Studies of rare B hadron decays to leptons at hadron colliders

Vincenzo Chiochia¹,a

¹ Physik-Institut, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland

Abstract. Rare B hadron decays provide an excellent test bench for the Standard Model and can probe new physics models. We review the experimental progress of the searches for rare leptonic B decays (b → ℓ⁺ℓ⁻ and b → sℓ⁺ℓ⁻) at LHC and Tevatron experiments.

1 Introduction

B hadron decays mediated by flavor-changing neutral currents (FCNC) are suppressed in the Standard Model (SM) and are sensitive to new particle contributions through loop diagrams. Searches for B⁰sd meson decays to dimuons were performed both at the Tevatron and the LHC, where the large samples of B hadrons provide a unique opportunity to study rare decays. In addition, the rates and angular distributions of b → sμ⁺μ⁻ decay products are also sensitive to new physics. In Section 2 we review the experimental status of the searches for the B⁰ and B⁰s rare decays to dimuons at hadron colliders. In Section 3 the angular analysis and measurements of branching ratios for various b → sμ⁺μ⁻ decays performed by the CDF experiment is summarised.

2 Searches for the rare decays B⁰sd → μ⁺μ⁻

The rare decays B⁰s → μ⁺μ⁻ and B⁰ → μ⁺μ⁻ are highly suppressed in the SM of particle physics due to their FCNC nature. These decays are forbidden at tree level and can proceed only through higher order diagrams, such as electroweak penguin and box diagrams. Furthermore, the decays are helicity suppressed and require an internal quark annihilation within the B meson. The SM predictions for the B⁰s and B⁰ branching ratios to dimuons are (3.23 ±0.27)×10⁻⁹ and (1.07 ±0.10)×10⁻¹⁰, respectively, with the main uncertainty resulting from the value of the B meson decay constant f_B [1]. The comparison with experimental results requires the inclusion of soft-photon radiation and B⁰s - B⁰s oscillations effects each yielding O(10%) corrections to the predicted decay rate. Several extensions of the SM, such as supersymmetric models and models with a non-standard Higgs sector, predict enhancements or suppressions to the branching fractions for these rare decays. The rare nature of the processes and the rather precise SM predictions make these decays an excellent probe for physics beyond the SM.

At the LHC searches for the B⁰ and B⁰s decays to dimuons were performed by the ATLAS, CMS and LHCb experiments using datasets of pp collisions at center-of-mass energies √s = 7 or 8 TeV collected between 2010 and 2012. The CMS experiment performed a simultaneous search for the rare decays B⁰ → μ⁺μ⁻ and B⁰ → μ⁺μ⁻ using an integrated luminosity of 5 fb⁻¹ collected at the center-of-mass energy √s = 7 TeV [2]. An event-counting experiment was performed in dimuon mass regions around the B⁰s and B⁰ masses and all selection criteria were established before observing the signal region. A normalization sample of events with B⁺ → J/ψK⁺ decays (where J/ψ → μ⁺μ⁻) was used to remove uncertainties related to the b-quark production cross section and the integrated luminosity. Combinatorial backgrounds were evaluated from the data in dimuon invariant mass sidebands while backgrounds from B decays were assessed with Monte Carlo (MC) simulation. The analysis was performed separately in two channels, barrel and endcap, and then combined for the final result. The barrel channel contained the candidates where both muons have |η| < 1.4 and the endcap channel included those where at least one muon had |η| > 1.4. B → μ⁺μ⁻ candidates with traverse momentum above 6.5(8.5) GeV in the barrel(endcap) were formed by two oppositely-charged muons originating from a common vertex and with an invariant mass in the range 4.9 < m_{μμ} < 5.9 GeV. The (sub)leading muon transverse momentum was required to be larger than (4.0)4.5 GeV in the barrel and (4.2)4.5 GeV in the endcap. Further selection cuts were applied on the B candidate isolation variables, decay length significance and three-dimensional pointing angle.

The branching fraction was measured using the following equation

$$B(B → μ⁺μ⁻) = \frac{N_{sig} f_B}{N_{norm} f_i} \epsilon_{norm} B(B⁺ → J/ψK⁺),$$

(1)

where ϵ_{sig}(ϵ_{norm}) is the total signal(normalization) efficiency, N_{norm} is the number of reconstructed B⁺ → J/ψK⁺ decays, B(B⁺) is the branching fraction for the normaliza-
tion channel, f_1/f_s is the ratio of the B^+ and B_0^i production cross sections, and N_{bkg} is the background-subtracted number of observed candidates in the signal window. Figure 1 shows the measured dimuon invariant-mass distributions. Six events were observed in the $B_0^i \rightarrow \mu^+\mu^-$ signal windows, while two events were observed in the $B^0 \rightarrow \mu^+\mu^-$ channel. This observation is consistent with the SM expectation for signal plus background. Exclusion limits on the branching fractions were obtained with the CL$_s$ method and are reported in Table 1.

