Meson dominance of hadron form factors and large-N_c phenomenology*

Pere Masjuan,1,2,† Enrique Ruiz Arriola,3,† and Wojciech Broniowski4,5,§

1 Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada, Spain
2 Institut fur Kernphysik, Johannes Gutenberg-Universitat, D-55099 Mainz, Germany
3 Departamento de Fisica Atomica, Molecular y Nuclear and Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada, Spain
4 The H. Niewodniczanski Institute of Nuclear Physics, PL-31342 Krakow, Poland
5 Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland

(Dated: March 12, 2013)

We discuss the pion and nucleon form factors and generalized form factors within the large-N_c approach in the space-like region. We estimate their theoretical uncertainties through the use of the half-width rule, amounting to taking the half-width of the resonances as the deviation of their mass parameters. The approach embodies the meson dominance of form factors and the high-energy constraints from perturbative QCD. We compare the results with the available experimental data and lattice simulations. The meson-dominance form factors are generally comparable to the available experimental data within the half-width-rule uncertainties. Our errors are comparable to the experimental uncertainties, but are smaller than lattice errors.

PACS numbers: 12.38.Lg, 11.30, 12.38.-t
Keywords: meson form factors, large N_c, resonances, meson dominance

I. INTRODUCTION

Electroweak form factors provide valuable information on the internal structure of the existing composite hadrons, particularly on their Lorentz-invariant transverse densities [1] (for reviews of the nucleon form factors see, e.g., Ref. [2] and references therein). On the fundamental level, the QCD counting rules provide the high-momentum behavior of the form factors [3], which in perturbative QCD (pQCD) acquire logarithmic corrections [4]. In recent years much attention has also been paid to the so-called generalized form factors, i.e., moments of the generalized parton distributions (GPDs) (for reviews see e.g. [5–7] and references therein, which can be directly accessed on the Euclidean lattices [8], even when no physical experiments can.

Electromagnetic form factors are by far best understood, both theoretically and experimentally. An early and phenomenologically very successful approach to study these quantities was initiated by the Vector Meson Dominance (VMD) model (for reviews see [9, 10]). On a formal level, VMD is implemented in two equivalent ways. At the field-theoretic level one postulates the so-called current-field identities which state the proportionality between fields of stable mesons and the related conserved currents with identical quantum numbers. Alternately, within the framework of dispersion relations, one may saturate the matrix elements of the currents with delta-like spectral functions. However, vector mesons are unstable resonances with a finite decay width, thus corrections to the narrow resonance approximation are expected.

There arises a natural question on what numerical value for the mass of the resonance one should use [11–13]. While the rigorous definition of a resonance mass m_R and width Γ_R corresponds to a pole of an analytically continued amplitude in the complex s-plane on the second Riemann sheet, $s = m_R^2 - i\Gamma_R m_R$, complex energies cannot be measured experimentally. Of course, since a resonance has a real mass distribution which generally depends on the process where the resonance is produced, a variety of possibilities arise to extract the maximum of an integrated mean value, which becomes identical and independent of the background in the narrow-resonance limit. Thus, a conservative estimate is made if the mass of a resonance is determined with an accuracy of about its half width. Following Refs. [14–18] we suggest to use the half-width rule: take the intrinsic uncertainty of a resonance mass as the range $m_R \pm \Gamma_R/2$ to estimate the finite width corrections. The average width-to-mass ratio listed in the PDG was found to be $(\Gamma_R/m_R) = 0.12(8)$, both for mesons and baryons [16, 17].

From a fundamental point of view, the success of the VMD model remained a mystery until it was shown how it arises within a well defined approximation of QCD. Indeed, in the large-N_c limit resonances become narrow [19, 20] and hadronic form factors turn out to be meromorphic functions under the assumption of confine-
ment; although in principle they contain an infinite set of resonances, they can generally be written as a sum of pole functions [21–25]. This allows us to build up an effective theory at a purely hadronic level, with no explicit reference to the underlying quark-gluon dynamics: all the specific QCD information is contained in the chiral and short-distance constraints. More generally, meson dominance of any vertex function with appropriate quantum numbers and the meromorphic property extends also to the case of generalized form factors. From a practical point of view, for the lowest-rank generalized form factors the only difference from the standard form factors associated to conserved currents is that while the momentum dependence remains scale independent, the normalization undergoes the QCD evolution [26]. Thus, generalized form factors in the space-like region provide nothing but meson masses estimated in the large-\(N_c\) limit.

It is quite remarkable that given the simplicity of the leading-\(N_c\) contribution, where only tree diagrams are needed, the \(1/N_c\) corrections turn out to be extremely complicated and despite courageous efforts [27–31] they have not been worked out completely. In the present paper we provide a simple way of estimating the size of the \(1/N_c\) corrections by implementing a rather obvious idea that the mass of a resonance is determined with an accuracy of about its half width [14–18]. While this provides a large-\(N_c\) meaning to the half-width rule, it also yields rather rewarding consequences; the predicted theoretical uncertainties turn out to be comparable or larger than the corresponding experimental results, but at the same time smaller than current lattice estimates. In all considered cases we find an overall agreement between the theory and experiment.

The requirement of quark-hadron duality at large \(N_c\) involves, as a matter of principle, an infinite tower of hadronic states [24, 25, 32–37]. This becomes clear for two-point functions, where further asymptotic constraints between meson, the decay amplitudes and the meson spectra are derived 1. A careful scrutiny of the Particle Data Table confirms, with the help of the half-width rule [17], the radial and angular momentum Regge pattern in the meson spectrum, proposed in Ref. [38]. This fact provides a phenomenological basis for large-\(N_c\) Regge model calculations of form factors [14, 39–41].

Unlike for the two-point functions, the short-distance QCD constraints for the form factors may be saturated with a finite number of states, provided a detailed pQCD information (the occurrence of the logarithmic corrections) is given up. One may take advantage of this fact by using a sufficiently large but finite number of meson states, such that the correct asymptotics is reproduced up to (slowly varying) logarithms, which allows to impose the appropriate normalization conditions [13, 23–25, 42]. The implementation of the pQCD logs from the mesonic side is not at all trivial; a possible mechanism, involving infinitely many states, is suggested in Ref. [41], where it was also shown that the onset of pQCD in the pion form factor might possibly occur at “cosmologically” large momenta. We recall in this regard that almost model-independent upper and lower bounds on the space-like form factor are established above \(Q^2 \sim 7\) \(\text{GeV}^2\) [43]. To be fair, it is not completely clear whether at present the logarithmic pQCD corrections are distinctly seen in the current experimental data. We note that approaches with an infinite number of meson resonances are considered along the holographic framework [44, 45].

