Quantum Geometry and Wild embeddings as quantum states

Nov, 2012
15 pages
Published in:
  • Int.J.Geom.Meth.Mod.Phys. 10 (2013) 1350055
  • Published: 2013
e-Print:

Citations per year

201320152017201920212410
Abstract: (arXiv)
In this paper we discuss wild embeddings like Alexanders horned ball and relate them to fractal spaces. We build a CC^{\star}-algebra corresponding to a wild embedding. We argue that a wild embedding is the result of a quantization process applied to a tame embedding. Therefore quantum states are directly the wild embeddings. Then we give an example of a wild embedding in the 4-dimensional spacetime. We discuss the consequences for cosmology.
Note:
  • 16 pages, 4 figures
  • wild embeddings
  • Alexanders horned sphere
  • C*-algebras
  • deformation quantization
  • embedding
  • cosmological model
  • quantum geometry
  • quantization
  • algebra: C*
  • [1]
    An example of a simple-connected surface bounding a region which is not simply connected. Proceedings of the National Academy of Sciences of the United States, 10:8 - 10, 1924
    • J.W. Alexander
    • [3]
      and C.H Exotic Smoothness and Physics. WorldScientific Publ., Singapore, 2007
      • T. Asselmeyer-Maluga
      • [5]
        Remarks on certain pathological open subsets of 3-space and their fundamental groups
        • W.A. Blankinship
          ,
        • R.H. Fox
          • Proc.Am.Math.Soc. 1 (1950) 618
      • [6]
        A finite set of generators for the Kauffman bracket skein algebra
        • D. Bullock
          • Math.Z. 231 (1999) 91
      • [7]
        Multiplicative structure of Kauffman bracket skein module quantization
        • D. Bullock
          ,
        • J.H. Przytycki
          • Proc.Am.Math.Soc. 128 (1999) 923
      • [8]
        The recognition problem: What is a topological manifold?
        • J.W. Cannon
          • Bull.Am.Math.Soc. 84 (1978) 832
      • [9]
        Shrinking cell-like decompositions of manifolds: Codimension three
        • J.W. Cannon
          • Annals Math. 110 (1979) 83
      • [10]
        Non-commutative geometry Press, 1994
        • A. Connes
        • [11]
          Decompositions of Manifolds Press, Orlando, 1986
          • R.J. Daverman
          • [12]
            On complements of codimension-3 embeddings in sn. Topology and its Appl., 31:197-202, 1989
            • S.C. Ferry
              ,
            • E.K. Pedersen
              ,
            • P. Vogel
            • [13]
              A fake S3 × R
              • M.H. Freedman
                • Annals Math. 110 (1979) 177
            • [14]
              The symplectic nature of the fundamental groups of surfaces
              • W.M. Goldman
                • Adv.Math. 54 (1984) 200
            • [15]
            • [16]
              Knots, Links, Braids and 3-Manifolds. AMS, Providence, 1997
              • V.V. Prasolov
                ,
              • A.B. Sossinisky
              • [17]
                Rushing1992. Hausdorff dimension of wild fractals
                  • Trans.Am.Math.Soc. 334 (1992) 597
              • [18]
                The Moduli Space of Flat Connections on a Surface Poisson Structures and Quantization. PhD thesis, Universty Aarhus, 2006
                • A.R. Skovborg
                • [19]
                  Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, first edition, 1997
                  • W. Thurston
                  • [20]
                    Algebras of loops on surfaces, algebras of knots, and quantization
                    • V. Turaev
                      • Adv.Ser.Math.Phys. 9 (1989) 59
                  • [21]
                    Skein quantization of poisson algebras of loops on surfaces. Ann. Sci. de l’ENS, 24:635-704, 1991
                    • V.G. Turaev