Hidden from View: Neutrino Masses, Dark Matter and TeV-Scale Leptogenesis in a Neutrinophilic 2HDM

Wei Chao1,4 and Michael J. Ramsey-Musolf1,3,†

1 Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
2 Shanghai Jiao Tong University, Shanghai 200240, China
3 California Institute of Technology, Pasadena, CA 91125, USA

Abstract

We consider a simple extension of the Standard Model providing dark matter and a TeV-scale seesaw mechanism that also allows for viable leptogenesis. In addition to the Standard Model degrees of freedom, the model contains a neutrinophilic Higgs doublet, a scalar singlet, and six singlet fermions (including three right-handed Majorana neutrinos) that are charged under a local $U(1)'$ gauge symmetry. We show how the $U(1)'$ charge assignments and the choice of scalar potential can lead to a TeV-scale seesaw mechanism and $O(1)$ neutrino Yukawa couplings in a straightforward way. While this scenario has all the ingredients one would expect for significant experimental signatures, including several new TeV scale degrees of freedom, we find that most distinctive features associated with neutrino mass generation, leptogenesis and the dark sector are likely to remain inaccessible in the absence of additional lepton flavor symmetries.

*Electronic address: chaow@physics.wisc.edu
†Electronic address: mjrm@physics.wisc.edu
I. INTRODUCTION

Although the Standard Model (SM) is in spectacular agreement with the results of most terrestrial experiments, it is certainly incomplete. Apart from theoretical considerations, such as the hierarchy problem, origin of electric charge quantization, and the “near miss” for gauge unification in the SM, several observations point to the need for physics beyond the Standard Model (BSM). The observation of neutrino oscillations has revealed that neutrinos have non-zero masses and that lepton flavors are mixed\cite{1}. In addition, precisely cosmological observations have confirmed the existence of non-baryonic cold dark matter: \(\Omega_D h^2 = 0.1123 \pm 0.0035\) \cite{2}. Together with the cosmic baryon asymmetry, these important discoveries can not be accommodated in the minimal SM without introducing extra ingredients.

Perhaps the most attractive approach towards understanding the origin of small neutrino masses is using the dimension-five Weinberg operator \cite{3}:

\[
\frac{1}{4} \kappa_d \ell_L \epsilon_c \phi_{dLb} \epsilon_a \phi_a + h.c.
\]

(1)

which comes from integrating out some new super-heavy particles. A simple way to obtain the operator in Eq. (1) is through the Type-I seesaw mechanism \cite{4}, in which three right-handed neutrinos \(N_R\) having large Majorana masses but no SM charges are introduced. Through Yukawa interactions of the \(N_R\) with the SM leptons, the three active neutrinos then acquire tiny Majorana masses as given by the Type-I seesaw formula: i.e., the mass matrix of light neutrinos is given by

\[
M_\nu = -M_D M_R^{-1} M_D^T
\]

(2)

where \(M_\nu\) is the mass matrix for the light neutrinos; \(M_D\) is the Dirac mass matrix linking the left-handed light neutrinos to the \(N_R\), and \(M_R\) is the mass matrix for the \(N_R\). Variations of this idea, including the Type-II \cite{5} and Type-III \cite{6} seesaw mechanisms have been widely discussed in the literature.

Seesaw mechanisms are among the most natural ways to generate tiny neutrino masses, and they can be embedded into more fundamental frameworks such as grand unified theories or string theory. A salient feature of the seesaw mechanism is that leptogenesis \cite{7} can work well to account for the matter-antimatter asymmetry of the Universe. A lepton
asymmetry is dynamically generated by the CP-violating, and out-of-equilibrium decays of right-handed neutrinos and then converted into a baryon asymmetry via \((B + L)\)-violating sphaleron interactions that exist in the SM. However seesaw mechanisms typically lose direct testability on the experimental side. A direct test of seesaw mechanism would involve the detection of these heavy seesaw particles at a collider or in other neutrino experiments as well as the measurement of their Yukawa couplings with the electroweak doublets. In the canonical seesaw mechanism, heavy seesaw particles turn out to be too heavy, i.e., \(\sim 10^{14} - 10^{16}\) GeV, to be experimentally accessible.

In view of the prospects for probing new TeV scale physics, it is interesting to ask how one might lower the conventional see-saw scale to an experimentally accessible one. Indeed, there exist many approaches to lower the seesaw scale, but these may seem unnatural. In this paper we propose a new TeV-scale seesaw mechanism. A guiding principle in constructing this framework is invoke as few new degrees of freedom as possible within the context of the seesaw mechanism while addressing the cosmic matter content and yielding some degree of testability. In doing so, we seek to explore features that might be generically present in UV complete theories.

To this end, we work in the framework of two Higgs doublet model (2HDM) with a \(U(1)’\) gauge symmetry. The second Higgs doublet \(H_n\) rather naturally gets a vacuum expectation value (VEV) through its interaction with the SM Higgs boson in the presence of an additional SM singlet scalar \(\Phi\). We first show that its VEV can be relatively small. Through an appropriate choice of \(U(1)’\) charges for the SM fields as well as the \(H_n, \Phi, \) and \(N_R\), we obtain neutrino masses through the standard see-saw mechanism but allowing \(O(1)\) Yukawa couplings between the light sector and TeV-scale \(N_R\). We show that properties of the massive \(Z'\) associated with the spontaneously broken \(U(1)’\) are compatible with present phenomenological constraints, while the new SM gauge singlets required for anomaly cancellation may provide a viable cold dark matter candidate. Constraints on the model from lepton flavor violation decays are studied. The model may also generate the matter-antimatter asymmetry of the Universe through flavor-dependent leptogenesis.