Usually, nucleon form factors are conveniently parameterized as dipole functions, which describe the data quite successfully in a given range of momenta. However, this can only correspond exactly to a sum of two simple degenerate poles with opposite residues. Actually, we will show that if the error bars on the monopole mass are taken into account, one can make the dipole overlap with a product of monopoles within the corresponding error bars provided with the half-width rule.

To summarize, our construction is based on the following assumptions:

- Hadronic form factors in the space like region are dominated by mesonic states with the relevant quantum numbers.
- The high-energy behavior is given by pQCD, and the number of mesons is taken to be minimal to satisfy these conditions.
- Errors in the meson-dominated form factors are estimated by means of the half-width rule, i.e., by treating resonance masses as random variables distributed with the dispersion given by the width.

The paper is organized as follows. In Section II we review for completeness the basics of meson dominance in the narrow width limit for the case of the nucleon. In Section III we digress on the role played by the finite-width corrections, providing a large-\(N_c\) justification for the intuitively obvious half-width rule for the masses. In Sections IV and V we carry out the analysis for several pion and nucleon form factors, respectively. Finally, in Section VI we draw our main conclusions.

II. MESON DOMINANCE OF FORM FACTORS

First, the implications of meson dominance on form factors will be illustrated with the nucleon form factors as an example. Quite generally, the nucleon form factors are defined as the matrix element of a given current or composite interpolating field, \(J(x)\),

\[
\langle N(p', s') | J(0) | N(p, s) \rangle = \bar{u}(p', s') \Gamma J(p' - p) u(p, s),
\]

(1)
where \(u(p, s) \) and \(u(p', s') \) are Dirac spinors corresponding to the initial and final four-momentum and spin states, respectively. The quantity \(\Gamma(p - p') \) involves the Dirac matrices. Lorentz indices are suppressed for clarity of notation. Meson dominance of the form factor corresponds to parameterizing the current with a superposition of meson fields with the same quantum numbers as the current,

\[
J(x) = \sum_n f_n \Phi_n(x),
\]

which means that the meson may decay into the vacuum through the current,

\[
\langle 0 | J(0) | \Phi_n \rangle = f_n.
\] (3)

This also implies that the two-point correlator can be written as

\[
\Pi_{JJ}(t) = \sum_n \frac{f_n^2}{m_n^2 - t},
\] (4)

where \(m_n \) is the mass of the meson state \(\Phi_n \). On the other hand, the meson-nucleon-nucleon coupling \(g_n \) is defined via

\[
\langle N(p', s') | (\partial^2 + M_n^2) \Phi_n(0) | N(p, s) \rangle = \bar{u}(p', s')g_n u(p, s)
\] (5)

\((g_n \text{ in general involves a Dirac structure}). Then

\[
\langle N(p', s') | J(0) | N(p, s) \rangle = \sum_n f_n \langle N(p', s') | \Phi_n(0) | N(p, s) \rangle
\] (6)

where the form factor is

\[
F(t) = \sum_n \frac{f_n g_n}{m_n^2 - t}.
\] (7)

It satisfies, on very general field-theoretic grounds and up to suitable subtractions, a dispersion relation

\[
F(t) = \text{c.t.} + \frac{1}{\pi} \int_{t_0}^{\infty} \frac{\text{Im} F(t')}{t' - t - i\epsilon} dt',
\] (8)

where c.t. stands for counterterms and \(t_0 \) is the threshold. In the narrow-resonance approximation one has the spectral density

\[
\text{Im} F(t) = \pi \sum_n c_n m_n^2 \delta(t - m_n^2),
\] (9)

yielding, up to subtractions, the sum of monopoles

\[
F(t) = \sum_n c_n \frac{m_n^2}{m_n^2 - t},
\] (10)

corresponding to Eq. (7) with \(c_n m_n^2 = f_n g_n \) which is constant, i.e., independent of \(t \).

The asymptotic behavior of form factors determines the number of necessary subtractions. Thus, for a form factor falling off as \(\sim t^{-N} \) we have a set of conditions

\[
\sum_n c_n m_n^k = 0 \quad k = 0, \ldots N - 1,
\] (11)

and thus the minimum number of meson states needed to satisfy these constrains is \(N \), whence

\[
F(t) = F(0) \prod_{n=1}^{N} \frac{m_n^2}{m_n^2 - t}.
\] (12)

This simple ansatz predicts already the couplings in Eq. (7) “for free”. One can, of course, add more resonances by multiplying Eq. (12) with a factor

\[
\frac{1 - d_k t/m_k^2}{1 - t/m_k^2},
\] (13)

where the unknown coefficient \(d_k \) may be determined if some couplings \(c_n \) are known from the experiment.

Quite generally, on the basis of the large-\(Q^2 \) expansion, one has \((t)^{2+1} F_1(t) \sim \log(-t/\Lambda)^{-\gamma} \), with the anomalous dimension \(\gamma \sim 2 \) and weakly depending on the number of flavors. Fits of the form factors hardly see any impact of these pQCD logs at the currently available momenta [46].

The corresponding radii are given by the expansion

\[
\frac{F(t)}{F(0)} = 1 + \frac{t}{6} \langle r^2 \rangle + \ldots
\] (14)

We recall that the radii are quite sensitive to chiral \(1/N_c \)-suppressed corrections and, actually, in some channels they diverge for \(m_\pi \to 0 \).

Both two- and three-point correlators, Eqs. (4) and (10) respectively, require in principle an infinite number of mesons. Note, however, that the sign appearing in the two-point correlator is positive.

This possibly provides a quite different mechanism for cancellations by multiplying Eq. (12) with a factor

\[
\frac{1 - d_k t/m_k^2}{1 - t/m_k^2},
\] (13)

where the unknown coefficient \(d_k \) may be determined if some couplings \(c_n \) are known from the experiment.

Both two- and three-point correlators, Eqs. (4) and (10) respectively, require in principle an infinite number of mesons. Note, however, that the sign appearing in the two-point correlator is positive. This possibly provides a quite different mechanism for cancellations, and hence for the form how the short distance constraints are fulfilled. In short, the two point functions need infinitely many mesonic states to comply to pQCD, whereas the three-point functions, such as the form factors, can be saturated with a finite number of meson states.

