect of systematic uncertainties is not shown. In the signal model shown, a Higgs boson of $m_H = 125$ GeV/c^2 is assumed.

Each neural network is trained to separate simulated Higgs signal events from background, with individual networks optimized for each Higgs boson mass hypothesis in each of the previously-described event categories. Each network uses 18 input variables used to discriminate the Higgs boson signal from the backgrounds. These variables are: missing transverse energy, maximum jet E_T, second largest jet E_T, third largest jet E_T, maximum E_T among b-tagged jets, mean jet E_T, invariant mass of the combination of all objects (jets, lepton, E_T), vector sum of the transverse energies of all objects, scalar sum of the transverse energies of all objects, scalar sum of the transverse energies of all jets, number of energy clusters with E_T between 12 and 20 GeV, minimum separation in η-ϕ space between b-tagged jets, separation in azimuth between the lepton and the missing transverse energy, transverse mass of the lepton and missing transverse energy, mass of the vector sum of the lepton
and nearest jet in $\eta-\phi$ space, minimum mass of the vector sum of any pair of jets, mass of the vector sum of the two non-b-tagged jets with the largest E_T, and mass of the vector sum of the two b-tagged jets with the largest E_T. The modeling of the input distributions has been validated in the subset of the data with only four jets and only two b tags, which is expected to contain a negligible number of signal events relative to the background yield. Two of these distributions can be seen in Figs. 1 and 2 and the output of the discriminant trained to identify a Higgs boson of mass 125 GeV/c^2 is shown in Fig. 3.

We consider several sources of systematic uncertainty that affect the rate of the involved processes and the shape of the discriminant distributions. Due to the high jet and b-tag multiplicities considered, the dominant systematic uncertainties are associated with estimates of the b-tag efficiency and the jet energy scale. These affect both the rates and the discriminant shapes, and we estimate the effects by independently varying the estimated b-tag efficiency and the jet-energy scale within one standard deviation. These variations in jet-energy scale and tagging efficiency alter the expected acceptance for signal and background by between 1 and 20%, depending on the selection category. In addition, to account for uncertainties on the theoretical cross sections of background processes, we assume the following systematic uncertainties on the normalization of simulated backgrounds: 6% for diboson production, 6% for single top quark production, 10% for $t\bar{t}H$ production, and 40% for W/Z + jets. Smaller uncertainties include those on the amount of initial- and final-state radiation, parton-distribution function choice, the probability to b-tag light-quark jets, and a 6% uncertainty on the measurement of the integrated luminosity.

No measurement is available of the cross section for top-quark production with additional b quarks generated from QCD radiation. The next-to-leading-order corrections to leading-order calculations of the production rate of top-quark pairs with additional b quarks have been estimated to be on the order of a factor of two in some regions of phase space. To account for this unknown and potentially large systematic uncertainty, inclusive tt simulated events were separated into subsamples with additional b quarks generated from QCD radiation ($tt + b\bar{b}$), and without (tt + jets). We assume an uncertainty of 10% on the normalization of the tt + jets component and assume an uncertainty of 100% on the normalization of the $tt + b\bar{b}$ component. We estimate the effect of individual systematic uncertainties by calculating the expected exclusion sensitivity considering all uncertainties, and then comparing this value to that derived by considering all but one uncertainty. The uncertainty due to the jet-energy scale, b-tag efficiency, inclusive top pair cross section, and potential next-to-leading-order effects for $t\bar{t} + b\bar{b}$ individually degrade the expected exclusion sensitivity of the analysis by 7.8%, 5.4%, 6.9%, and 9.0%, respectively.

We compare the distribution of discriminant output observed in data to that of the expected background model. Observing no evidence for Higgs boson production in the discriminant distributions, we calculate a Bayesian 95% credibility level (C.L.) limit for each mass hypothesis using the combined binned likelihood of the NN output distributions. Each of the three jet-multiplicity categories are subdivided into five independent tagging categories. A posterior density is obtained.
by multiplying this likelihood by Gaussian prior densities for the background normalizations and systematic uncertainties, leaving the cross section $\sigma(t\bar{t}H \rightarrow \ell + E_T + \text{jets})$ with a uniform prior density, with priors truncated to prevent negative predictions. A 95% C.L. limit is determined such that 95% of the posterior density for the cross section accumulates below the limit \mathcal{L}. The expected limits with one and two standard deviation uncertainty bands and the observed limits are shown as a function of assumed Higgs boson mass in Fig.1. Because none of the discriminant function input variables acts as an estimator for the reconstructed Higgs boson mass, the upper credibility limits at different candidate Higgs boson masses are strongly correlated. An excess in the data produces an observed limit that exceeds the expected limit at all masses, at a level of approximately one standard deviation compared to the background-only hypotheses.

In conclusion, we have presented a search for a SM Higgs boson produced in association with a pair of top quarks, in a final state involving a lepton, missing transverse energy, jets, and b-tagged jets. For a Higgs boson mass of 125 GeV/c^2, we expect a limit of 12.6 and observe a limit of 20.5 times the SM rate, which represents agreement with the background-only prediction at the level of approximately one standard deviation. The introduction of neural networks and other improvements to the techniques employed in this analysis produce a factor of 17 improvement in sensitivity over the previous search in this channel at CDF [11] and make this analysis the most sensitive search for $t\bar{t}H$ to date.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

[17] The calorimeter missing E_T (\vec{E}_T^{cal}) is defined by the sum over calorimeter towers, $\vec{E}_T^{\text{cal}} = - \sum_i E_T^i n_i$, where i is calorimeter tower number with $|\vec{E}_T^i| < 3.6$, n_i is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower. The reconstructed missing transverse energy, \vec{E}_T, is derived by subtracting from \vec{E}_T^{cal} components of the event not registered by the calorimeter, such as muons and jet energy adjustments. \vec{E}_T is the scalar magnitude of \vec{E}_T.