In principle, this scenario contains several ingredients that should lead to experimental signatures: new TeV-scale degrees of freedom, including the \(N_R, Z', \) and dark matter fields; \(O(1)\) Yukawa couplings in the neutrino sector, implying the possibility of significant charged lepton flavor violation; and several new scalar degrees of freedom that can mix with the SM.
Higgs. We find, however, that in the absence of additional lepton flavor symmetries most of the dynamics associated with neutrino mass generation, leptogenesis, and production of the dark matter relic density will be generally difficult to test experimentally. The magnitude of the neutrino Yukawa couplings directly relevant to the leptogenesis lepton asymmetry must be smaller than necessary for observable signatures in the next generation of charged lepton flavor violation searches, assuming an anarchical Yukawa matrix structure. The coupling of the Z' boson to SM particles is suppressed by a tiny $Z - Z'$ mixing angle. The mixing of the new scalar singlet with the SM Higgs, which governs the dark matter annihilation cross section, must be sufficiently small to ensure a dark matter relic density consistent with observation, making its impact on Higgs phenomenology at the Large Hadron Collider unlikely to be observable. In the absence of additional flavor symmetries in the lepton sector, the only possible experimental signature of this scenario would be a spin-independent signal in dark matter direct detection searches. Even this signal would not in itself distinguish this scenario from others that lead to a similar signature. In short, it is possible that new TeV scale physics may be responsible for three of the strongest motivations for extending the SM yet may remain hidden from view. Moreover, unlike many other TeV scale BSM scenarios that require additional symmetries\(^1\) in order to suppress experimental signatures, the present scenario would require adoption new symmetries or structure in order to allow for effects at the observable level.

Our discussion of the model and these features is arranged as follows: In section II we give a brief introduction to the model. We study neutrino masses, lepton flavor violation and dark matter phenomenology in sections III and IV. Section V is devoted to flavor-dependent leptogenesis. We summarize in section VI.

\section{The Model}

Our purpose is to explain the tiny but non-zero neutrino masses, dark matter and the cosmic baryon asymmetry \textit{via} TeV-scale new physics. To do so in a minimal manner, we extend the SM with three right-handed Majorana neutrinos N_{Ri}, one extra Higgs doublet H_n and one scalar singlet Φ. From the standpoint of the see-saw mechanism, sufficiently small

\footnote{\textit{e.g.,} the assumption of minimal lepton flavor violation\cite{18}, Peccei-Quinn\cite{19} symmetry, etc.}
Dirac masses M_D for TeV scale M_R and $\mathcal{O}(1)$ Yukawa couplings can arise if the VEV of H_n is small and solely responsible for a non-vanishing M_D. Ensuring that the SM Higgs doublet H does not contribute to M_D in this case requires imposition of an additional symmetry. Such a symmetry can be a global $U(1)'$ symmetry that is broken both spontaneously and explicitly (softly)\cite{20,23}, a discrete flavor symmetry \cite{24,28} or a local $U(1)'$ symmetry. In Table I we classify variations of the possible $U(1)'$ extensions, including the relevant particle content and $U(1)'$ charges. We distinguish two possibilities for the global $U(1)'$, corresponding to whether or not the additional doublet is charged under this group. In the case of the local $U(1)'$ we denote the additional SM gauge singlet fermions required for anomaly cancellation as Ψ.

As we discuss below, the local $U(1)'$ and type-II global $U(1)'$ also admit a dark matter candidate. In the latter instance, the pseudo-Goldstone boson associated with spontaneous symmetry breaking is the dark matter particle, while explicit, soft breaking is needed to provide a dark matter mass. A simpler version that includes only the SM doublet H and singlet Φ and that does not consider neutrino masses has been studied in Ref. \cite{20}. In the present context, the generation of the neutrino Dirac mass in the type-II global $U(1)'$ entails an additional, explicit breaking of the symmetry as one may see from the set of possible Yukawa interactions:

\begin{equation}
- \mathcal{L}_Y = \ell_L^i Y_{\nu i j} H E_{R j} + \ell_L^i Y_{\nu i j} \bar{H} N_R^j + \ell_L^i \lambda_{i j} \bar{H}_n N_R^j + \text{h.c. } VEV
\end{equation}

Given the $U(1)'$ charges of the N_R and H, the second term explicitly breaks the symmetry as does the third term if H_n is uncharged. For the type-II global $U(1)'$, for which one must include an explicit symmetry-breaking term in the potential to generate the dark matter mass, it would be unreasonable not to include both of the symmetry breaking terms in Eq. (3) as well. In this case, one would have to explain the disparity between a tiny coupling Y_ν associated with the SM Higgs vacuum expectation value (VEV) and an $\mathcal{O}(1)$ λ in the presence of the tiny VEV of the neutral component of H_n. Consequently, we do not consider this scenario further.

In contrast, the type-I global $U(1)'$ allows one to forbid the second term in Eq. (3), while the third term needed for the TeV-scale seesaw mechanism is allowed. However, the most general scalar potential also includes operators that are invariant under the new $U(1)'$ but also provide a mechanism for decay of the pseudo-Goldstone boson, thereby precluding its
viability as a dark matter particle. Consequently, we focus our attention on the local $U(1)'$ scenario, for which both a viable dark matter particle and TeV-scale seesaw mechanism appears possible without the introduction of explicit symmetry-breaking terms.

For the local $U(1)'$ case, the neutral component H^0_n gets a small vacuum expectation value (VEV) through its coupling with the SM Higgs and is solely responsible for the origin of Dirac neutrino mass matrix. Three new SM gauge singlet ψ_L are introduced to cancel the anomalies. The most general scalar potential is then given by

$$V = -m^2_1 H^\dagger H + m^2_2 H^\dagger_n H_n - m^2_0 \Phi^\dagger \Phi + \lambda_0 (\Phi^\dagger \Phi)^2 + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H^\dagger_n H_n)^2$$

$$+ \lambda_3 (H^\dagger H)(H^\dagger_n H_n) + \lambda_4 (H^\dagger H_n)(H^\dagger_n H) + \lambda_5 (\Phi^\dagger \Phi)(H^\dagger H)$$

$$+ \lambda_6 (\Phi^\dagger \Phi)(H^\dagger_n H_n) + [\lambda_n \Phi(H^\dagger_n H) + \text{h.c.}] .$$

TABLE I: Quantum numbers of fields under local $U(1)'$, type-I and type-II global $U(1)'$ symmetry. Here SB denotes explicit symmetry breaking term, DM denotes possible dark matter candidate in this scenario.

