We consider particle acceleration by large-scale incompressible turbulence with a lengthscale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation which contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important in small scale. Moreover, by Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

Subject headings: acceleration of particles — turbulence — plasmas — cosmic rays — ISM: supernova remnants

1. INTRODUCTION

Charged particles are accelerated to relativistic energies in many astrophysical objects. In addition, turbulence is also expected. In fact, strong turbulence is observed in recent two and three dimensional simulations for supernova remnants (SNRs) (Giacalone & Jokipii 2007; Ilone et al. 2009; Guo et al. 2012; Caprioli & Spitkovsky 2012), pulsar wind nebulae (PWNes) (Komissarov & Lyubarsky 2004; Del Zanna et al. 2004; Porth et al. 2012), astrophysical jets (Aloy et al. 1999; Mizuta et al. 2010; López-Cámara et al. 2012), etc.

There are mainly two acceleration mechanisms by turbulence. One is due to wave-particle interactions, where the particle mean free path is comparable to the wavelength of electromagnetic fluctuations (e.g. Skilling 1975; Schlickeiser & Miller 1998). The other is due to large-scale fluctuations of plasma flows, where the particle mean free path is smaller than turbulent scales (e.g. Bykov & Toptygin 1993). Turbulence is generally divided by compressible and incompressible modes. Particle acceleration by large-scale compressible turbulence has been discussed in many paper (e.g. Bykov & Toptygin 1992; Ptuskin 1988; Jokipii & Lee 2010). However, particle acceleration by large-scale incompressible turbulence (turbulent shear acceleration) has not been investigated in detail, while Bykov & Toptygin (1993) has briefly discussed the turbulent shear acceleration.

Particle acceleration by a simple incompressible flow (shear flow) has already investigated in many paper (e.g. Berezhko & Krymskii 1981; Earl et al. 1988; Webb 1989; Ostrowski 1990; Rieger & Duffy 2006). However, shear flows are potentially unstable to the Kelvin-Helmholtz instability and produce turbulence. Therefore, the turbulent shear acceleration is expected to be important. In this Letter, we investigate the turbulent shear acceleration by considering ensemble average of an extended transport equation which includes particle acceleration by shear flows.

We first derive an ensemble-averaged transport equation in Section 2, and provide its analytical solutions for simple cases in Section 3. We then perform Monte Carlo simulations in Section 4. Section 5 is devoted to the discussion.

2. DERIVATION OF THE ENSEMBLE-AVERAGED TRANSPORT EQUATION

In this section, we derive the ensemble-averaged transport equation of energetic particles. Propagation and acceleration of energetic charged particles in a plasma flow are described by a transport equation. Parker (1965) derived the transport equation which includes spatial diffusion, convection, and adiabatic acceleration. After that his work was extended by several authors. For isotropic diffusion and a nonrelativistic plasma flow, the extended transport equation is given by (Equation (4.5) of Webb 1989 and Equation (9) of Williams et al. 1993)

\[
\frac{\partial F}{\partial t} + U_i \frac{\partial F}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\kappa \frac{\partial F}{\partial x_i} \right) = - \frac{p}{3} \frac{\partial U_i}{\partial x_j} \frac{\partial F}{\partial p} \\
\quad - \frac{1}{p^2} \frac{\partial}{\partial p} \left(\kappa \Gamma \frac{p^4}{v^2} \frac{\partial F}{\partial p} \right) \\
\quad - \frac{1}{p^2} \frac{\partial}{\partial p} \left(\kappa \frac{DU_i}{Dt} \frac{DU_i}{Dt} \frac{p^4}{v^2} \frac{\partial F}{\partial p} \right) \\
\quad + \frac{1}{v} \frac{\partial}{\partial x_i} \left(\kappa \frac{DU_i}{Dt} \frac{p^4}{v^2} \frac{\partial F}{\partial x_i} \right) = 0, \quad (1)
\]

where \(\Gamma \) is defined by

\[
\Gamma = \frac{1}{5} \left(\frac{\partial U_i}{\partial x_j} \frac{\partial U_j}{\partial x_i} + \frac{\partial U_i}{\partial x_i} \frac{\partial U_j}{\partial x_j} \right) - \frac{2}{15} \frac{\partial U_i}{\partial x_i} \frac{\partial U_j}{\partial x_j}. \quad (2)
\]

