Low-lying Λ Baryons from the Lattice

Georg P. Engel1, C. B. Lang1, and Andreas Schäfer2

1Institut für Physik, FB Theoretische-Regensburg, A–8010 Graz, Austria
2Institut für Theoretische Physik, Universität Regensburg, D–93040 Regensburg, Germany

(Dated: January 15, 2013)

In a lattice QCD calculation with two light dynamical Chirally Improved (CI) quarks we determine ground state and some excited state masses in all four Λ baryon channels $1/2^\pm$ and $3/2^\pm$. We perform an infinite volume extrapolation and confirm the widely discussed Λ(1405). We also analyze the amount of octet-singlet mixing, which is helpful in comparing states with the quark model.

PACS numbers: 11.15.Ha, 12.38.Gc

One of the central aims of hadron spectroscopy is to understand the spin-flavor-parity structure of the excitation spectra for different quantum numbers. It seems in particular that the nucleon and Λ spectra show significant differences which, if properly understood, should illuminate the influence of quark mass and flavor on hadron structure. The lowest Λ(1405) mass lies below the Roper-like Λ(1600, $\frac{1}{2}^-$) and the negative parity nucleon $N^*(1535)$; unlike the nucleon sector it does have standard level ordering lying between the positive parity ground state and the first positive parity excitation. A baryons can be flavor singlets or octets or, due to the difference in light and strange quark masses, mixtures of both. Various continuum model studies discuss that mixing. This is the first lattice QCD analysis of the Λ baryons for dynamical Chiral Improved (CI) quarks \cite{5, 6}. The CI fermion action consists of several hundred terms and size 16$^3 \times 32$. The bulk of our results were obtained for lattices of pion mass ranges from 255 to 596 MeV. The strange quark is introduced as a valence quark singlet nature.

Lattice studies in the quenched case generally had problems to find the low lying Λ(1405). Even a study with two dynamical light quarks \cite{3, 4} found too large mass values. Only recent results \cite{8} obtained with PACS-CS (2 + 1)-flavor dynamical quarks configurations \cite{4} show a level ordering which is compatible with experiment in three of those. We also study the infinite volume limit and give for the first time lattice results on singlet-octet composition for all four sectors, obtaining the mass of the Λ(1405) and confirming its flavor singlet nature.

Lattice studies in the quenched case generally had problems to find the low lying Λ(1405). Even a study with two dynamical light quarks \cite{3, 4} found too large mass values. Only recent results \cite{8} obtained with PACS-CS (2 + 1)-flavor dynamical quarks configurations \cite{4} show a level ordering which is compatible with experiment in three of those. We also study the infinite volume limit and give for the first time lattice results on singlet-octet composition for all four sectors, obtaining the mass of the Λ(1405) and confirming its flavor singlet nature.

...
terms of the lattice interpolators. The quality of the results depends on the statistics and the provided set of lattice operators. The dependence on \(t_0 \) is used to study the systematic error; in the final analysis we use \(t_0 = 1 \) (with the origin at 0). The statistical error is determined with single-elimination jack-knife. For the fits we use single exponential behavior but check the stability with double exponential fits; we take the correlation matrix for the correlated fits from the complete sample \(\lbrack 8 \rbrack \).

For the extrapolation to the physical pion mass we fit to the leading order chiral behavior, which is linear in \(m_\pi^2 \). Two ensembles (at pion masses 255 MeV and 588 MeV) suffer from a slight mistuning of the strange quark mass, which are therefore discarded in the extrapolation to the physical pion mass, whenever the effects are found significant. This is the case for the lowest energy levels in each channel (three lowest ones in \(\frac{1}{2} \)). The quoted systematic errors for these levels include the corresponding deviation and the dependence of the energy levels on the choice of interpolators and fit ranges for the eigenvalues.

In the present study we are restricted to 3-quark operators for the baryon. Note that ideally one should take into account also meson-baryon interpolators (see, e.g., the discussion in \[23\]). This leads to many more contributing graphs and necessitates also the inclusion of backtracking quark loops. The related computational and algorithmic effort prevented such lattice calculations so far, although such studies are in progress \[24\]. Due to sea quarks, in principle, 3-quark operators have overlap with meson-baryon states as well. The corresponding coupling was however found to be weak in actual simulations \[23, 24\]. We will argue below that in particular in the s-wave channels we find hints of such coupling even for our interpolators.