\[
\begin{array}{|c|c|c|c|}
\hline
 & \text{Local $U(1)'$} & \text{Type-I global $U(1)'$} & \text{Type-II global $U(1)'$} \\
\hline
H & 0 & 0 & 0 \\
\hline
H^0_n & 1 & 1 & 0 \\
\hline
\Phi & 1 & 1 & 1 \\
\hline
N^R & 1 & 1 & 1 \\
\hline
\Psi & 1 & \times & \times \\
\hline
Z_2 & \checkmark & \times & \times \\
\hline
SB & \times & \checkmark & \checkmark \\
\hline
DM & \Psi & \times & \delta \\
\hline
\end{array}
\]

Here we assume λ_n is a real parameter with positive mass dimension2. In the case of the type-II global $U(1)'$ scenario, the corresponding operator breaks a Z_2 symmetry that would otherwise guarantee stability of the possible dark matter candidate. It should also be noted that the interaction term, $(H^\dagger H_n)(H^\dagger_n H) + \text{h.c.}$, is forbidden by the $U(1)'$ symmetry. In

\footnote{Note that this operator is multiplicatively renormalized logarithmically and is, therefore, technically natural.}
what follows, we define \(H = (h^+, (h + iA + v_1)/\sqrt{2})^T \), \(H_n = (\rho^+, (\eta + i\delta + v_2)/\sqrt{2})^T \) and \(\Phi = (\phi + i\varphi + v_0)/\sqrt{2} \).

After imposing the conditions for the VEVs \(v_j \) to yield an extremum, one has
\[
v_0^2 \approx \frac{4m_0^2\lambda_1 - 2m_2^2\lambda_5}{4\lambda_0\lambda_1 - \lambda_2^2}, \quad v_1^2 \approx \frac{4m_0^2\lambda_0 - 2m_2^2\lambda_5}{4\lambda_1\lambda_0 - \lambda_2^2}, \quad v_2 \approx -\frac{\lambda_nv_0v_1}{\sqrt{2}m_2^0}.
\]
(5)

It is clear that \(v_2 \) is suppressed by \(m_2^2 \). By setting \(m_2^2 \) to be sufficiently large or \(\lambda_n \) to be tiny, \(v_2 \) can be of order several MeV – the salient feature of our model. In the basis \((h, \eta, \phi)\) we then derive the mass-squared matrix for the CP-even scalars scalars
\[
M_{\text{CP even}}^2 = \begin{pmatrix}
 m_{hh}^2 & v_1v_2(\lambda_3 + \lambda_4) + \frac{\lambda_nv_0v_1}{\sqrt{2}} & v_1v_0\lambda_5 + \frac{\lambda_nv_0}{\sqrt{2}} \\
 \bullet & m_{\eta\eta}^2 & v_2v_0\lambda_6 + \frac{\lambda_n}{\sqrt{2}} \\
 \bullet & \bullet & m_{\phi\phi}^2
\end{pmatrix},
\]
(6)

where
\[
m_{hh}^2 = 2v_1^2\lambda_1 - \frac{\lambda_nv_0v_2}{\sqrt{2}v_1}, \quad m_{\eta\eta}^2 = 2v_2^2\lambda_2 - \frac{\lambda_nv_0v_1}{\sqrt{2}v_2}, \quad m_{\phi\phi}^2 = 2v_0^2\lambda_0 - \frac{\lambda_nv_1v_2}{\sqrt{2}v_0},
\]
(7)

and where \(\bullet \) symbol indicates the entry \((M^2)_{jk}\) is equal to \((M^2)_{kj}\). We also derive the mass matrix for the \(CP-\) odd scalars in the basis \((A, \delta, \varphi)\):
\[
M_{\text{CP odd}}^2 = \begin{pmatrix}
 m_{AA}^2 & -\frac{\lambda_n}{\sqrt{2}} & -\frac{\lambda_n}{\sqrt{2}} \\
 \bullet & m_{\delta\delta}^2 + \frac{\lambda_n}{\sqrt{2}} & \bullet \\
 \bullet & \bullet & m_{\varphi\varphi}^2
\end{pmatrix},
\]
(8)

where
\[
m_{AA}^2 = \frac{\lambda_nv_0v_2}{\sqrt{2}v_1}, \quad m_{\delta\delta}^2 = \frac{\lambda_nv_0v_1}{\sqrt{2}v_2}, \quad m_{\varphi\varphi}^2 = \frac{\lambda_nv_1v_2}{\sqrt{2}v_0}.
\]
(9)

It is straightforward to see that that there is only one massive CP-odd scalar with squared mass eigenvalue: \(\lambda_n(v_0^2v_1^2 + v_1^2v_2^2 + v_0^2v_2^2)(v_0v_1v_2)^{-1}/\sqrt{2} \). The other two are would-be Goldstone bosons eaten by the gauge fields \(Z \) and \(Z' \), respectively.

Before proceeding, we make additional comparisons with the global \(U(1)' \) scenarios. As indicated earlier, the spontaneous breaking of a global \(U(1)' \) symmetry would lead to a massless Goldstone boson, a possibility that is severely constrained by big bang nucleosynthesis \[29\] and observations of Bullet Cluster galaxies \[30\]. Hence, such the global \(U(1)' \)
symmetry must be explicitly broken, which may be accomplished by adding following terms to the Higgs potential \[20\]

\[
V_\Delta = \Delta_1 \Phi^2 + \Delta_2 \Phi + \text{h.c.}. \tag{10}
\]

Note that the operators in \(V_\Delta\) close under renormalization. Though \(\Delta_1\) and \(\Delta_2\) are in general complex parameters, we set them to be real for simplicity. Adding Eq. (10) to Eq. (4) and imposing the minimization conditions, one has

\[
M_{\text{CP even}}'^2 = M_{\text{CP even}}^2 + \Delta M^2, \quad M_{\text{CP odd}}'^2 = M_{\text{CP odd}}^2 - \Delta M^2, \tag{11}
\]

where

\[
\Delta M^2 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2\Delta_1
\end{pmatrix}. \tag{12}
\]

The VEVs of Higgs fields in this case are quite similar to that in Eq. (5), only up to the replacement \(m_0^2 \rightarrow m_0^2 + \Delta_1\).