\(F(p, x, t, U_i, \kappa(p)) \) are the distribution function, position, plasma velocity, and spatial diffusion coefficient, respectively. \(v \) and \(p \) are the particle velocity and four momentum in the fluid rest frame, respectively. The spatial diffusion coefficient, \(\kappa \), is represented by \(\kappa(p) = \tau(p) v^2 / 3 \) for isotropic diffusion, where \(\tau(p) \) is the mean scattering time and \(rv \) is the particle mean free path. The first four terms of Equation (1) are the same as the Parker
equation and the other are additional terms. The fifth term describes the shear acceleration and the sixth term becomes important for \(v \sim U_i \).

In order to understand essential features of the turbulent shear acceleration, we consider incompressible turbulence \((\partial U_i/\partial x_i = 0) \) and do not take into account the spatial transport, that is, we consider the spatially averaged distribution function, \(V^{-1} \int_V Fd^3x \), where \(V \) is the system volume that we consider. By integrating Equation (1), the extended transport equation can be reduced to

\[
\frac{\partial}{\partial t} \frac{1}{V} \int_V Fd^3x - \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{\tau p^4}{3} \frac{\partial}{\partial p} V \int_V GFd^3x \right) - \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{\tau p^4}{3} \frac{\partial}{\partial p} \int_V DU_i DU_i \frac{\partial}{\partial t} Fd^3x \right) + Q(p) = 0 ,
\]

where \(Q(p) \) is the particle flux passing through the surface of the integrated volume. As long as we consider a timescale smaller than \(V^{1/3}/U_i \) and \(V^{2/3}/\kappa \), we can neglect the particle flux, \(Q(p) \). In other words, we can neglect escape of particles from the system when we consider a sufficiently large system size.

In this Letter, we assume that the plasma velocity field, \(U_i(x, t) \), is static, random, statistically homogenous and isotropic incompressible turbulence, that is, \(U_i = \delta u_i(x) \) and \((\delta u_i) = 0 \), where \((\ldots) \) denotes ensemble average. The correlation function of the plasma velocity field is given by

\[
(\delta u_i(x)\delta u_j(x')) = \int \frac{d^3k}{(2\pi)^3} K_{ij}(k)e^{i(k_i(x_j-x_i))} ,
\]

and

\[
K_{ij}(k) = S(k) \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right) ,
\]

where \(k \) and \(S(k) \) are the wavenumber and spectrum of incompressible turbulence, respectively. As long as we consider only particle acceleration, we can assume the velocity field to be static when the scattering timescale, \(\tau \), is smaller than the variable timescale of fluid, \(T \sim (k \times \max \{\delta u, v_{ph}\})^{-1} \), where \(v_{ph} \) is a phase velocity. In this letter, we consider \(\tau k < 1 \) and \(v > \max \{\delta u, v_{ph}\} \), so that \(\tau/T \sim \tau k \times \max \{\delta u, v_{ph}\} < \tau v k < 1 \). Hence, we can assume a static velocity field in this letter.

The distribution function of particles can also be divided by an ensemble-averaged component and a fluctuated one, that is, \(F = f + \delta f \) and \((F) = f \). The spatial average in Equation (4) can be interpreted as ensemble average because we consider a system size larger than the turbulent scale. Then, from Equation (3), the ensemble-averaged transport equation is represented by

\[
\frac{\partial f}{\partial t} - \frac{1}{p^2} \frac{\partial}{\partial p} \left\{ \frac{\tau p^4}{3} \left((\Gamma) + \left(u_j \frac{\partial \delta u_i}{\partial x_j} + \frac{\partial \delta u_i}{\partial x_i} \right) / v^2 \right) \frac{\partial f}{\partial p} \right\} = 0 ,
\]

where we have assumed that distributions of \(\delta f \) and \(\delta u_i \) are symmetric about the mean values, \(f \) and 0, respectively, so that third moments are zero. From Equations (4), (5), and (6), the ensemble-averaged transport equation can be represented by

\[
\frac{\partial f}{\partial t} - \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{TSA} \frac{\partial f}{\partial p} \right) = 0 ,
\]

where the momentum diffusion coefficient, \(D_{TSA}(p) \), is given by

\[
D_{TSA}(p) = \frac{2}{9} p^2 \tau(p) \int \frac{d^3k}{(2\pi)^3} S(k) k^2 \left(\frac{3}{5} + \frac{2\langle \delta u^2 \rangle}{v^2} \right) .
\]