It is useful to notice that we may also deduce the component of the \(NN \) potential due to the exchange of the meson states \(\Phi_n \),

\[
\langle N(p_1', s_1') N(p_2', s_2') | V | N(p_1, s_1) N(p_2, s_2) \rangle = \sum_n \bar{u}(p_1', s_1')g_n u(p_1, s_1) \bar{u}(p_2', s_2')g_n u(p_2, s_2) \frac{1}{m_n^2 - t}.
\] (15)

Via crossing, the \(\bar{N}N \) scattering amplitude can be obtained as well.
III. FINITE WIDTH CORRECTIONS

A question of fundamental and practical importance is what mass value should one use for the meson states in the VMD expression for the form factors [11, 17]. Naively, one might take the “experimental” value. However, the extended VMD formula for the form factor, Eq. (10), corresponds to the large-N_c limit. As such, it is subject to the $1/N_c$ corrections which generate a corresponding mass shift. The form of these corrections can in principle be evaluated by computing meson loops within the Resonance Chiral Perturbation Theory [27–31, 47]. The general structure of the correction for the form factor corresponds to the replacements

\[
g_n f_n \rightarrow \frac{G_n(t) f_n}{m_n^2 - t - \Sigma(t)},
\]

where $\Sigma(t)$ is the self-energy. However, the question remains what the size of these corrections is numerically. Strictly speaking, such a question can only be answered by a lattice calculation at different values of N_c (see e.g. Ref. [48] and references therein). Unfortunately, as we argue below, within a purely hadronic resonance theory we can only make an educated guess, since there are undetermined counterterms encoding the effects of the high-energy states not considered explicitly. For instance, for the case of the ρ-meson we may take into account the decay into 2π, which is a real process, but also the virtual KK excitation, etc. Our lack of an explicit knowledge on all excitations makes it difficult, if not impossible, to predict the mass shift reliably.

A. Mass shift and the width

To elaborate on the mass-shift effect in a greater detail, let us consider the two-point function yielding the mesonic resonance propagator,

\[
D(s) = \frac{1}{s - m_0^2 - \Sigma(s)}.
\]

The mass parameter m_0 is the tree level resonance mass, which is $O(N_c^0)$, whereas the self energy, coming from meson loops, is suppressed, $\Sigma(s) = O(N_c^{-1})$.

Let us consider, for instance, the self-energy correction of the scalar or vector mesons due to pion loops. Analyticity implies that the self-energy satisfies a dispersion relation\(^3\)

\[
\Sigma(s) = \text{c.t.} + \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\text{Im}\Sigma(s' + i0^+)}{s' - s},
\]

where c.t. means suitable subtractions. The pole position, $s = s_R = m_R^2 - i m_R \Gamma_R$, is given by

\[
s_R - m_0^2 - \Sigma(s_R) = 0.
\]

This is a complicated self-consistent equation, but within the $1/N_c$ expansion it can be solved perturbatively, yielding

\[
s_R = m_0^2 + 2m_0 \Delta m_R - i\Gamma_R m_0 + O(N_c^{-2}),
\]

where

\[
\Delta m_R = \frac{1}{2m_0} \text{Re}\Sigma(m_0^2), \quad \Gamma_R = -\frac{1}{m_0} \text{Im}\Sigma(m_0^2).
\]

Note that the imaginary part is proportional to the corresponding decay width.

In general, there appears a threshold momentum dependence for the decay amplitude which is proportional to the phase space. The form reflects the spin of the resonance, such as

\[
\Gamma(s) = \Gamma_R \left[\frac{\rho(s)}{\rho(m_0^2)} \right]^{2J+1},
\]

with $\rho(s) = \sqrt{1 - 4m_\pi^2/s} \equiv p/\sqrt{s}$, where p is the center-of-mass momentum when $m_0^2 \rightarrow s_0$. Obviously, the number of subtractions in Eq. (18) depends on the assumed off-shellness. For the previous choice of $\Gamma(s)$, which becomes a constant at large s, we need at least one subtraction, which we may choose to be, e.g., at $s = 0$ and thus in terms of the principal value integral we have

\[
\Delta m_R = \frac{1}{2m_0} \left[\text{Re}\Sigma(0) + \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} ds \frac{m_0^2 \text{Im}\Sigma(s')}{s'-s} \right].
\]

Therefore Δm_R depends on an arbitrary constant $\text{Re}\Sigma(0) = O(N_c^{-1})$, which cannot be determined from the dispersion integral or the lowest-order parameters and hence naively becomes independent of the width. Other momentum-dependent widths, not vanishing at high s, may introduce additional subtractions. The present discussion illustrates our statement that one cannot generically compute the mass shift in a model-independent way\(^4\).

\(^3\) This value also depends on the experimental process and may differ within the half-width rule.

\(^4\) This is so provided no further information is available.
mass shift due to closed channels is necessarily negative as it corresponds to second-order perturbation theory below the closed channels, but also that the mass shift due to the open channel, scales exactly as the decay width. In Appendix A we analyze some specific models where we can see that within uncertainties a natural rough estimate of the mass-shift is given by the half-width rule.

B. Finite width effects in the space-like region

Finite width corrections for the pion charge form factor were pioneered by Gounaris and Sakurai [51]. They have implemented the $e^+e^-\rightarrow\pi^+\pi^-$ final-state interactions in the timelike region, where they are crucial. In this section we analyze the influence of widths on the spacelike region. To this end, we use Watson’s theorem on

$$F_V(s) = \frac{\pi}{\rho} \frac{\tan (2\theta)}{2\theta (s - m_\rho^2)}$$

failing to couple channels, is through the use of the Bethe-Salpeter equation $FT^{-1} = IV$ [52], which yields $\text{Disc}F_V(s + i0^+)^{-1} = \text{Disc}T_{11}(s + i0^+)^{-1}$. Then

$$\text{Disc}F_V(s + i0^+)^{-1} = \text{Disc} \sum_j T_{ij}(s + i0^+)^{-1}.$$

Above the $\bar{K}K$ production threshold Watson’s theorem requires considering also the Kaon form factor and the corresponding extension to coupled channels, i.e., the mixing with $\pi\pi \rightarrow \bar{K}K$ transitions.