Compared with the local \(U(1)’\) case, one does not require the extra fermion singlets to cancel anomalies. However, one does need to add explicit \(U(1)’\) symmetry breaking terms to the Higgs potential by hand. As discussed above, there then exists no reason not to include the explicit \(U(1)’\)-breaking terms in the \(\mathcal{L}_Y\) as well. For the local \(U(1)’\) scenario, the extra fermion singlet can be dark matter candidate, as we discuss in section IV. For the type-I global \(U(1)’\) scenario, there is no dark matter candidate. For the type-II global \(U(1)’\) scenario, the imaginary part of the scalar singlet can be dark matter candidate \[20\], but the \(U(1)’\) symmetry in this case is only responsible for the stability of \(\phi_a\), and it has nothing to do with the VEV of the new Higgs doublet.

As with any local \(U(1)’\) scenario, one must consider \(Z-Z’\) mixing and constraints from electroweak precision observables. In the present instance, the kinetic term \((D_\mu H_n)^\dagger(D^\mu H_n)\) contributes to the \(Z-Z’\) mixing at both the tree level and one-loop level. Effects of the latter are characterized by the mixing tensor \(\Pi^T_{ZZ’}\) given in the Appendix. Taking both contributions into account, the mass eigenvalues of \(Z\) and \(Z’\) are then

\[
M_Z^2 = \frac{1}{4} c^2 (g^2 + g'^2) (v_1^2 + v_2^2) + s^2 g'^2 (v_0^2 + v_2^2) - cs \left(g'' \sqrt{g^2 + g'^2 v_2^2} + 2 \hat{\Pi}^T_{ZZ’} \right), \tag{13}
\]

\[
M_{Z’}^2 = \frac{1}{4} s^2 (g^2 + g'^2) (v_1^2 + v_2^2) + c^2 g'/2 (v_0^2 + v_2^2) + cs \left(g'' \sqrt{g^2 + g'^2 v_2^2} + 2 \hat{\Pi}^T_{ZZ’} \right), \tag{14}
\]

where \(c = \cos \theta \) and \(s = \sin \theta \), with

\[
\tan 2\theta = \frac{4v_0^2g''\sqrt{g'^2 + g''^2} + 8\Pi_{Z'Z}^I}{4g'^2(v_0^2 + v_2^2) - (g^2 + g'^2)(v_1^2 + v_2^2)}.
\]

The mixing matrix that appears in the change of the basis form \((A_{3\mu}, B_{3\mu}, B'_{3\mu})\) to \((Z_{3\mu}, A_{3\mu}, Z'_{3\mu})\) is given by

\[
\begin{pmatrix}
Z_{3\mu} \\
A_{3\mu} \\
Z'_{3\mu}
\end{pmatrix} =
\begin{pmatrix}
c & 0 & -s \\
0 & 1 & 0 \\
s & 0 & c
\end{pmatrix}
\begin{pmatrix}
c_w & -s_w & 0 \\
s_w & c_w & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
A_{3\mu} \\
B_{3\mu} \\
B'_{3\mu}
\end{pmatrix},
\]

where \((c_w, s_w) \equiv (\cos \theta_W, \sin \theta_W)\) with \(\theta_W\) the standard model weak mixing angle.

Phenomenological constraints typically require the \(Z-Z'\) mixing angle \(\theta\) to be less than \(\sim 1 - 2 \times 10^{-3}\) \[40\] and the mass of extra neutral gauge boson to be heavier than \(865 \sim 910\) GeV \[41\]. A suitable mass hierarchy and mixing between \(Z\) and \(Z'\) are maintained by setting \(v_0\) relatively large (i.e., \(v_0 > 1\) TeV), \(v_2 \sim 1\) MeV and \(m_{\eta,\delta} \sim 150\) GeV. However, it should be mentioned that, \(Z'\) in our model only couples to the BSM fields such that constraint given above could be relaxed. The masses of \(W^\pm\) are \(1/2g\sqrt{v_1^2 + v_2^2}\). It is straightforward to determine that for this choice of parameters, the constraint on the model from the \(\rho\) parameter \(\rho \equiv \frac{M_W}{M_Z\cos \theta_w} \approx 1 \pm 0.001\) is maintained as the constraint on \(Z-Z'\) mixing is fulfilled.

III. Neutrino Masses and Lepton Flavor Violations

Tiny Majorana neutrino masses arise naturally in this framework, as one may observe from Eqs. \((3,5)\). We now set \(Y_0 = 0\) as required by the \(U(1)'\) symmetry and charge assignments. The entries in Dirac neutrino mass matrix are proportional to \(\lambda_{ij} v_2\), such that they may be at the MeV scale while keeping \(\lambda \sim O(1)\). In this case we only need TeV scale right-handed Majorana neutrinos to suppress the active neutrino masses to the eV scale.

The mass term for \(N_R\) requires introduction of the dimension-five operator

\[
\frac{1}{\Lambda} \Phi^\dagger N_R N^C_R + \text{h.c},
\]

where the scale \(\Lambda\) is presumably associated with integrating out additional heavy fields. For example, one may make the theory renormalizable by introducing three extra fields \(S_L\) that
are gauge singlets and uncharged under the \(U(1)' \) symmetry. Their mass term as well as Yukawa interactions with the right-handed neutrinos can be written as

\[
S_L Y_N \Phi^\dagger N_R + \overline{S_L} M_S S_L + \text{h.c.} .
\] (18)

Integrating out heavy fields \(S_L \), gives \(1/\Lambda \sim Y_N^T Y_N / M_S \), yielding the right-handed neutrino mass matrix written as

\[
M_R = -v_0^2 Y_N \lambda_{NR}^T .
\] (19)

Tiny, non-vanishing Majorana masses of active neutrinos can be obtained by integrating out heavy Majorana neutrinos:

\[
M_\nu = v_0^2 \lambda M_{NR}^T \lambda^T = v_0^2 \lambda^2 (Y_N^T)^{-1} M_S Y_N^{-1} \lambda^T .
\] (20)

Setting \(\mathcal{O}(v_2) \sim 1 \text{ MeV}, \mathcal{O}(v_0) \sim 1 \text{ TeV} \) and \(\mathcal{O}(M_S) \sim 100 \text{ GeV} \), then electronvolt scale neutrino masses only require \(\lambda \) and \(Y_N \) to be \(\mathcal{O}(1) \).