We here consider turbulence with a large lengthscale compared with the particle mean free path, \(\tau v \), so that the upper limit of \(k \)-integral should be limited by \(\min\{k_{\max}, k_{\res} \} \) where \(k_{\max} \) is the maximum wavenumber of turbulence and \(k_{\res} \approx (\tau v)^{-1} \). The momentum diffusion coefficient, \(D_{TSA} \), is dominated by small scale turbulence when \(k^2 S(k) \) is an increasing function of \(k \). Therefore, the turbulent shear acceleration becomes important in the small scale for a Kolmogorov-like spectrum \((S(k) \propto k^{-11/3}) \).

3. ANALYTICAL SOLUTION

In this section, we present specific expressions of the momentum diffusion coefficient and analytical solutions of the ensemble-averaged transport equation for simple velocity spectra. We especially focus on the turbulent shear acceleration of relativistic particles (\(v \approx c \)) in non-relativistic turbulence (\(\langle \delta u^2 \rangle \ll c^2 \)), so that we neglect the term of \(\langle \delta u^2 \rangle/v^2 \) in Equation (5). We here assume a functional form of the mean scattering time, \(\tau(p) \), to be \(\tau_0(p/p_0)\alpha \), where \(p_0 \) and \(\tau_0 \) are the initial four momentum and the mean scattering time of particles with \(p_0 \), respectively. To make the expression simple, hereafter the four momentum, time, and momentum diffusion coefficient are normalized by \(p_0, \tau_0, \) and \(p_0^{-1} \), respectively. Normalized quantities are denoted with a tilde.

For a static monochromatic spectrum of incompressible turbulence, \(S(k) \) is given by

\[
S(k) = \frac{\langle \delta u^2 \rangle (2\pi)^2}{4k_0^3} \delta(k - k_0) .
\]

From Equations (8) and (11), the momentum diffusion coefficient is represented by

\[
\tilde{D}_{TSA} = \frac{(\tau_0 v_0 k_0)^2}{15} \frac{\langle \delta u^2 \rangle}{v^2} \tilde{p}^{2+\alpha} .
\]

For a static Kolmogorov-like spectrum of incompressible turbulence, we assume that \(S(k) \) is given by

\[
S(k) = \frac{\langle \delta u^2 \rangle (2\pi)^2}{6} \left(k_0^{-2/3} - k_0^{-2/3 - \alpha} \right) k_{\res}^{-11/3} \text{ for } k_0 \leq k \leq k_{\max} .
\]

Then, from Equations (9) and (11), the momentum diffusion coefficient is represented by

\[
\tilde{D}_{TSA} \approx \frac{(\tau_0 v_0 k_0)^2}{30} \frac{\langle \delta u^2 \rangle}{v^2} \tilde{p}^{2+\alpha} \left(\min\{k_{\max}, k_{\res} \} / k_0 \right)^{4/3} ,
\]

where we have assumed \(k_0 \ll \min\{k_{\max}, k_{\res} \} \). The factor, \(\left(\min\{k_{\max}, k_{\res} \} / k_0 \right)^{4/3} \), is expected to be large.
Therefore, the Kolmogorov-like turbulent cascade enhances the turbulent shear acceleration. For \(k_{\text{res}} < k_{\text{max}} \), \(D_{\text{TSA}} \) is represented by

\[
\tilde{D}_{\text{TSA}} \approx \frac{(\tau_0 \nu k_0)^{2/3}}{30} \beta^2 2^{-\alpha/3} .
\]

Therefore, the momentum diffusion coefficient can be represented by \(D_{\text{TSA}} = D_0 \beta^{2+\beta} \) for above simple cases, where \(\beta = \alpha \) for the monochromatic spectrum and the Kolmogorov spectrum of the case \(k_{\text{res}} > k_{\text{max}} \), and \(\beta = -\alpha/3 \) for the Kolmogorov spectrum of the case \(k_{\text{res}} < k_{\text{max}} \).