We use a simple Breit-Wigner (BW) parameterization for the vector-isovector $\pi\pi$-phase shift, obtained as

$$e^{2i\delta_{11}(s)} = \frac{D_V(s + i0^+)}{D_V(s - i0^+)}.$$

where

$$[D_V(s)]^{-1} = s - m_\rho^2 + im_\rho \Gamma_\rho \left(\frac{s - 4m_\pi^2}{m_\rho^2 - 4m_\pi^2} \right).$$

The p-wave character of the $\rho \rightarrow 2\pi$ decay can be recognized in the phase space factor. The Omnes form factor is depicted in Fig. 1. As we can see, the finite width correction lies within the band corresponding to the half-width rule imposed on top of the monopole form factor, considering here $m_\rho = 0.77$ GeV and $\Gamma_\rho = 0.15$ GeV.

C. The half-width rule

As we see, the subleading $1/N_c$ corrections in the space-like region essentially correspond to keeping the meson dominance form and to changing the parameters. By making simple calculations we have seen that a conservative bound on the mass shift is given by the half-width rule. From a spectral point of view this is quite natural when we appeal to the Källén-Lehmann representation of the resonance two-point function,

$$D(s) = \int_0^{\infty} d\mu^2 \frac{\rho(\mu^2)}{\mu^2 - s - i0^+}.$$

We may then use the probabilistic interpretation of the line shape

$$P(\mu) = Z\rho(\mu).$$

If we take a Breit-Wigner shape for $D(s)$ (neglecting the threshold effects), we have

$$P_{BW}(\mu) = \frac{1}{\pi} \frac{2\mu^2}{(\mu^2 - M^2)^2 + \Gamma^2 \mu^2},$$

which is normalized to unity, $\int d\mu P(\mu) = 1$.

The random implementation for a given distribution is obtained in a standard way by inverting the relation expressing the coordinate independence of probabilities,

$$P(\mu)d\mu = dz,$$

with $z \in U[0,1]$ being a uniformly distributed variable. The result for a BW shape in the case of the ρ-meson for $N = 10^4$ samples is shown in Fig. 2. The idea amounts to treating the resonance mass as a random variable and

5 Another way of writing the relation, which generalizes trivially to coupled channels, is through the use of the Bethe-Salpeter equation $FT^{-1} = IV$ [52], which yields $\text{Disc}F_V(s + i0^+)^{-1} = \text{Disc}T_{11}(s + i0^+)^{-1}$. Then

$$\text{Disc}F_V(s + i0^+)^{-1} = \text{Disc} \sum_j T_{ij}(s + i0^+)^{-1}.$$

6 For a Lorentz distribution, $P(\mu) = Z\mu/((\mu^2 - M^2)^2 + \Gamma^2 \mu^2)$, the relation is given by $\mu^2 = M^2_R + 2\Gamma_R^2 M^2_R \tan (\pi z/2)$, with $z \in U[0,1]$. This distribution must be cut and normalized when negative μ^2 values are generated.
to propagating its effect in all observables. Of course, different shapes produce somewhat different confidence levels. For definiteness, we will take Gaussians which have shorter tails and are symmetric around the resonance value.

In Fig. 2 we plot the monopole form factor

\[F_V(Q^2) = \frac{m^2}{m^2 + Q^2} \]

according to the BW distribution of the mass.

IV. PION FORM FACTORS

A. Electromagnetic form factor

The charge form factor of the pion is given by

\[\langle \pi^+(p')|J^\mu(r)|\pi^+(p)\rangle = (p'^\mu + p^\mu) F_V(q^2), \]

with \(q = p' - p \) and the electromagnetic current \(J^\mu = \sum_{q=u,d,...} e_q \bar{q}(x) \gamma_\mu q(x) \), where \(e_q \) denotes the quark charges in units of the elementary charge. The charge normalization requires

\[F_V(0) = 1. \] (37)

Actually, in the space-like region, where \(t = -Q^2 \), \(F(t) \) is real and at large \(Q^2 \) values the pQCD methods can be applied, yielding asymptotically [68–73]

\[F_V(-Q^2) = \frac{16\pi f_\pi^2\alpha(Q^2)}{Q^2} \left[1 + 6.58 \frac{\alpha(Q^2)}{\pi} + \ldots \right], \]

\[Q^2 \gg m^2 \] (38)

with \(f_\pi = 92.3 \) MeV denoting the pion weak decay constant, and \(m \) standing for the lowest vector meson mass. If we ignore the slowly varying logarithm, we get

\[F_V(t) = O(t^{-1}) \] and in the large \(N_c \) limit one has

\[F_V(t) = \sum_{V=\rho,\rho',...} c_V \frac{m^2}{m^2_V - t}, \]

where \(\sum_V c_V = 1 \) and \(c_V = g_{V\pi}\pi F_V/m_V \).
FIG. 3. (color online). Top row: The pion charge form factor with the half-width-rule compared with the experimental data [53–63] (left) and the pion-photon transition form factor compared with the experimental data [64–67] (right). Bottom row: The pion charge form factor multiplied by Q^2 (left) and the pion-photon transition form factor multiplied by Q^2 (right); the horizontal dashed line represents the asymptotic value $2f_\pi$.

FIG. 4. (color online). Axial form factor in the space-like region $t < 0$

The simplest formula fulfilling this constraint and (37) is the VMD solution

$$F_V(t) = \frac{m^2_\rho}{m^2_\rho - t},$$

whence $g_{\rho\pi\pi}f_\rho = m_\rho$. The $\rho - \gamma$ coupling is given by

$$\Gamma(\rho \to e^+e^-) = \frac{4\pi\alpha^2}{3} \frac{F^2_\rho}{m_\rho},$$

whereas the $\rho \to \pi\pi$ decay is

$$\Gamma(\rho \to \pi\pi) = \frac{g^2_{\rho\pi\pi}m_\rho}{48\pi}.$$

Using the PDG numbers one gets for $m_\rho = 0.77$ GeV the values $f_\rho = 0.156$ GeV and $g_{\rho\pi\pi} = 6$.

One of the important features of the pion form factor is that the radius has large chiral corrections, thus we may improve the phenomenology by adding one extra meson, ρ'. Then

$$F_V(t) = (1 - c)\frac{m^2_\rho}{m^2_\rho - t} + c\frac{m^2_{\rho'}}{m^2_{\rho'} - t},$$

such that

$$\frac{1}{6}\langle r^2 \rangle = (1 - c)\frac{1}{m^2_\rho} + c\frac{1}{m^2_{\rho'}}.$$
Thus imposing the physical value of $\langle r^2 \rangle$ we get the value of c for any m_ρ and m_ρ'. Taking again the PDG values for those quantities ($m_\rho = 0.77549(34)$ GeV, $m_\rho' = 1.465(25)$ GeV, $\langle r^2 \rangle = (0.672(8)\text{fm})^2$) we obtain $c = -0.227(39)$.