The structure of the Yukawa matrix \(\lambda \) is of course constrained by the results of neutrino oscillation studies. Below we provide an illustrative example that is consistent with these constraints. In addition, the Yukawa interactions in Eq. (3) lead to non-conservation of charged lepton flavor at the one-loop level. Given the TeV scale masses for the \(N_R \) and \(\mathcal{O}(1) \) Yukawa couplings \(\lambda \) one might anticipate observable charged lepton flavor violation (CLFV). At present, the most stringent constraint arises from the non-observation of the decay \(\mu \to e + \gamma \). The associated branching ratio is given by

\[
\text{BR}(\mu \to e + \gamma) = \frac{3e^2}{64\pi^2 G_F^2} |\mathcal{A}|^2 \left(1 - \frac{m_e^2}{m_\mu^2} \right)^3 ,
\] (21)

where the amplitude \(\mathcal{A} \) arises at one-loop order and depends on the mass of the \(\eta \) scalar and masses \(M_i \) of the TeV-scale \(N_R \) as

\[
\mathcal{A} = \frac{\lambda e^i \lambda^*_e}{12(M_i^2 - m_\eta^2)} \left\{ 2 + \frac{9m_\eta^2}{M_i^2 - m_\eta^2} + 6 \left(\frac{m_\eta^2}{M_i^2 - m_\eta^2} \right)^2 - \frac{6M_i^4m_\eta^2}{(M_i^2 - m_\eta^2)^3} \ln \left(\frac{M_i^2}{m_\eta^2} \right) \right\} .
\] (22)

Here, a sum over \(i \) is assumed.

Looking to the future, experiments searching for the \(\mu - e \) conversion in nuclei with competitive sensitivity are planned at Fermilab and J-PARC. For this process, the dominant contribution arises from the exchange of a virtual photon that couples to a loop-induced \(\mu - e \)}
charge radius operator. Nuclear coherence enhances this contribution by $\sim Z^2$ over that associated with the magnetic dipole operator, while the Z^0-exchange dipole and charge-radius conversion amplitude is suppressed by a factor of m_μ^2/m_Z^2. Retaining only the leading contribution yields the branching ratio \[BR^A_{\mu \rightarrow e} = R^0_{\mu \rightarrow e}(A) \left| 1 + \frac{\tilde{g}^p_{LV} V^p(A)}{A_R D(A)} + \frac{\tilde{g}^n_{LV} V^n(A)}{A_R D(A)} \right|^2 BR(\mu \rightarrow e\gamma), \] with \[R^0_{\mu \rightarrow e}(A) = \frac{G_F^2 m_\mu^5}{192\pi^2 \Gamma_{\text{capt}}^A} |D(A)|^2, \] and \[\tilde{g}^p_{LV} = 2g^u_{LV} + g^d_{LV}, \quad \tilde{g}^n_{LV} = g^u_{LV} + 2g^d_{LV}, \quad A_R = \frac{\sqrt{2} A}{8 G_F m_\mu}; \] \[g^q_{LV} = -\frac{s_w^2}{72\pi^2} \frac{m^2_W}{M_i^2 - m^2_\eta} Q_q^e \lambda_{ei} \lambda^*_{\mu i} \left[2 + \frac{3M_i^2}{M_i^2 - m^2_\eta} + 6 \left(\frac{M_i^2}{M_i^2 - m^2_\eta} \right)^2 - 6 \left(\frac{M_i^2}{M_i^2 - m^2_\eta} \right)^3 \ln \frac{M_i^2}{m^2_\eta} \right], \] where $D(A)$, $V^p(A)$ and $V^n(A)$ are overlap integrals as a function of atomic number \[32. \]

The current experimental upper bounds for the $BR(\mu \rightarrow e\gamma)$ and $\mu - e$ conversion in $^{197}_{79}$Au are 1.2×10^{-11} and 7.0×10^{-13} \[32, 34 \], respectively. To illustrate the impact of these present and prospective limits, we assume that the heavy neutrinos are degenerate and plot in Fig. 1 constraints on $|\lambda^*_{\mu i} \lambda_{ei}|$ as a function of M_i implied by $\mu \rightarrow e\gamma$ (the solid line) and $\mu - e$ conversion (the dotted line) processes. The dot-dashed line is the possible constraint from the future $\mu - e$ conversion experiments \[34 \]. By assuming $M_i \sim 300$ GeV, $m_\rho \sim 150$ GeV, we obtain an upper bound for the $|\lambda^*_{ei} \lambda_{\mu i}|$ of roughly 4×10^{-4}. As a result, $\lambda \sim \mathcal{O}(10^{-2})$. It can be found from the figure that the current bounds on $\mu - e$ conversion do not provide significant constrains on the parameter space. On the other hand, the sensitivities of prospective future $\mu - e$ conversion searches \[34 \] exceed that of the MEG experiment.

\section*{IV. DARK MATTER}

The fact that about 23% of the Universe is made of dark matter has been firmly established, while the nature of the dark matter still eludes us. A weakly interacting massive particle (WIMP) is a promising dark matter candidate, since the WIMP relic density can be
FIG. 1: $|\lambda_{\mu}^* \lambda_{e1}|$ as function of M_i (assumed here to be degenerate) constrained by charged lepton flavor-violating processes. The solid line is the constraint from the null result for $\mu \to e\gamma$ [33]. The dotted line is the constraint of the current null result for $\mu - e$ conversion in 197Au. The dot-dashed line gives the reach of future $\mu - e$ conversion searches, assuming a sensitivity to the conversion branching ratio of 10^{-18} [34].

naturally near the experimental observed value for a WIMP mass around the electroweak scale. In our model the fields ψ_L, introduced to cancel anomalies of the $U(1)'$ gauge symmetry (one for each N_R), provide a WIMP candidate. The ψ_L mass can be generated through a dimension-5 effective operator, just in the similar way as that for the right-handed neutrinos.

$$\frac{1}{\Lambda} \bar{Y}_{ij} \Phi^2 \psi_L^C \psi_{Lj},$$

where Λ is a cutoff scale. After the spontaneously broken of the $U(1)'$, ψ gets non-zero mass

$$(M_\psi)_{ij} = \frac{v^2}{\Lambda} \bar{Y}_{ij}.$$ \hspace{1cm} (25)

Due to the Z_2 discrete flavor symmetry, the lightest ψ_L is a massive stable particle and, thus, can be the cold dark matter candidate.