\(J^P = \frac{1}{2}^+ \), Finite volume: In Fig. \[3\] we show results for the four lowest eigenstates for interpolator set (1,2,11,20,25,26,33,34,43). After extrapolation to the physical point our lowest energy level agrees well with the experimental \(\Lambda(1116) \). The systematic error estimated from different combinations of interpolators and fit ranges is indicated in the summary Fig. \[6\]. Analyzing the eigenvectors, we find that the ground state is dominated by octet interpolators of Dirac structure \(\chi_1 \) and \(\chi_3 \) (in agreement with a relativistic quark model calculation \[13\]). Our first excitation is dominated by singlet interpolators (first Dirac structure) matching the \(\Lambda(1810) \) (singlet in the quark model). The Roper-like \(\Lambda(1600) \) (octet in the quark model) seems to be missing. This resembles the situation in the \(N \left(\frac{1}{2}^+ \right) \) channel \[5\]. The second and third excitations are again dominated by octet interpolators.

Infinite volume extrapolation: We performed a volume analysis for several sets of interpolators and various fit ranges. The results in infinite volume and the infinite volume extrapolations for the ground state for specific interpolators are shown in Fig. \[6\]. The extrapolation follows the method of \[20\]. A stable choice is the set of interpolators \(A \) and \(t_{\min} = 5a \). The corresponding systematic error estimated from different interpolators and fit ranges is indicated in the summary Fig. \[6\]. Our final result is 1126(17)(11) MeV (statistical and systematic error), which agrees nicely with the experimental \(\Lambda(1116) \) mass.

\(J^P = \frac{1}{2}^+ \), Finite volume: We use different sets of interpolators and fit ranges. We stress that our basis is large compared to that of other studies with three types of Dirac structures for both singlet and octet interpolators. We can extract the lowest four energy levels, shown in Fig. \[3\] using interpolators (2,3,10,18,26,27,34,42). We find that the ground state energy level agrees well with the experimental \(\Lambda(1405) \). The dependence of the levels on the tuning of the strange quark mass appears to be sizeable, albeit it an accident of our simulation. This

<table>
<thead>
<tr>
<th>Spin</th>
<th>Flavor</th>
<th>Name</th>
<th>Interpolator</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>Singlet</td>
<td>(\Lambda_{1/2}^{(1,1)})</td>
<td>(\epsilon_{abc} \Gamma_{1}^{(1)} u_a (d_b^T \Gamma_{1}^{(1)} s_c - s_b^T \Gamma_{1}^{(1)} d_c))</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>Octet</td>
<td>(\Lambda_{1/2}^{(8,1)})</td>
<td>(\epsilon_{abc} \Gamma_{1}^{(1)} s_a (u_b^T \Gamma_{1}^{(1)} d_c - d_b^T \Gamma_{1}^{(1)} u_c) + \Gamma_{1}^{(1)} u_a (s_b^T \Gamma_{1}^{(1)} d_c - d_b^T \Gamma_{1}^{(1)} u_c))</td>
</tr>
<tr>
<td>(\frac{3}{2})</td>
<td>Singlet</td>
<td>(\Lambda_{3/2}^{(1,1)})</td>
<td>(\epsilon_{abc} \chi \gamma s_u (u_b^T \Gamma_{1}^{(1)} \gamma d_c - d_b^T \Gamma_{1}^{(1)} \gamma u_c) + \gamma \gamma u_a (s_b^T \Gamma_{1}^{(1)} \gamma d_c - \gamma d_b^T \Gamma_{1}^{(1)} \gamma u_c))</td>
</tr>
<tr>
<td>(\frac{3}{2})</td>
<td>Octet</td>
<td>(\Lambda_{3/2}^{(8,1)})</td>
<td>(\epsilon_{abc} \chi \gamma s_u (u_b^T \Gamma_{1}^{(1)} \gamma d_c - d_b^T \Gamma_{1}^{(1)} \gamma u_c) + \gamma \gamma u_a (s_b^T \Gamma_{1}^{(1)} \gamma d_c - \gamma d_b^T \Gamma_{1}^{(1)} \gamma u_c))</td>
</tr>
</tbody>
</table>