We next discuss analytical solutions of the ensemble-averaged transport equation. We assume that particles are uniformly distributed in the three dimensional space and injected at time, \(\tilde{t} = 0 \), with the four momentum, \(\tilde{\rho} = 1 \). Then, the ensemble-averaged transport equation is represented by

\[
\frac{\partial f}{\partial \tilde{t}} - \frac{1}{p^2} \frac{\partial}{\partial \tilde{p}} \left(p^2 \tilde{D}_{\text{TSA}} \frac{\partial f}{\partial \tilde{p}} \right) = \frac{N}{4\pi} \hat{\beta} \delta(\tilde{\rho} - 1) ,
\]

where \(N \) is the number of injected particles. If the momentum diffusion coefficient is represented by \(\tilde{D}_{\text{TSA}} = D_0 \beta^{2+\beta} \), for \(\beta \neq 0 \), the solution is given by (Berezhko 1982, Rieger & Duffy 2006)

\[
f(\tilde{\rho}, \tilde{t}) = \frac{N}{4\pi|\beta|D_0 t} \tilde{\rho}^{3+3/\beta} \exp \left(\frac{1 + \tilde{\rho}^{3/\beta}}{\beta^2 D_0 \tilde{t}} \right) \times I_{[1+3/\beta]} \left(\frac{\tilde{\rho}^{3/2}}{\beta^2 D_0 \tilde{t}} \right) ,
\]

where \(I_\nu \) is the modified Bessel function of the first kind. The solution approaches \(\tilde{\rho}^6 f \propto \tilde{\rho}^{-\beta} \) for \(\tilde{\rho} \gg 1 \). For \(\beta = 0 \), the solution is given by (Rieger & Duffy 2006)

\[
f(\tilde{\rho}, \tilde{t}) = \frac{N}{(4\pi)^{3/2} \sqrt{D_0 t}} \exp \left\{ \frac{\left(\ln \tilde{\rho} + 3D_0 \tilde{t} \right)^2}{4D_0 \tilde{t}} \right\} ,
\]

and the evolution of the mean momentum, \(\tilde{p}_m(\tilde{t}) = N^{-1} \int \tilde{\rho} f(\tilde{\rho}, \tilde{t}) 4\pi \tilde{\rho}^2 d\tilde{\rho} \), is given by

\[
\tilde{p}_m(\tilde{t}) = \exp \left(4D_0 \tilde{t} \right) .
\]

Note that solutions of Equations (14) and (16) are not valid for \(\tilde{t} \ll 1 \) and \(\tilde{\rho} \gg 1 \) because of causality.

4. Monte Carlo Simulation

In order to confirm analytical solutions presented in the previous section, we perform test particle Monte Carlo simulations. We here focus on static, statistically homogenous and isotropic incompressible turbulence, that is, the velocity field, \(\delta u_i(\mathbf{x}) \), is divergence free. Such a vector field is numerically constructed by a summation of many transverse waves (Giacalone & Jokipii 1994). Simulation particles are isotropically and elastically scattered in the local fluid frame and move in a straight line between each scattering. The mean scattering time is given by \(\tau = \tau_0 \tilde{\rho} / \tilde{\rho}_0 \). We use \(10^7 \) simulation particles with the initial four momentum \(\tilde{\rho}_0 = 10mc \) and

![Fig. 1.— Time evolution of the mean four momentum for \(\alpha = 0 \) and \(\tau_0 ck_0 = 10^{-1} \). The dots and solid lines show the results of Monte Carlo simulations and analytical solutions of Equations (10), (12) and (17), respectively. The red and blue show cases of the monochromatic and Kolmogorov spectra with \(\tau_0 ck_{\text{max}} = 10^{-1/3} \), respectively.](image1)

![Fig. 2.— Wavenumber dependence of the momentum diffusion coefficient for \(\alpha = 0 \). The dots and solid lines show the results of Monte Carlo simulations and analytical solutions of Equations (10) and (12), respectively. The red and blue show cases of the monochromatic and Kolmogorov spectra with \(\tau_0 ck_{\text{max}} = 10^{-1/3} \), respectively.](image2)