One could also carry out the analysis the other way around, starting from Eqs. (40,43) with all the constants treated as free parameters to be determined by a fit to the experimental data. That way it was shown in Refs. [11, 37] that one can retain a precise value for $\langle r^2 \rangle$, even though the masses do not have precisely their physical values. In the large-N_c limit, when the functions become meromorphic, this fitting procedure is mathematically safe thanks to the convergence theorems from the Padé Theory [37]. In this framework, Fig. 3 of Ref. [11] shows the half-width-rule as a good estimation of the systematic error done on the determination of the poles when fitting the space-like data.

B. Axial form factor

The axial form factor of the pion is intimately related to the pion radiative decay $\pi^\pm \rightarrow l^\pm \gamma \nu$ (with l standing for e or μ) and its hadronic contribution. The decay proceeds via ordinary inner bremsstrahlung (IB) from the weak decay $\pi^\pm \rightarrow l^\pm \nu$ accompanied by the photon radiated from the external charged particles, and the structure-dependent interaction (SD) between the photon and the virtual hadronic states, with contributions of both vector and axial-vector form factors.

For the transition $\pi^+ \rightarrow \gamma \nu_\mu e^+$ [74], the structure dependent amplitude is given by

$$M_{SD} = ie G_F \cos\theta_c \bar{u}_\mu \gamma_\mu(1 - \gamma_5) v_\nu e^+ p_\nu M^{\mu\nu} / \sqrt{2m_\pi},$$

where e^μ is the polarization vector of the photon, G_F is the weak interaction coupling constant, and θ_c is the Cabibbo angle. The hadronic contribution is enclosed in the amplitude $M^{\mu\nu}$ and reads:

$$M^{\mu\nu} = F_V(t)e^{\mu\nu\alpha\beta}p_\alpha q_\beta - iF_A(t)[q^\nu(f^\mu + p^\mu) - g^{\mu\nu} q \cdot (q + p)],$$

with $F_{V,A}(t)$ denoting the vector and axial-vector form factors, respectively. By assuming axial-meson dominance, we have

$$F_A(t) = F_A(0) \frac{M_A^2}{M_A^2 - t}$$

with $F_A(0) = 0.0119(1)$ [75]. The result obtained with the half-width-rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor $\pi^0 \rightarrow \gamma \gamma^*$ has been subjected to vigorous discussion in recent years. Firstly, its value at the origin is fixed by the chiral anomaly,

$$F(0) = \frac{1}{4\pi^2 f_\pi},$$

while its asymptotic behavior is given by

$$F(Q^2) \rightarrow \frac{6f_\pi}{N_c Q^2} + \ldots$$

A simple model fulfilling both conditions is

$$F(Q^2) = \frac{1}{4\pi^2 f^2} \frac{m_\rho^2}{m_\rho^2 + Q^2},$$

provided one has the relation

$$m_\rho^2 = \frac{24\pi^2 f^2}{N_c},$$

which gives $m_\rho = 823$ MeV for $f_\pi = 92.6$ MeV or $m_\rho = 770$ MeV for $f_\rho = 86.6$ MeV in the chiral limit.

If we include two resonances [76], ρ and ρ', we get, after imposing the anomaly and large-Q^2 behavior,

$$F(Q^2) = \frac{1}{4\pi^2 f_\pi} \frac{m_\rho^2 m_\rho'^2 + 24f_\pi^2 Q^4 / N_c}{(m_\rho^2 + Q^2)(m_\rho'^2 + Q^2)}.$$ (52)

The result is shown in Fig. 5, using $m_\rho = 0.775$ GeV, $m_\rho' = 1.465$ GeV, $\Gamma_\rho = 0.150$ GeV and $\Gamma_{\rho'} = 0.400$ GeV.

One could even go beyond this approximation including a third resonance (the ρ''). That introduces a new parameter that can be fixed by the derivative of the form factor at the origin, the parameter a_π [13]:

$$F(Q^2) = \frac{1}{4\pi^2 f_\pi} \frac{m_\rho^2 m_\rho'^2 + b Q^2 + 24f_\pi^2 Q^4 / N_c}{(m_\rho^2 + Q^2)(m_\rho'^2 + Q^2)(m_\rho''^2 + Q^2)},$$

where the parameter b can be obtained through a matching procedure to the low-energy expansion of $F(Q^2)$, i.e.,

$$b = m_\rho^2 m_\rho'^2 m_\rho'' \left(\frac{a_\pi}{m_\rho^2} + \frac{1}{m_\rho'^2} + \frac{1}{m_\rho''^2} \right).$$

Given

![Figure 5](http://example.com/figure5.png)

FIG. 5. (color online). Band: the pion-photon transition form factor of Eq. (52). Points: various experimental data [64–67]. The horizontal line represents the theoretic asymptotic value of $2f_\pi$. The parameter b is the weak interaction coupling constant, and θ_c the half-width-rule is presented in Fig. 4.
In the non-strange sector the electromagnetic current is given by

$$J_{em}^\mu(x) = \frac{1}{2} J_B^\mu(x) + J_V^{\mu_3}(x)$$ \hspace{1cm} (58)

where $J_B^\mu(x)$ is the baryon current and $J_V^{\mu_3}(x)$ is the third component of the isospin current

$$J_B^\mu(x) = \bar{q}(x)\gamma^\mu q(x), \hspace{1cm} J_V^{\mu_3}(x) = \bar{q}(x)\gamma^\mu t^3 q(x).$$ \hspace{1cm} (59)

The matrix elements of these currents are

$$\langle N(p')|J_B^\mu(0)|N(p)\rangle = \bar{u}(p') \left[\gamma^\mu F_1^{I=0}(q^2) + \frac{i\sigma^{\mu\nu} q_\nu F_2^{I=0}(q^2)}{2M_N} \right] u(p),$$

$$\langle N(p')|J_V^{\mu_3}(0)|N(p)\rangle = \bar{u}(p') \left[\gamma^\mu F_1^{I=1}(q^2) + \frac{i\sigma^{\mu\nu} q_\nu F_2^{I=1}(q^2)}{2M_N} \right] u(p),$$ \hspace{1cm} (60)

where $q = p' - p$, and F_1 and F_2 are the Dirac and Pauli form factors, respectively. The relation to the proton and neutron form factors is

$$F_i^P(0) = 1, \hspace{1cm} F_i^n(0) = 0, \hspace{1cm} F_i^P(0) = \kappa_p, \hspace{1cm} F_i^n(0) = \kappa_n.$$ \hspace{1cm} (62)\hspace{1cm} (63)