TABLE I. Baryon interpolators: The possible choices for the Dirac matrices \(\Gamma_{1/2}^{(1)} \) in the spin \(\frac{1}{2} \) channels are discussed in the text. Summation convention applies; for spin \(\frac{3}{2} \) observables, the open Lorentz index (after spin projection) is summed after taking the expectation value of correlation functions.

<table>
<thead>
<tr>
<th>Quark</th>
<th>Numbering of associated interpolators</th>
<th>Smearing types</th>
<th>(\Lambda_{1/2}^{(1,1)})</th>
<th>(\Lambda_{3/2}^{(8,1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(n)</td>
<td>1</td>
<td>9</td>
<td>1,9,17, 25,33,41</td>
</tr>
<tr>
<td>(n)</td>
<td>(w)</td>
<td>2</td>
<td>10,18, 26,34,42</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td>(n)</td>
<td>3</td>
<td>11,19, 27,35,43</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td>(w)</td>
<td>4</td>
<td>12,20, 28,36,44</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td>(n)</td>
<td>5</td>
<td>13,21, 29,37,45</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td>(w)</td>
<td>6</td>
<td>14,22, 30,38,46</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td>(w)</td>
<td>7</td>
<td>15,23, 31,39,47</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>(w)</td>
<td>8</td>
<td>16,24, 32,40,48</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II. Baryon interpolators: Quark smearing types (\(n/w \) for narrow/wide) and naming convention for the interpolators in the different channels. The three columns for the \(J = \frac{1}{2} \) interpolators refer to \(\chi_1 \chi_3 \).
The first and second excited energy level are both a bit low but compatible with the experimental $\Lambda(1670)$ and $\Lambda(1800)$. In general in the $J^P = \frac{1}{2}^+$ channel one may expect coupling to $\pi\Sigma$ and KN in s-wave. In [27, 28] the expected energy levels in finite volumes are discussed based on a continuum hadron exchange model. There (with physical hadron masses), the low-lying scattering state levels in the $\frac{1}{2}^-$ channel are well separated for $m_\pi L \lesssim 3$. For the pion masses of our study, the non-interacting meson-baryon thresholds lie close but (except for one point) above the lowest energy level observed. E.g., for the lowest pion mass, the values are $m_\Sigma + m_\pi \approx 1.52$ GeV, $m_N + m_\pi \approx 1.62$ GeV, above the lowest level. This resembles the situation in the $N(\frac{1}{2}^-)$ channel. Earlier work argued that the coupling of single baryons to baryon-meson channels may be too weak to lead to observable effects [27, 28]. However, in our case, in s-wave scattering, we cannot exclude that one or even two of the observed three lowest energy levels correspond to scattering states. Note that the measured ground state energy level is always (except for one point) below s-wave threshold, thus supporting the $\Lambda(1405)$ identification.

It has been conjectured from Chiral Unitary Theory that the lowest state may have a double-pole [23, 29] and a identification strategy for lattice simulations is suggested in [30]. This would require asymmetric boxes or moving frames.

Infinite volume extrapolation: We study the volume dependence of the three lowest states for different sets of interpolators and various fit ranges. We emphasize that the stability of the signals of the excitations is comparable to the ones of the ground state. The volume dependence of all three low states appears fairly flat in our simulation, in a few cases showing even negative finite volume corrections. These features are compatible with significant contributions of an attractive s-wave scattering state. For interpolators (2,3,10,18,26,27,34,42) and $t_{\text{min}} = 5a$, after infinite volume extrapolation, we show the result of the final extrapolation of the ground state energy level to the physical pion mass in Fig. 4. The final result for the ground state agrees very well with the experimental $\Lambda(1405)$. Both the first and the second excitation appear to be a bit low but are compatible with the experimental $\Lambda(1670)$ and $\Lambda(1800)$ (see Figs. 3 and 4) and might also possibly be s-wave $\pi\Sigma$ and KN signals.
FIG. 3. Energy levels for Λ spin 1/2− in a finite box of linear size \(L \approx 2.2 \) fm, for legend see caption of Fig. Fits are omitted for clarity.

