Abstract

We use the Bessel-inspired behavior of the structure function F_2 at small x, obtained for a flat initial condition in the DGLAP evolution equations, with “frozen” and analytic modifications of the strong coupling constant to study precise combined H1&ZEUS data for the structure function F_2 published recently.

1 Introduction

A reasonable agreement between HERA data [1]-[3] and the next-to-leading-order (NLO) approximation of perturbative Quantum Chromodynamics (QCD) has been observed for $Q^2 \geq 2 \text{GeV}^2$ (see reviews in [4] and references therein), which gives us a reason to believe that perturbative QCD is capable of describing the evolution of the structure function (SF) F_2 and its derivatives down to very low Q^2 values, where all the strong interactions are conventionally considered to be soft processes.

A standard way to study the x behavior of quarks and gluons is to compare the data with the numerical solution to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [5] by fitting the parameters of x-profile of partons at some initial Q_0^2 and the QCD energy scale Λ [6, 7]. However, for the purpose of analyzing exclusively the small-x region, there is the alternative of doing a simpler analysis by using some of the existing analytical solutions to DGLAP equations in the small-x limit [8, 9].

The ZEUS and H1 Collaborations have presented the new precise combined data [10] for the SF F_2. The aim of this short paper is to compare the combined H1&ZEUS data with the predictions obtained by using the so-called doubled asymptotic scaling (DAS) approach [9].

To improve the analysis at low Q^2 values, it is important to consider the well-known infrared modifications of the strong coupling constant. We will use the “frozen” and analytic versions (see, [11] and references therein).

2 Parton distributions and the structure function F_2

Here, for simplicity we consider only the leading order (LO) approximation. The structure function F_2 has the form

$$F_2(x, Q^2) = e f_q(x, Q^2), \quad f_a(x, Q^2) = f^+_a(x, Q^2) + f^-_a(x, Q^2), \quad (a = q, g)$$

*The work was supported by RFBR grant No.11-02-1454-a

1 The NLO results can be found in [9].
where \(e = (\sum_i e_i^2) / f \) is an average charge squared.

The small-\(x \) asymptotic expressions for parton densities \(f^\pm \) look like

\[
\begin{align*}
 f_g^+(x, Q^2) &= \left(A_g + \frac{4}{9} A_q \right) I_0(\sigma) e^{-d_+ s} + O(\rho), \\
 f_g^-(x, Q^2) &= \frac{-4}{9} A_q e^{-d_- s} + O(\rho), \\
 f_q^+(x, Q^2) &= f_q^-(x, Q^2) = A_q e^{-d_{-1} s} + O(x),
\end{align*}
\]

where \(I_\nu (\nu = 0, 1) \) are the modified Bessel functions,

\[
s = \ln \left(\frac{a_s(Q^2)}{a_s(Q^2)} \right), \quad \sigma = 2 \sqrt{d_+| s \ln \left(\frac{1}{x} \right)}, \quad \rho = \frac{\sigma}{2 \ln(1/x)},
\]

and

\[
d_+ = \frac{12}{\beta_0}, \quad d_+ = 1 + 20f/27\beta_0, \quad d_- = \frac{16f}{27\beta_0}
\]
denote singular and regular parts of the anomalous dimensions \(d_+(n) \) and \(d_-(n) \), respectively, in the limit \(n \to \infty \). Here \(n \) is a variable in the Mellin space.

3 “Frozen” and analytic coupling constants

In order to improve an agreement at low \(Q^2 \) values, the QCD coupling constant is modified in the infrared region. We consider two modifications that effectively increase the argument of the coupling constant at low \(Q^2 \) values (see [12]).

In the first case, which is more phenomenological, we introduce freezing of the coupling constant by changing its argument \(Q^2 \to Q^2 + M^2_\rho \), where \(M_\rho \) is the \(\rho \)-meson mass (see [11] and discussions therein). Thus, in the formulae of Sec. 2 we have to carry out the following replacement:

\[
a_s(Q^2) \to a_s(Q^2) \equiv a_s(Q^2 + M^2_\rho)
\]

The second possibility follows the Shirkov–Solovtsov idea [13] concerning the analyticity of the coupling constant that leads to additional power dependence of the latter. Then, in the formulae of the previous section the coupling constant \(a_s(Q^2) \) should be replaced as follows:

\[
a_{an}^{LO}(Q^2) = a_s(Q^2) - \frac{1}{\beta_0 Q^2 - \Lambda^2_{LO}}
\]

in the LO approximation and

\[
a_{an}(Q^2) = a_s(Q^2) - \frac{1}{2\beta_0 Q^2 - \Lambda^2 + \ldots},
\]

in the NLO approximation. Here the the symbol \(\ldots \) stands for the terms that provide negligible contributions when \(Q^2 \geq 1 \) GeV [13].