There are three annihilation channels for the dark matter illustrated in Fig. 2: (1) $\psi \bar{\psi}$ annihilates into the SM fields through the mixing between Z and Z'; (2) $\psi \bar{\psi}$ annihilates into the SM particles directly through the mixing between the SM Higgs and the scalar singlet;
FIG. 2: Feynman diagrams for the annihilation of the dark matter.

![Feynman diagrams](image)

FIG. 3: Left panel: Dark matter relic abundance as a function of the dark matter mass. The horizontal band indicates the region consistent with the current relic density measurement from WMAP [2]. Right panel: Scaled dark matter direct detection cross section as a function of the dark matter mass. The dashed line indicates the current bound from XENON 100 [45].

(3) \(\psi \bar{\psi} \) annihilates into the \(Z'Z' \), which decays subsequently into the SM fields through the mixing with the \(Z \) boson. We calculate the resulting relic density and the related direct detection cross section using the Micromegas [42, 43], which solves the Boltzman equation numerically and utilizes CALCHEP [44] to calculate the relevant cross sections.

We plot in Fig. 3 (left panel) the dark matter relic abundance as a function of the dark matter mass while varying the parameters in the scalar potential over the following ranges: \(m_0 \in [1 \times 10^2 \text{ GeV}, 1 \times 10^4 \text{ GeV}] \), \(m_1 \in [1 \times 10^2 \text{ GeV}, 1 \times 10^3 \text{ GeV}] \), \(\lambda_0 \in [0.1, 10] \), \(\lambda_1 \) and \(\lambda_5 \in [0.01, 1] \), and \(M_{Z'} \in [200 \text{ GeV}, 500 \text{ GeV}] \). The horizontal band represents the region consistent with the current relic density measurement from WMAP, \(0.104 < \Omega h^2 < 0.116 \) [2]. It is evident from the figure that one can achieve the observed relic density with dark matter mass in the range \(50 \sim 500 \text{ GeV} \).

We plot in Fig. 3 (right panel) the dark matter direct detection cross section, scaled by
the fraction of the relic density produced, as a function of the dark matter mass. The black dashed line gives the latest experimental constraint from the XENON 100 [45]. We conclude that the expected spin-independent direct-detection scattering cross section is below the current experimental bound. However, one could expect a signal in the future XENON1T [46], which aims to probe the cross sections of order $\sigma \sim 2 \times 10^{-47} \text{ cm}^2$, within two years of operation.

It is interesting to analyze the dependence of the relic density and direct detection cross section on the ϕ-h mixing angle θ. To that end, we plot in Fig. 4 (left panel) the mixing angle as a function of the dark matter mass, assuming saturation of the relic density. We observe that in general the magnitude of the mixing angle is less than 15°, making the impact on Higgs boson production at the LHC marginal. In the right panel, we show the scaled direct detection cross section as a function of the mixing angle and dark matter mass. We see that a non-vanishing signal in future search with a sensitivity of $\sigma_{\text{SI-scaled}} \sim 10^{-47}$ would require a mixing angle larger than one degree in magnitude. In principle, it is conceivable that a future high-precision Higgs factory could provide a complementary probe of doublet-singlet mixing at this level.
V. LEPTOGENESIS

In addition to providing a viable dark matter candidate, the $U(1)'$ scenario allows for a viable baryogenesis via leptogenesis scenario. As the Majorana masses are in the hundreds of GeV range, there exists at least some possibility of testing or constraining this leptogenesis mechanism experimentally. To explore this possibility in an illustrative case, we assume that right-handed Majorana neutrinos are hierarchical, $M_1 \ll M_{2,3}$, so that studying the evolution of the number density of N_1 is sufficient. In the mass scale regime of interest here, the interactions mediated by all charged lepton Yukawas are in equilibrium. Consequently, we should consider flavor-dependent leptogenesis. The CP-violating asymmetries generated by N_1 decays are

$$\varepsilon_{\alpha\alpha} = \frac{1}{8\pi} \frac{1}{(\lambda^\dagger \lambda)_{11}} \sum_j \text{Im} \{ \lambda^*_\alpha (\lambda^\dagger \lambda)_{1j} \lambda_{\alpha j} \} g \left(\frac{m_j^2}{m_1^2} \right),$$

(27)

where the wave-function plus vertex contributions are included in

$$g(x) = \sqrt{x} \left[\frac{1}{1 - x} + 1 - (1 + x) \ln \left(\frac{1 + x}{x} \right) \right] \to -\frac{3}{2} x^{-1/2} - \frac{5}{6} x^{-3/2} \quad (1 \ll x).$$

(28)

In addition to $\varepsilon_{\alpha\alpha}$, the final baryon asymmetry depends on wash-out parameters:

$$K_{\alpha\alpha} \equiv \frac{\Gamma(N_1 \to \eta \ell_\alpha)}{H(M_1)} = \frac{|\lambda^*_\alpha|^2 M_1/4\pi}{\sqrt{g^* M_1^2/M_{\text{pl}}}} \equiv \frac{\tilde{m}_{\alpha\alpha}}{\tilde{m}^*};$$

(29)

where $H(M_1)$ denotes the value of the Hubble rate evaluated at a temperature $T = M_1$, M_{pl} is the Planck mass, M_1 is the mass of the lightest right-handed neutrino, $\tilde{m}^* = 3 \times 10^{-3}$ eV and $\tilde{m}_{\alpha\alpha} = \lambda^*_\alpha \lambda_{\alpha 1} v_1^2 M_1^{-1}$. Note that we have expressed $K_{\alpha\alpha}$ in terms of a scale associated with the neutrino mass, $\tilde{m}_{\alpha\alpha}$, and the remaining dimensional factors into \tilde{m}^*.