The ATLAS experiment performed a search for the rare decay $B_0^i \rightarrow \mu^+\mu^-$ using 2.4 fb$^{-1}$ collected at $\sqrt{s} = 7$ TeV [3]. The sensitivity to the $B^0 \rightarrow \mu^+\mu^-$ decay is beyond the reach of the current analysis. Hence only a limit on the B_0^i decay was derived by assuming the B^0 branching ratio to be negligible. The di-muon mass region $5.066 < m_{\mu\mu} < 5.666$ GeV was removed from the analysis until the procedures for event selection, signal and limit extractions were fully defined. The sample of signal candidates was selected with a multivariate classifier, trained on a fraction of the events from the di-muon invariant-mass sidebands. 14 discriminating variables were used in the selection, including the isolation, decay angle and proper decay length significance, vertex separation, impact parameter of the decay products as well as the B hadron and single muon transverse momenta. Three regions of different mass resolution and hence signal-to-background ratio were defined and selection cuts were optimized independently. The three categories were defined by the intervals $|\eta_{\mu\mu}| = 0–1, 1–1.5$ and $1.5–2.5$, where $\eta_{\mu\mu}$ is the largest pseudorapidity value of the two muons in each event. The width of the search region (116 to 171 MeV) and the classifier output threshold (0.234 to 0.270) were optimised following the prescriptions of Ref. [4]. The MC validation for the kinematic distributions and classifier output was performed on the normalization channel $B^+ \rightarrow J/\psi K^+$ and residual discrepancies between data and simulation were treated as systematic uncertainties. The independence of the classifier output on the dimuon mass was tested by retraining the same classifier in a higher-mass unblinded region. The branching ratio was obtained with Eq. [1] where the acceptance and selection efficiencies were extracted from MC simulation. In each mass-resolution category the $B_0^i \rightarrow \mu^+\mu^-$ signal yield was obtained from the number of events observed in the search window (see Figure 2), the number of background events in the side-bands (excluding the events used in the classifier training and cut optimisation processes), and the small amount of resonant background. The expected and observed upper limits on the branching ratio at 95% confidence level (CL) were obtained with the CL$_s$ method and are reported in Table 1.

The exclusion limits on the branching ratios for B_0^i and B^0 decays to dimuons obtained from the ATLAS, CMS and LHCb searches were combined using the CL$_s$ method [5]. The LHCb results used in the combination

![Figure 1](image_url). Dimuon invariant-mass distributions measured by CMS in the barrel (left) and endcap (right) channels. The signal windows for B_0^i and B^0 are indicated by horizontal lines.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$B(B_0^i \rightarrow \mu^+\mu^-)$ Exp.</th>
<th>$B(B_0^i \rightarrow \mu^+\mu^-)$ Obs.</th>
<th>$B(B^0 \rightarrow \mu^+\mu^-)$ Exp.</th>
<th>$B(B^0 \rightarrow \mu^+\mu^-)$ Obs.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>23×10^{-9}</td>
<td>22×10^{-9}</td>
<td>-9</td>
<td>-9</td>
<td>[3]</td>
</tr>
<tr>
<td>CMS</td>
<td>8.4×10^{-9}</td>
<td>7.7×10^{-9}</td>
<td>1.6×10^{-9}</td>
<td>1.8×10^{-9}</td>
<td>[2]</td>
</tr>
<tr>
<td>LHCb</td>
<td>7.2×10^{-9}</td>
<td>4.5×10^{-9}</td>
<td>1.1×10^{-9}</td>
<td>1.0×10^{-9}</td>
<td>[6, 7]</td>
</tr>
<tr>
<td>LHC combined</td>
<td>6.1×10^{-9}</td>
<td>4.2×10^{-9}</td>
<td>7.3×10^{-10}</td>
<td>8.1×10^{-10}</td>
<td>[5]</td>
</tr>
<tr>
<td>CDF</td>
<td>13×10^{-9}</td>
<td>31×10^{-9}</td>
<td>4.2×10^{-9}</td>
<td>4.6×10^{-9}</td>
<td>[11]</td>
</tr>
<tr>
<td>D0</td>
<td>23×10^{-9}</td>
<td>15×10^{-9}</td>
<td>-</td>
<td>-</td>
<td>[10]</td>
</tr>
</tbody>
</table>