The quantities $\kappa_p = 1.793$ and $\kappa_n = -1.913$ are the anomalous proton and neutron magnetic moments, respectively. The electric and magnetic Sachs form factors are defined as

$$G_E^P(q^2) = F_1^P(q^2) + \frac{q^2}{4M_N^2} F_2^P(q^2),$$

$$G_E^n(q^2) = F_1^n(q^2),$$

$$G_M^P(q^2) = F_1^P(q^2) + F_2^P(q^2),$$

$$G_M^n(q^2) = F_1^n(q^2) + F_2^n(q^2).$$ \hspace{1cm} (64)

The normalization conditions become

$$G_E^P(0) = 1, \hspace{1cm} G_E^n(0) = 0, \hspace{1cm} G_M^P(0) = \mu_p, \hspace{1cm} G_M^n(0) = \mu_n,$$ \hspace{1cm} (65)\hspace{1cm} (66)

where $\mu_p = 2.79\mu_N$ and $\mu_n = -1.91\mu_N$, with $\mu_N = e/(2M_N)$ denoting the nuclear magneton.

The asymptotic behavior for $t \to -\infty$ is given by [3]

$$t^{i+1} F_i(t) \to [\log(-t/\Lambda^2)]^{-\gamma}, \hspace{1cm} (i = 1, 2)$$ \hspace{1cm} (67)

where the anomalous dimension $\gamma \sim 2$ is weakly dependent on the number of flavors. As mentioned before, such a slowly changing log behavior cannot be reproduced with a finite number of resonances, thus we assume it to be
constant. At the leading order in the large-N_c expansion the form factors read

$$F_1^{I=0}(t) = \sum_{V} \frac{g_{\omega NN} f_{\omega \gamma V}}{m_{\omega}^2 - t},$$

$$F_1^{I=1}(t) = \sum_{V} \frac{g_{\rho NN} f_{\rho V}}{m_{\rho}^2 - t},$$

$$F_2^{I=0}(t) = \sum_{V} \frac{f_{\omega NN} f_{\omega \gamma V}}{m_{\omega}^2 - t},$$

$$F_2^{I=1}(t) = \sum_{V} \frac{f_{\rho NN} f_{\rho \gamma V}}{m_{\rho}^2 - t}. \quad (68)$$

We define the strong isoscalar and isovector vertices

\[
\langle N(p')|\omega^\mu|N(p)\rangle = \bar{u}(p') \left[g_{\omega NN} \gamma^\mu + f_{\omega NN} \frac{i\sigma^\mu\nu q_\nu}{2M_N} \right] u(p),
\]

\[
\langle N(p')|\rho^\mu|N(p)\rangle = \bar{u}(p') \frac{\tau_a}{2} \left[g_{\rho NN} \gamma^\mu + f_{\rho NN} \frac{i\sigma^\mu\nu q_\nu}{2M_N} \right] u(p).
\]

(69)

According to Eq. (67), the minimum number of resonances is two and three for the Dirac and Pauli form factors, respectively. We use the normalization conditions at the origin, the asymptotic conditions, and fix the vector and tensor couplings to the lowest-lying resonance, $g_{\omega NN}$, $f_{\omega NN}$, $g_{\rho NN}$, $f_{\rho NN}$ in the isoscalar and isovector channels. Our illustrative goal here is to predict
the form factors without attempting a detailed fit to the data. After all the conditions are imposed, we get

\[F_1^{l=0}(t) = \frac{1}{2} \left(1 - c_0 t / m_{\pi}^2 \right) \left(1 - t / m_{\rho}^2 \right) \left(1 - t / m_{\omega}^2 \right), \]

\[F_1^{l=1}(t) = \frac{1}{2} \left(1 - c_1 t / m_{\pi}^2 \right) \left(1 - t / m_{\rho}^2 \right) \left(1 - t / m_{\omega}^2 \right), \]

\[F_2^{l=0}(t) = \frac{1}{2} \left(1 - c_0 t / m_{\pi}^2 \right) \left(1 - t / m_{\rho}^2 \right) \left(1 - t / m_{\omega}^2 \right), \]

\[F_2^{l=1}(t) = \frac{1}{2} \left(1 - c_1 t / m_{\pi}^2 \right) \left(1 - t / m_{\rho}^2 \right) \left(1 - t / m_{\omega}^2 \right), \]

where the constants \(c_0 \) and \(c_1 \) are determined from the values of \(g_{\omega NN} \) and \(g_{\rho NN} \), respectively, as

\[g_{\omega NN} f_{\omega \pi} / m_{\omega}^2 = \frac{1}{2} \left(1 - c_0 m_{\omega}^2 / m_{\pi}^2 \right) \left(1 - m_{\pi}^2 / m_{\rho}^2 \right), \]

\[g_{\rho NN} f_{\rho \pi} / m_{\rho}^2 = \frac{1}{2} \left(1 - c_1 m_{\rho}^2 / m_{\pi}^2 \right) \left(1 - m_{\pi}^2 / m_{\omega}^2 \right). \]

Thus, with the electromagnetic decay widths for the vector mesons, \(F_{\rho} = 0.149 \) GeV, we find (Eq. 41) \(\Gamma(\rho \rightarrow e^+ e^-) = 4 \alpha^2 F_{\rho}^2 / m_{\rho}^3 \), which is numerically equal to 6.4 KeV.

Detailed fits implementing VMD [80] require large OZI violations as well as large departure from the flavor SU(3) symmetry (see also [81]). In particular, the value of \(g_{\omega NN} \) is large, \(g_{\rho NN} \) [46, 82]. However, the simple Kelly parameterization [83] provides a successful fit in the spacelike region as a rational function with the correct large momentum behavior.

The result of varying the masses according to the halfwidth rule is presented in Fig. 7. We consider the SU(3) case where \(g_{\omega NN} / g_{\rho NN} = f_{\omega NN} / f_{\rho NN} = 3 \), as well as a 30% violation for the ratio (orange and blue band in Fig. 7, respectively). We recall that in the meson-exchange models [84] or in dispersive analyses of the nucleon form factors [46, 82] even much larger symmetry breaking is needed to comply with the phenomenology.