![Fig. 3.— Distribution function at \(t/\tau_0 = 10^5 \) for \(\alpha = 0 \) and \(\tau_0 ck_0 = 10^{-1} \). The histograms and solid lines show the results of Monte Carlo simulations and analytical solutions of Equations (10), respectively. The red and blue show cases of the monochromatic and Kolmogorov spectra with \(\tau_0 ck_{\text{max}} = 10^{-1/3} \), respectively.](image3)
100 transverse waves in order to construct velocity fields, where m and c are the particle mass and the speed of light. The mean amplitude of velocity fluctuations is taken to be $(\delta u^2) = (0.05c)^2$. We set the maximum wavenumber to be $\eta_0 c k_{\text{max}} = 10^{-1/3}$ for the Kolmogorov spectrum.

We first discuss results of Monte Carlo simulations for the momentum-independent scattering, that is, $\alpha = \beta = 0$. Figure 1 shows the evolution of the mean four momentum for $\alpha = 0$ and $\eta_0 c k_0 = 10^{-1}$. Particles are accelerated, and simulation results are in good agreement with analytical solutions of Equations (10), (12) and (17). By comparing the growth rate of the mean momentum of simulation particles with Equation (17), we can obtain the momentum diffusion coefficient of Monte Carlo simulations.

Figure 2 shows the wavenumber dependence of the momentum diffusion coefficient, $D_0 = D_{\text{TSA}}/p^2 = 0$ for $\alpha = 0$. Simulation results are in good agreement with Equations (10) and (12) as long as $\eta_0 c k_0 < 1$, but simulation results for the monochromatic spectrum deviate from Equation (10) at $\eta_0 c k_0 > 1$. As already mentioned in Section 2, this is because our treatment is not valid when the particle mean free path is larger than the turbulent scale. Furthermore, we have confirmed that the Kolmogorov-like turbulent cascade (blue) enhances the turbulent shear acceleration.

Figure 3 shows the distribution function, $dN/d\vec{p} \propto p^2/\gamma(p,t)$, at $t/\tau_0 = 10^5$ for $\alpha = 0$ and $\eta_0 c k_0 = 10^{-1}$. Simulation results (histograms) are in excellent agreement with analytical solutions of Equation (16) (solid lines) for the monochromatic (red) and Kolmogorov (blue) spectra.

Figure 4 shows the distribution function at $t/\tau_0 = 5 \times 10^6$ and 10^7 for the monochromatic spectrum with $\eta_0 c k_0 = 10^{-2}$ and the Bohm-like diffusion, that is, $\alpha = \beta = 1$. Simulation results (histograms) are in excellent agreement with analytical solutions of Equation (15) (solid lines) except for above $p/p_0 \sim 10^2$. As mentioned above, the disagreement is due to $\tau(p) c k_0 > 1$ at $p/p_0 > 10^2$.

Therefore, we have confirmed that the ensemble-averaged transport equation for incompressible turbulence describes the turbulent shear acceleration and, that is valid as long as the turbulent scale, $\sim k^{-1}$, is larger than the particle mean free path, τv.

5. Discussion

We first discuss another important effect of turbulence on the particle transport. Bykov & Toptygin (1993) shows that turbulence enhances spatial diffusion. For strong turbulence, κ_{turb} becomes of the order of $L_0 \sqrt{\langle \delta u^2 \rangle}$ (Bykov & Toptygin 1993), where L_0 is the injection lengthscale of turbulence, so that spatial diffusion of particles with a small mean free path is dominated by turbulent diffusion and an energy-independent diffusion is realized. The ratio of the turbulent diffusion and the Bohm diffusion, κ_{Bohm}, is given by

$$\frac{\kappa_{\text{turb}}}{\kappa_{\text{Bohm}}} = 3 \times 10^6 \left(\frac{p}{m_p c} \right)^{-1} \left(\frac{\sqrt{\langle \delta u^2 \rangle}}{c} \right) \left(\frac{B}{1 \mu G} \right) \left(\frac{L_0}{1 \text{ pc}} \right)^{2/3},$$

where m_p and B are the proton mass and magnetic field, respectively. Therefore, turbulent diffusion of energetic particles could be important in SNRs, PWNe, astrophysical jets, etc.