Note here that the perturbative coupling constant \(a_s(Q^2) \) is different in the LO and NLO approximations. Indeed, from the renormalization group equation we can obtain the following equations for the coupling constant

\[
1/a_{s}^{LO}(Q^2) = \beta_0 \ln \left(\frac{Q^2}{\Lambda^2_{LO}} \right)
\]

in the LO approximation and

\[
1/a_{s}(Q^2) + \frac{\beta_1}{\beta_0} \ln \left[\frac{\beta_0 a_s(Q^2)}{\beta_0 + \beta_1 a_s(Q^2)} \right] = \beta_0 \ln \left(\frac{Q^2}{\Lambda^2} \right)
\]

in the NLO approximation. Usually at the NLO level \(\overline{MS} \)-scheme is used; therefore, below we apply \(\Lambda = \Lambda_{\overline{MS}} \).

*2 We denote the singular and regular parts of a given quantity \(k(n) \) in the limit \(n \to 1 \) by \(\hat{k}/(n - 1) \) and \(\overline{k} \), respectively.
Table 1: The results of LO and NLO fits to H1 & ZEUS data [10], with various lower cuts on Q^2; in the fits the number of flavors f is fixed to 4.

<table>
<thead>
<tr>
<th>$Q^2 \geq 5\text{GeV}^2$</th>
<th>A_g</th>
<th>A_q</th>
<th>$Q_0^2 [\text{GeV}^2]$</th>
<th>$\chi^2/n.d.f.$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>0.623±0.055</td>
<td>1.204±0.093</td>
<td>0.437±0.022</td>
<td>1.00</td>
</tr>
<tr>
<td>LO&an.</td>
<td>0.796±0.059</td>
<td>1.103±0.095</td>
<td>0.494±0.024</td>
<td>0.85</td>
</tr>
<tr>
<td>LO&fr.</td>
<td>0.782±0.058</td>
<td>1.110±0.094</td>
<td>0.485±0.024</td>
<td>0.82</td>
</tr>
<tr>
<td>NLO</td>
<td>-0.252±0.041</td>
<td>1.335±0.100</td>
<td>0.700±0.044</td>
<td>1.05</td>
</tr>
<tr>
<td>NLO&an.</td>
<td>0.102±0.046</td>
<td>1.029±0.106</td>
<td>1.017±0.060</td>
<td>0.74</td>
</tr>
<tr>
<td>NLO&fr.</td>
<td>-0.132±0.043</td>
<td>1.219±0.102</td>
<td>0.793±0.049</td>
<td>0.86</td>
</tr>
<tr>
<td>$Q^2 \geq 3.5\text{GeV}^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO</td>
<td>0.542±0.028</td>
<td>1.089±0.055</td>
<td>0.369±0.011</td>
<td>1.73</td>
</tr>
<tr>
<td>LO&an.</td>
<td>0.758±0.031</td>
<td>0.962±0.056</td>
<td>0.433±0.013</td>
<td>1.32</td>
</tr>
<tr>
<td>LO&fr.</td>
<td>0.775±0.031</td>
<td>0.950±0.056</td>
<td>0.432±0.013</td>
<td>1.23</td>
</tr>
<tr>
<td>NLO</td>
<td>-0.310±0.021</td>
<td>1.246±0.058</td>
<td>0.556±0.023</td>
<td>1.82</td>
</tr>
<tr>
<td>NLO&an.</td>
<td>0.116±0.024</td>
<td>0.867±0.064</td>
<td>0.909±0.330</td>
<td>1.04</td>
</tr>
<tr>
<td>NLO&fr.</td>
<td>-0.135±0.022</td>
<td>1.067±0.061</td>
<td>0.678±0.026</td>
<td>1.27</td>
</tr>
<tr>
<td>$Q^2 \geq 2.5\text{GeV}^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO</td>
<td>0.526±0.023</td>
<td>1.049±0.045</td>
<td>0.352±0.009</td>
<td>1.87</td>
</tr>
<tr>
<td>LO&an.</td>
<td>0.761±0.025</td>
<td>0.919±0.046</td>
<td>0.422±0.010</td>
<td>1.38</td>
</tr>
<tr>
<td>LO&fr.</td>
<td>0.794±0.025</td>
<td>0.900±0.047</td>
<td>0.425±0.010</td>
<td>1.30</td>
</tr>
<tr>
<td>NLO</td>
<td>-0.322±0.017</td>
<td>1.212±0.048</td>
<td>0.517±0.018</td>
<td>2.00</td>
</tr>
<tr>
<td>NLO&an.</td>
<td>0.132±0.020</td>
<td>0.825±0.053</td>
<td>0.898±0.026</td>
<td>1.09</td>
</tr>
<tr>
<td>NLO&fr.</td>
<td>-0.123±0.018</td>
<td>1.016±0.051</td>
<td>0.658±0.021</td>
<td>1.31</td>
</tr>
<tr>
<td>$Q^2 \geq 0.5\text{GeV}^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO</td>
<td>0.366±0.011</td>
<td>1.052±0.016</td>
<td>0.295±0.005</td>
<td>5.74</td>
</tr>
<tr>
<td>LO&an.</td>
<td>0.665±0.012</td>
<td>0.804±0.019</td>
<td>0.356±0.006</td>
<td>3.13</td>
</tr>
<tr>
<td>LO&fr.</td>
<td>0.874±0.012</td>
<td>0.575±0.021</td>
<td>0.368±0.006</td>
<td>2.96</td>
</tr>
<tr>
<td>NLO</td>
<td>-0.443±0.008</td>
<td>1.260±0.012</td>
<td>0.387±0.010</td>
<td>6.62</td>
</tr>
<tr>
<td>NLO&an.</td>
<td>0.121±0.008</td>
<td>0.656±0.024</td>
<td>0.764±0.015</td>
<td>1.84</td>
</tr>
<tr>
<td>NLO&fr.</td>
<td>-0.071±0.007</td>
<td>0.712±0.023</td>
<td>0.529±0.011</td>
<td>2.79</td>
</tr>
</tbody>
</table>