B. Axial and pseudoscalar form factors

The axial matrix element of nucleon is defined by (for a recent review see, e.g., Ref. [88] and references therein)

\[\langle N(p')|J_{A}^{\mu}\rangle(0)|N(p)\rangle = \bar{u}(p')\gamma_{\mu}G_{A}(q^2) + \frac{q_{\mu}}{2M_N}G_{P}(q^2) u(p), \]

where \(G_{A}(q^2) \) and \(G_{P}(q^2) \) are the axial and the induced pseudoscalar form factors, respectively. The QCD axial current is

\[J_{A}^{\mu}(x) = \bar{q}(x)\gamma_{\mu}J_{A}^{\mu}x/2 q(x), \]

while current-field identity relating it to the axial-meson field \(A^{\mu\nu} \) and the pseudoscalar field \(P \) is

\[J_{A}^{\mu}(x) = \sum f_{A}q_{\mu}A^{\mu\nu}(x) + \sum f_{P}q_{\mu}P^{\mu}(x). \]

Therefore we have

\[G_{A}(t) = g_{A} + \sum f_{A}g_{ANN}t/M_{A} - t, \]

\[G_{P}(t) = - \sum f_{P}g_{ANN}M_{A} - t + \sum f_{P}g_{APP}M_{P} - t. \]

We use here the extended PCAC form [89], which for the on-shell mesons reads

\[\partial_{\mu}J_{A}^{\mu}(x) = \sum f_{P}M_{P}^{2}P^{\mu}(x), \]

yielding the following relation among the form factors:

\[2M_{N}G_{A}(t) + \frac{t}{2M_{N}}G_{P}(t) = \sum f_{P}M_{P}^{2}P^{\mu}(M_{P} - t)g_{PNN}. \]

The pseudoscalar-nucleon coupling is defined by

\[\langle p'|(\partial^{2} + M_{P}^{2})P^{\mu}(x)|p\rangle = g_{PNN}\bar{u}(p')i\gamma_{5}\tau^{a}u(p). \]

From here we get the (extended) Goldberger-Treiman relation

\[M_{NG}g_{A} = \sum f_{P}g_{PNN} = f_{\pi}g_{\pi NN} + f_{\pi'}g_{\pi' NN} + \ldots. \]

The high-energy behavior of the weak form factors in QCD was discussed many years ago [90, 91]. At high \(Q^{2} \), one has for the isovector [92] and isoscalar [93] the asymptotic behavior,

\[\langle p'|(\partial^{2} + M_{P}^{2})P^{\mu}(x)|p\rangle = \langle p'|\rho^{\mu}P^{\mu}(x)|p\rangle = 0. \]

We also have the sum rules

\[g_{A} = \sum f_{A}g_{ANN}, \]

\[0 = \sum f_{A}g_{ANN}M_{A}^{2}. \]

It is noteworthy that most determinations of the axial form factor proceed via a dipole fit,

\[G_{A}(t) = \frac{g_{A}}{(1 - t/M_{A}^{2})^{2}}, \]

suggesting a \(1/t^{2} \) fall off at large \(t \). The values of the parameter are \(\Lambda_{A} = 1.026(21) \) GeV or \(\Lambda_{A} = 1.069(16) \) GeV, depending on the process [88]. In the literature \(\Lambda_{A} \) is denoted and called the axial mass (see, e.g., [88]). This is not our axial meson mass, since Eq. (82), although phenomenologically successful, cannot be justified from a field-theoretic point of view and is in contradiction with the large-\(N_{c} \) motivated parameterization.
FIG. 7. (color online). The electromagnetic nucleon form factors compared to the data for the proton [85] and neutron [86] (and references therein). Orange band: $g_{\omega NN} = 9$, blue band: $g_{\omega NN} = 12$.

FIG. 8. (color online). The isovector-axial nucleon form factors using two axial masses (left panel). The isovector-pseudoscalar nucleon form factor using two axial masses and the lightest pion considered in [87] (right panel).

The minimum meson-dominance ansatz compatible with low- and high-energy constraints reads

$$G_A(t) = g_A \frac{m_{a_1}^2 m_{a_1'}^2}{(m_{a_1}^2 - t)(m_{a_1'}^2 - t)},$$

$$G_P(t) = G_A(t) \frac{G_P(0)}{m_p^2 - t}. \tag{83}$$

By applying the half-width rule to this parameterization, i.e., using $m_{a_1} = 1.230$ GeV, $m_{a_1'} = 1.647$, $\Gamma_{a_1} = 0.425$ GeV, and $\Gamma_{a_1'} = 0.254$ GeV, we get the results depicted in Fig. 8. As we can see, the results are in reasonable agreement with the data. Actually, the two axial mesons are incorporated as a product of monopoles, but since they have an overlapping spectrum, the net effect is essentially a dipole form factor with an average mass which is somewhat larger than the usual dipole cut-off.

C. Gravitational form factors

The discussion of the nucleon gravitational form factors follows closely the pion case with suitable changes. For the nucleon case, the quark contributions to these form factors have been determined by the QCDSF Collaboration [94] and the LHPC Collaboration [95].

The decomposition, corresponding to the energy-momentum tensor matrix elements taken between nu-
cleon states, reads
\[
\langle p'|\Theta^q_{\mu\nu}|p \rangle = \bar{u}(p') \left[A_{20}^q(t) \frac{\gamma_\mu P_\nu + \gamma_\nu P_\mu}{2} \\
+ B_{20}^q(t) \frac{i(P_\mu \sigma_{\nu\rho} + P_\nu \sigma_{\rho\mu}) \Delta^\rho}{4M_N} \\
+ C_{20}^q(t) \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu} \Delta^2}{M_N} \right] u(p),
\]
where $\sigma^{\mu\nu} = \frac{i}{2}[\gamma^\mu, \gamma^\nu]$ (the Bjorken-Drell notation), the scalar functions are moments of the GPDs, the momentum transfer is denoted as $\Delta = p' - p$, and the average nucleon momentum is $P = (p' + p)/2$. Taking the trace and applying the Gordon identity, $2M_N \bar{u}(p') \gamma^\mu u(p) = \bar{u}(p')(i\sigma^{\mu\rho} \Delta_\rho + 2P^\mu)u(p)$, as well as the Dirac equation, $(\hat{p} - M_N)u(p) = 0$ and $\bar{u}(p')(p' - M_N) = 0$, we obtain the following expression for the spin-0 gravitational form factor of the nucleon:
\[
\Theta^q_N(t) = M_N \left[A_{20}^q(t) + \frac{t}{4M_N^2} B_{20}^q(t) - \frac{3t}{M_N^2} C_{20}^q(t) \right],
\]
whereas the spin-2 (normalized) component becomes
\[
F_T^q(t) = \frac{A_{20}^q(t)}{A_{20}^q(0)},
\]
expression. For the nucleon this FF has been determined by two lattice groups in Refs. [94, 95]. Actually, in Ref. [94] a dipole fit describes the data successfully, namely
\[
F_T(t) = \frac{1}{(1 - t/\Lambda_T^2)^2},
\]
with $\Lambda_T = 1.1(2)$ GeV, if a linear extrapolation in m_π to the physical point is assumed. Assuming an asymptotic falloff for the form factor, such that $F_T(t) = \mathcal{O}(t^{-2})$, we just take a sum of two monopoles that reduces to
\[
F_T(t) = \frac{m_{f_2}^2}{m_{f_2}^2 - t m_{f_2}^2} \frac{m_{f_2}^2}{m_{f_2}^2 - t m_{f_2}^2}.
\]
The PDG Tables quote $m_{f_2} = 1.320$ GeV and $\Gamma_{f_2} = 0.185$ GeV, and for the first excited state gives $m_{f_2'} = 1.525$ GeV and $\Gamma_{f_2'} = 0.073$ GeV.
As we can see from Fig. 10, similarly to the case of the axial nucleon FF, the dipole FF with an uncertainty essentially corresponds to two monopoles after the half-width rule has been implemented.