From Equation (13), the acceleration timescale, $t_{\text{acc}} = p^2/D_{\text{TSA}}$, of the turbulent shear acceleration for the Kolmogorov spectrum of the case $k_{\text{res}} < k_{\text{max}}$ is represented by

$$t_{\text{acc}} = \frac{30}{\{\tau(p) c k_0\}^{2/3}} \left(\frac{\langle \delta u^2 \rangle}{c^2} \right) \left(\frac{B}{1 \mu G} \right)^{-1/3} \left(\frac{L_0}{1 \text{ pc}} \right)^{2/3},$$

where we have assumed $L_0 = 2\pi/\eta_0$ and the Bohm diffusion, $\tau(p) = p/(\epsilon B)$, in the last equation. Therefore, particles can be accelerated to relativistic energies by large-scale turbulence in many astrophysical objects. In addition, if particles are initially accelerated at the shock, large-scale turbulence can change energy spectra of the accelerated particles in the shock downstream region.

Next, we compare the turbulent shear acceleration and particles acceleration by small-scale incompressible turbulence, that is, the second order acceleration by Alfvén waves (Skillings 1973). The momentum diffusion coefficient of the second order acceleration by Alfvén waves is given by $D_A \sim p^2v_A^2/(9k)$, where v_A is the Alfvén velocity. The ratio of the turbulent shear acceleration and the second order acceleration by Alfvén waves is given by

$$\frac{D_{\text{TSA}}}{D_A} \sim \left(\frac{\langle \delta u^2 \rangle}{v_A^2} \right) \left(\frac{\tau v}{L_0} \right)^{2/3} \left(\frac{\epsilon B}{B_0} \right),$$

where we have adopted Equation (13) as D_{TSA}. Therefore, the turbulent shear acceleration could be more efficient than the second order acceleration by Alfvén waves for super-Alfvénic turbulence ($\sqrt{\langle \delta u^2 \rangle} > v_A(\tau v/L_0)^{1/3}$). In other words, the turbulent shear acceleration becomes important when there are strong magnetic field fluctuations ($\delta B/B_0 > 1$) because the plasma velocity fluctuation by Alfvén waves, δu, is represented by $\delta u = v_A(\delta B/B_0)$, where δB and B_0 are the fluctuated and mean magnetic fields, respectively. Such a situation...
is expected to be realized in the downstream region of a high Alfvén Mach number shock (Giacalone & Jokipii 2007; Inoue et al. 2009).

We have considered only isotropic diffusion and non-relativistic turbulence in this Letter. Spatial diffusion is generally anisotropic because of the magnetic field. Isotropic diffusion is realized when magnetic field fluctuations with lengthscale comparable to the particle mean free path are large ($\delta B/B_0 > 1$) (e.g. Giacalone & Jokipii 1999). Therefore, as discussed above, the turbulent shear acceleration is important when isotropic diffusion is realized. Simple extensions to anisotropic diffusion and relativistic turbulence are straightforward because extensions of Equation (1) have already been provided by Webb (1989); Williams et al. (1993). This calculation will be addressed in the future work.

6. SUMMARY

In this Letter, we have derived a particle transport equation averaged over random plasma flows in order to understand particle acceleration in incompressible turbulence with a larger lengthscale than the particle mean free path. We have considered ensemble average of the extended transport equation provided by Webb (1989); Williams et al. (1993). This is a simple extension of previous work that considered ensemble average of the transport equation provided by Parker (1965). We have found that the turbulent shear acceleration by incompressible turbulence becomes important in small scale for Kolmogorov-like turbulence. Moreover, we have performed Monte Carlo simulations and confirmed the turbulent shear acceleration. Recent simulations show that turbulence is produced in many astrophysical objects, so that turbulent diffusion and turbulent acceleration are expected to be important.

We thank T. Inoue and R. Yamazaki for useful comments about turbulence and simulation. This work is supported in part by grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, No. 24·8344.

REFERENCES

Berezhko, E. G., 1982, Soviet Astron. Lett., 8, 403
Bykov, A. M. & Toptygin, I. N., 1982, J. Geophys., 50, 221
Bykov, A. M. & Toptygin, I. N., 1983, Proc. 18th ICRC (India), 9, 313
Bykov, A. M. & Toptygin, I. N., 1993, Phys.–Usp., 36, 1020