The washout factor $K_{\alpha\alpha}$ should be smaller than some maximum, K_{Max}; otherwise the washout effect would be too strong to generate the proper matter-antimatter asymmetry. For conventional thermal leptogenesis $K_{\text{Max}} \sim 1$ and while it may be as large as ~ 1000 for resonant leptogenesis [39]. As we show below, $K_{\alpha\alpha}$ can be of $O(100)$ the present instance, which is since $\varepsilon_{\alpha\alpha}$ in this model can be much larger than that of the conventional thermal leptogenesis case. The lepton asymmetry for the flavor α can be expressed approximately as

$$Y_{\alpha\alpha} \approx \frac{\varepsilon_{\alpha\alpha}}{g_*} \left[\frac{\tilde{m}_{\alpha\alpha}}{8.25 \times 10^{-3} \text{ eV}} \right]^{-1} \left(\frac{0.2 \times 10^{-3} \text{ eV}}{\tilde{m}_{\alpha\alpha}} \right)^{-1.16}.$$

(30)
Non-perturbative sphaleron interactions partially convert this lepton asymmetry into a net baryon number asymmetry. Taking into account the flavor effects, the final baryon asymmetry is given by

\[Y_B \approx -\frac{8}{25} \left(\frac{40}{13} Y_{ee} + \frac{51}{12} Y_{\mu\mu} + \frac{51}{13} Y_{\tau\tau} \right). \]

(31)

It should be noted that analytical solutions given in Eqs. (30,31) only work for the case that the $\Delta L = 1$ washout effect is much larger than the $\Delta L = 2$ wash-out effect, which can be expressed as

\[K_{\Delta L=2} = \sum_{ij} \left| (\lambda^\dagger \lambda)_{ij} \right|^2 \frac{1}{M_i M_j} \frac{TM_{pl}}{32 \pi^3 \zeta(3)} \sqrt{\frac{90}{8\pi^2 g^*}}, \]

(32)

for $T < M_1$. If $K_{\Delta L=2}$ is comparable with the $K_{\alpha\alpha}$, one must resort to a numerical, rather than analytic, solution to the Boltzmann equations.

We emphasize that the neutrino Yukawa couplings enter both $\varepsilon_{\alpha\alpha}$ and the washout factor, translated into $\tilde{m}_{\alpha\alpha}$ in Eq. (30). As a result, the magnitudes of the $\lambda_{\alpha 1}$ are strongly bounded: $|\lambda_{\alpha 1}| \lesssim 10^{-6}$. If the structure of the neutrino Yukawa matrix is anarchical, we would then expect the magnitudes of the couplings that enter CLFV observables to be $|\lambda_{\mu 1}^* \lambda_{e i}| \lesssim 10^{-12}$, far below a level that could be probed in the next generation of CLFV searches (see Fig. 1). Consequently, observable CLFV could arise only in the presence of a strongly hierarchical Yukawa matrix, with $|\lambda_{\mu 1}^* \lambda_{e i}|$ for $i = 2, 3$ six to seven orders of magnitude larger than for $i = 1$. Such a strong deviation from the assumption of anarchy would suggest the presence of an additional lepton flavor symmetry, as we now discuss.

To illustrate how a flavor symmetry might lead to a hierarchical structure, we assume the neutrino sector admits a $U(1)_\ell$ symmetry. To be concrete, the $U(1)_\ell$ charges of the fields are given by $Q(\ell_L) = Q(\ell_R) = 1$, $Q(1/\sqrt{2}(e^{i\alpha} N_{R2} + e^{i\beta} N_{R3})) = -Q(1/\sqrt{2}(e^{-i\alpha} N_{R2} - e^{-i\beta} N_{R3})) = 1$ and $Q(N_{R1}) = 0$. We assume that the $U(1)_\ell$ symmetry is explicitly broken by the GUT or Planck scale physics, such that Yukawa interaction $\varepsilon \ell_L H_n N_{R1}$ emerges. In this case, the Yukawa interaction matrix can be given by

\[\lambda = \begin{pmatrix} \varepsilon & a e^{i\alpha} & a e^{i\beta} \\ \varepsilon & b e^{i\alpha} & b e^{i\beta} \\ \varepsilon & c e^{i\alpha} & c e^{i\beta} \end{pmatrix}, \]

(33)

where ε arises from lepton-number-violating Yukawa interaction term and is, thus, relatively small; a, b and c are arbitrary complex parameters, the scale of which is restricted by lepton-
flavor-violating decays. Following from Eq. (33), the mass matrix of the right-handed neutrinos is given by

\[
M_R = \begin{pmatrix}
M_1 & 0 & 0 \\
0 & M_2 & M_2 c_{\alpha-\beta} \\
0 & M_2 c_{\alpha-\beta} & M_2
\end{pmatrix} + \Delta M ,
\]

(34)

where \(c_{\alpha-\beta} = \cos(\alpha - \beta)\). Given the neutrino Yukawa coupling in Eq. (33) and heavy neutrino mass matrix in Eq. (34), the structure of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix implied by neutrino oscillation data cannot arise solely from the neutrino sector. We recall that the PMNS matrix follows from the mismatch between the diagonalizations of the neutrino mass matrix and the charged lepton mass matrix, i.e. \(V_{\text{PMNS}} = V_e^\dagger V_\nu\), where \(V_e\) and \(V_\nu\), respectively, rotate the left-handed charged and neutral lepton flavor eigenstates to the mass eigenstates. The correct PMNS matrix may then emerge from an appropriately-chosen structure for the charged lepton Yukawa matrix.

\[\text{FIG. 5: } Y_B \text{ as a function of } \alpha. \text{ The horizontal line is the center value of the experimental observation.}\]

In Fig. 5 we plot \(Y_B\) as a function of \(\alpha\), by setting \(\varepsilon \sim 10^{-6}\), \(\beta = 0\) and \(|a| = |b| = |c| \cdot 10^{-2} = 10^{-4}\) with their phases vary arbitrarily in the range \([0, \pi]\). We also set \(M_1 = 200 \text{ GeV}\) and \(M_2 = 500 \text{ GeV}\). In this case, the \(\Delta L = 2\) washout factor is \(K_{\Delta L=2}^{\text{Max}} \sim 0.1\), which can be neglected compared with the \(\Delta L = 1\) wash-out factor: \(K_{\alpha\alpha} \sim 50\). In this case, we may
safely take Eq. [30] as the analytical solution to the Boltzmann equations. The horizontal
line in the figure represents the current experimental value of Y_B. It is clear that the matter-
antimatter asymmetry of the Universe can be generated. Notice that $K_{aa} \gg 1$ in our case,
which a salient feature of this scenario compared with the conventional thermal leptogenesis
case but not one requiring near degeneracies in the heavy neutrino spectrum. Note that for
the choice of parameters given here, $|\lambda_{\mu i}^* \lambda_{ei}| < 10^{-8}$ for $i = 2, 3$, implying an unobservable
signal in the next generation of CLFV searches3.