VI. CONCLUSIONS

In the present work we have taken advantage of the well-known fact that in the large-N_c limit of QCD the generalized hadronic form factors, probing bilinear $\bar{q}q$ operators with given J^{PC} quantum numbers, feature gen-

\[\text{FIG. 10. (color online). Spin-2 isoscalar gravitational form factor of the nucleon, } F_T(t) \text{ obtained from the lattice simulations of Ref. [95] at the pion masses } m_\pi = 352.3 \text{ MeV and } m_\pi = 356.6 \text{ MeV (blue circles and red squares respectively), together with the results of Ref. [96] linearly extrapolated to the physical pion mass (black triangles).}\]
alized meson dominance of $\bar{q}q$ states with the same quantum numbers. They assume the monopole form,

$$
\langle A(p') | J(0) | B(p) \rangle \sim \sum_n c_n^{AB} m_n^2 m_n^2 \pi_n - t_n
$$

where m_n are the meson masses and c_n^{AB} suitable couplings. Thus generalized form factors at some finite momentum transfer essentially measure the masses of the lowest lying mesons.

The goal of this paper was to present a comprehensive analysis of the pion and nucleon form factors, providing a theoretical uncertainty following from the half-width rule. We have incorporated

- The correct asymptotic power like behavior of form factors (short-distance constraints).
- Low-momentum normalization constraints.
- Minimum number of mesons with the relevant quantum numbers in each channel.
- Theoretical error estimates based on the half-width rule.

Given the approximate nature of the underlying large-N_c expansion, we should not expect perfect agreement with data. Rather, the addressed question is how can we estimate the accuracy of the large-N_c expansion for hadronic form factors, which are basic experimental quantities. In the present paper we provide arguments in favor of the simple rule, where a rough estimate is given by varying the resonance mass within its width range. As we have seen, this provides a surprisingly close answer to the data, which fall within the bands produced with the half-width rule. While this presumably is a conservative assumption, it still provides a cheap estimate based on an independent source of information.

Extension to other baryons and mesons is straightforward, as well as to the transition matrix elements. One useful application of the meson-dominance scheme is the a priori determination of Generalized Form Factors, just based on the PDG Tables, for which abundant data start to be produced on the lattice. Our calculations show that improving on the uncertainty predictions based of the half-width rule may require highly refined lattice studies beyond the present accuracy.

Appendix A: Cut-off dependence of the mass shift

In this appendix we analyze the mass shift of the lowest lying scalar and vector resonances due to the most relevant decays $S \rightarrow \pi \pi$ and $V \rightarrow \pi \pi$. With a chiral derivative coupling, one obtains [97]

$$
\Gamma_S(s) = \frac{3m_S^3}{16\pi f^2 \pi} \rho_S \left[c_d + (c_m - c_d) \frac{2m^2_\pi}{m_S^2} \right]^2,
$$

$$
\Gamma_V(s) = G_V^2 m_V s 48\pi f^2 \rho_V
$$

where $\rho_R = \rho(m^2_R) = \sqrt{1 - 4m^2_\pi/m^2_R}$. Note the additional s factors appearing in the widths. By using the dispersion relation for the self-energy, Eq. (18), we can see that the real part of the integral is quartically divergent and thus three subtractions are needed. This is equivalent to fixing the mass and the width. On the contrary, the imaginary part is finite and provides the width at the physical value. This argument shows that we need more input information and until then have no predictive power. Within a large N_c environment [97] we use BW and not pole reference subtraction values for both mesons in this study.

In order to get an estimate, we assume some form of the hadronic form factor for the vertex $\rho \pi \pi$. Out of ignorance, we consider different cut-off functions

$$
G_{\rho \pi \pi}(q^2) = \left(\frac{q^2 + \Lambda^2}{s + \Lambda^2} \right)^n
$$

which preserve the imaginary part, $G_{\rho \pi \pi}(m^2_R)$, and hence the width. Here $n = 1$ corresponds to a monopole, $n = 2$ corresponds to a dipole, and the limit $n \rightarrow \infty$ corresponds to a sharp cut-off. We naturally expect Λ in the range above m_ρ and around m_ρ, which corresponds to ignoring all states above these energies. With these conditions, and assuming a small correction, we get a mass

![Graph showing mass shifts as a function of cut-off](image-url)
shift \[\Delta m_\rho = \frac{1}{\pi} \int_{m_\rho^2}^{\infty} ds \frac{G_{\rho\pi\pi}(s)\Gamma_{\rho\pi\pi}(s)}{s(s - m_\rho^2)}. \] (A3)

The results are depicted in Fig. 11 as a function of the cut-off scale. As expected, the overall order of magnitude is quite compatible with the half-width rule.

In a theory with a finite number of resonances there is, of course, an implicit high energy cut-off corresponding to the next (not included) meson. Assuming a vanishing contribution of the higher energy states, one may make a rough estimate of the mass shift. For instance, for the \(\rho \)-meson one has [98] a shift of about half the width. Of course, this may be partly a numerical coincidence, but it illustrates the point that parametrically the mass-shift and the width scale in a similar way.