4 Comparison with experimental data

By using the results of the previous section we have analyzed H1&ZEUS data for F_2 [10]. In order to keep the analysis as simple as possible, we fix $f = 4$ and $\alpha_s(M_Z^2) = 0.1168$ (i.e., $\Lambda^{(4)} = 284$ MeV) in agreement with more recent ZEUS results given in [11].

As can be seen from Fig. 1 and Table 1, the twist-two approximation is reasonable for $Q^2 \geq 4 \text{GeV}^2$. At lower Q^2 we observe that the fits in the cases with “frozen” and analytic strong coupling constants are very similar (see also [14, 11]) and describe the data in the low Q^2 region significantly better than the standard fit. Nevertheless, for $Q^2 \leq 1.5 \text{GeV}^2$ there is still some disagreement with the data, which needs to be additionally studied. In particular, the Balitsky–Fadin–Kuraev–Lipatov (BFKL) resummation [15] may be important here [10]. It can be added in the generalized DAS approach according to the discussion in Ref. [17].

5 Conclusions

We have studied the Q^2-dependence of the structure function F_2 at small-x values within the framework of perturbative QCD. Our twist-two results are well consistent with precise H1&ZEUS data [10] in the region of $Q^2 \geq 4 \text{GeV}^2$, where perturbative theory is thought to be applicable. The usage of “frozen” and analytic modifications of the strong coupling constant, $\alpha_0(Q^2)$ and $\alpha_{an}(Q^2)$, is seen to improve an agreement with experiment at low
Q^2 values, $Q^2 \leq 1.5$ GeV2.

References

Figure 1: x dependence of $F_2(x, Q^2)$ in bins of Q^2. The combined experimental data from H1 and ZEUS Collaborations [10] are compared with the NLO fits for $Q^2 \geq 0.5$ GeV2 implemented with the standard (solid lines), frozen (dot-dashed lines), and analytic (dashed lines) versions of the strong coupling constant.