FIG. 4. Eigenvectors for Λ spin 1/2− ground state and first excitation for ensemble A66 \((m_\pi \approx 255\) MeV). The ground state is dominated by singlet interpolators of all three Dirac structures. The first (and also the second excitation, not shown) is dominated by octet interpolators. Note that a considerable mixing of singlet and octet is observed (15-20% for the ground state).

J^P = 3/2^−, **Finite volume**: In spin 3/2 channels, for symmetric quark fields, singlet interpolators vanish exactly due to Fierz identities. We use different quark smearing widths and thus circumvent the Fierz identities constructing singlet interpolators nevertheless. We derive results for the lowest three energy levels of the variational analysis of interpolators \((2,9,10,16)\). Only the ground state can be clearly identified and its extrapolation agrees with the experimental Λ(1890). Within the finite basis, this state is dominated by octet interpolators.

The first excitation is dominated by singlet interpolators with non-negligible octet contributions at our lightest pion mass (see Fig. 6). We want to emphasize the importance of singlet interpolators for the low lying states in this channel, even though those interpolators are vanishing exactly for symmetric point-like quark fields.

Infinite volume extrapolation: Within errors we do not observe a clear volume dependence. The final result agrees with the experimental Λ(1890) mass, but with large uncertainty.

J^P = 3/2^+, **Finite volume**: We choose interpolators \((2,7,9,10,15)\) and find a clear gap between ground state and excitations. The extrapolation of the ground state energy level lies clearly above the experimental ground state Λ(1520) and is compatible with the Λ(1690). The excitations extrapolate close to the Λ(2325).

From the eigenvectors we find that the two lowest states are dominated by octet, the second excitation by singlet interpolators. The quark model shows for Λ(1520) singlet dominance (like for its companion Λ(1405)). We conclude that we might miss a signal for the ground state altogether, or, alternatively, there is a strong deviation from the leading chiral behavior towards the physical point. The latter case is intriguing as it might be related to strong coupling to an s-wave \(\pi\Sigma(1385)\) state, which is discussed, e.g., in \[31, 32\].

Infinite volume extrapolation: The volume dependence turns out to be fairly flat, in a few cases even compatible with negative finite volume corrections. The final result in the infinite volume limit at the physical point again misses the experimental Λ(1520) and agrees with the Λ(1690) mass.

Summary: We present a comprehensive study of spin 1/2 and 3/2 Λ baryon ground states and excitations, utilizing a large basis of interpolators in the variational analysis including differently smeared quark sources (which allows to sidestep the Fierz identities), three Dirac structures, and singlet and octet forms. Fig. 6 shows the results for...
ground states and excitations for lattices of linear size $L \approx 2.2$ fm (lhs) and low lying levels for infinite volume extrapolation (rhs). The horizontal lines or boxes represent experimentally known states. Where the box size indicates the statistical uncertainty of 1σ, second bars closely to the right indicate systematic errors estimated from the use of different sets of interpolators, fit ranges of the eigenvalues and the strange quark mass. Grey symbols denote a poor χ²/d.o.f. > 3 of the chiral fits.

FIG. 6. Energy levels extrapolated to the physical pion mass in finite volume $L \approx 2.2$ fm (lhs) and low lying levels after infinite volume extrapolation (rhs). The horizontal lines or boxes represent experimentally known states. The Roper-like (octet) state Λ(1600), on the other hand, may not couple to our 3-quark interpolators.

Special thanks to Leonid Y. Glozman and Daniel Mohler for valuable criticism. Discussions with Christof Gattringer, Markus Limmer, Mario Schröck and Valentina Verduni are gratefully acknowledged. The calculations have been performed on the SGI Altix 4700 of the LRZ Munich and on local clusters at the University of Graz. G.P.E. and A.S. acknowledge support by the DFG project SFB/TRR-55.