VI. CONCLUSION

The search for new physics at the TeV scale is motivated in part by naturalness consid-
erations and in part by the possibility that new TeV scale dynamics may account for the
origin of the visible and dark matter of the universe. On the other hand, the observation
of neutrino oscillations and the tiny scale of neutrino masses point to new physics at much
higher scales, as suggested by the conventional seesaw paradigm. It is interesting to ask
whether nature may have generated both neutrino mass and the matter content of the uni-
verse at the TeV scale. If so, then one would anticipate signatures in experiments sensitive
to BSM physics at this scale.

In this paper, we have analyzed a simple BSM scenario that can account for dark matter,
baryogenesis, and neutrino mass with new TeV scale degrees of freedom and shown that,
nonetheless, the experimental signatures are likely to be sparse at best. We have made
no attempt to alleviate the Higgs mass fine tuning problem, though it is possible that an
embedding of this scenario in a U.V. complete model may do so. In this minimal scenario,
a neutrinophilic 2HDM with a local $U(1)'$ symmetry, the second Higgs doublet is entirely
responsible for neutrino mass. Its VEV can be naturally small, allowing for $O(1)$ Yukawa
couplings, TeV-scale right-handed neutrinos, and the possibility of observable CLFV. The
associated flavor-dependent low-scale (non-resonant) leptogenesis can account for the cosmic
baryon asymmetry, while the fermions needed for anomaly cancellation provide a suitable
dark matter candidate.

Despite having the ingredients for a plethora of experimental signatures, we find that

3 More generally, we have estimated that for $|\lambda_{\alpha i}^* \lambda_{\beta i}| \lesssim 10^{-6}$ ($\alpha, \beta = e, \mu, \tau$ and $i = 2, 3$) $\Delta L = 1$ washout
processes dominate over $\Delta L = 2$ processes.
simultaneously solving the neutrino mass, dark matter, and baryon asymmetry problems implies that most distinctive features of this scenario (apart from a non-distinctive spin-independent direct detection signal) would be out of reach in the foreseeable future in the absence of additional lepton flavor symmetries. This situation contrasts with a variety of other BSM scenarios, for which new symmetries must be imposed in order to suppress otherwise large deviations from the SM that are inconsistent with observation. In short, nature’s solutions to some of the key problems at the interface of particle physics and cosmology may lie at the TeV scale, yet either remain hidden from view or point to an even more complex flavor problem.

Acknowledgments

We thank O. Seto for alerting us to the potential importance of $\Delta L = 2$ washout processes. This work was supported in part by DOE contract DE-FG02-08ER41531 and the Wisconsin Alumni Research Foundation.

Appendix A: $Z - Z'$ mixing at the one-loop level

The one-loop contributions to the $\Pi_{ZZ'}^T$ are given by

$$\Pi_{ZZ'}^T = \frac{g g''(c_w^2 - s_w^2)}{(4\pi)^2} \left\{ \left(-\frac{1}{6} q^2 + m^2_\rho \right) (\alpha_\epsilon + 1) + q^2 F(m^2_\rho, m^2_\rho, q^2) - 2m^2_\rho F_1(m^2_\rho, m^2_\rho, q^2) \right\}$$

$$+ \frac{g g''}{(4\pi)^2 c_w} \left\{ \left(-\frac{1}{6} q^2 + \frac{1}{2} (m^2_\eta + m^2_\delta) \right) (\alpha_\epsilon + 1) + q^2 F(m^2_\eta, m^2_\eta, q^2) - m^2_\eta F_1(m^2_\eta, m^2_\eta, q^2) - m^2_\delta F_1(m^2_\eta, m^2_\delta, q^2) \right\} ,$$

$$\Pi_{ZZ'}^T = -\frac{c_w g g'' v_2^2}{2(4\pi)^2} \left[\alpha_\epsilon - F_0(m^2_W, m^2_\rho, q^2) \right] + \frac{g^2 g'' v_2^2}{2 c_w (4\pi)^2} \left[\alpha_\epsilon - F_0(m^2_Z, m^2_\eta, q^2) \right]$$

$$+ \frac{g g'' m^2_\eta v_2^2}{2 c_w (4\pi)^2} \left[\alpha_\epsilon - F_0(m^2_Z', m^2_\eta, q^2) \right] ,$$

$$\Pi_{ZZ'}^T = -\frac{g g''}{2 c_w (4\pi)^2} \left\{ (m^2_\eta + m^2_\delta) (\alpha_\epsilon + 1) - m^2_\eta \ln m^2_\eta - m^2_\delta \ln m^2_\delta \right\}$$

$$- \frac{g g''(c_w^2 - s_w^2)m^2_\rho}{c_w (4\pi)^2} \left(\alpha_\epsilon + 1 - \ln m^2_\rho \right) ,$$

where $\alpha_\epsilon = 1/\epsilon - \gamma_E + \ln 4\pi + \ln \mu^2$ and g'' is the coupling constant of the new $U(1)$ gauge symmetry. $\Pi_{ZZ'}^T$ comes from the vertex with two Higgs bosons and one gauge field, $\Pi_{ZZ'}^T$.

19
comes from the vertex with two gauge fields and one Higgs boson, while $\Pi_{ZZ'}^T$ comes from the vertex with two gauge fields and two Higgs bosons. We define $\hat{\Pi}_{ZZ'}^T \equiv \Pi_{ZZ'}^T + \Pi_{ZZ'}^T + \Pi_{ZZ'}^T$.

[34] J. P. Miller [Mu2E collaboration], Proposal to search for $\mu^- N \rightarrow e^- N$ with a singlet event sensitivity below 10^{-16}; Y. Kuno, et al., [COMET collaboration], An experimental search for lepton flavor violating $\mu - e$ conversion at sensitivity of 10^{-16} with a slow-extracted bunched beam; Y. Kuno et al., [PRISM/PRIME group], An experimental search for a $\mu - e$ conversion at sensitivity of 10^{-18} with a highly intense muon source: PRISM.