Table 1. Expected and observed upper limits (95% CL) for the $B_{s,d}$ branching fractions to dimuons.
The evaluation of the limit extraction

The evaluation of the SES requires as input the combined expected limits to date for both dimuon candidates. The most stringent exclusions limits are reported in Table 1. The search in the JPsi mass window after unblinding are consistent with the SM. Large enhancements of the background fraction to the SM prediction (at 95% CL). The analysis of candidates from the B->mu nu decay is evaluated by fitting a fixed slope of the background. The corresponding CL method and expected exclusion limits obtained with the

The optimal BDT output cuts were determined by optimizing the BDT score in the two-dimensional mass region. The results of the analysis are given in Table 1. The expected upper limits improve substantially. The previous

The ATLAS Collaboration has analyzed the full Run II data sample. The event selection is based on a common mass in the range 4.69 < mX < 5.96 GeV. Good candidates are selected as described in Table 1.
the analysis of these datasets are expected to be released within 2013.

Figure 3. Summary of the measured exclusion limits at 95% CL for the B_s^0 and B_s^+ decays to dimuons at LHC and Tevatron. Areas on the right hand side of the dashed line are excluded. The regions predicted by SM4 and four SUSY models are represented by the colored contours. The SM expectation is marked by a star (from [12]).

3 Studies of $b \to s \mu^+ \mu^-$ transitions

Rare B hadron decays of the type $b \to s \mu^+ \mu^-$ are mediated by FCNC and occur in the SM with branching ratios of the order $O(10^{-6})$ [13][14]. Theories extending the SM favour enhanced rates of these decays and can modify the angular distributions of the decay products. Although no significant departures from the SM have been observed so far, the LHCb collaboration recently reported an isospin asymmetry between the branching ratio of $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^\mu^0 \mu^-$ deviating from zero with a significance of 4.4 standard deviations [15]. In addition, the Belle experiment has measured a lepton forward-backward asymmetry (A_{FB}) different from SM expectation at 2.7 standard deviations [16].

The CDF experiment recently analysed the full dataset corresponding to an integrated luminosity of 9.6 fb$^{-1}$. Besides the measurements of total and differential branching ratios in $B^+ \to K^+ \mu^+ \mu^-$, $B^0 \to K^0 \mu^+ \mu^-$, $B_s^0 \to \phi \mu^+ \mu^-$, $B^0 \to K^0 \mu^+ \mu^-$, $B^+ \to K^+ \mu^+ \mu^-$, $B_s \to \mu^+ \mu^-$ and $\Lambda_b \to \Lambda \mu^+ \mu^-$, measurements of the combined branching ratio assuming isospin symmetry and of the isospin asymmetry between neutral and charged B mesons are provided [17]. To cancel the dominant systematic uncertainties, the decay rates for each rare channel $H_b \to h \mu^+ \mu^-$ were normalised to the corresponding resonant channel $H_b \to h J/\psi$, where H_b can be B^+, B^0, B^0_s and A_b, and h stands for K^+, K^{*0}, ϕ, $K^0_{S(L)}$, K^-, and Λ. Candidate events were selected by constructing a vertex of two muons that satisfy the trigger requirements with one charged track or with two reconstructed tracks of opposite charge, for the case of charged and neutral h hadrons, respectively. For the normalisation samples the dimuon invariant mass was required to be within 50 MeV of the J/ψ mass. After loose selection cuts the rare decays were tightly selected with a multivariate analysis based on a Neural Network. The signal yields were obtained from an unbinned maximum likelihood fit to the invariant mass distribution, as shown in Figure 4, and were corrected for the MC selection efficiencies to extract the relative branching ratios. The results are summarised in Table 3. The differential branching ratios were measured as function of the dimuon invariant mass, $q^2 = m_{\mu \mu}^2$, by performing the signal fit in each q^2 bin, as shown in Figure 4 for the $B^0 \to K_s \mu^+ \mu^-$ decay.

The isospin asymmetries between neutral and charged B meson decays are observables with relatively low theoretical uncertainties, since the leading form factor uncertainties cancel in the ratio. The asymmetries

$$A_{\mu}^{(s)} = \frac{B(B^0 \to K^{(*)0} \mu^+ \mu^-) - B(B^+ \to K^{(*)+} \mu^+ \mu^-)}{B(B^0 \to K^{(*)0} \mu^+ \mu^-) + B(B^+ \to K^{(*)+} \mu^+ \mu^-)}$$

were also measured by the CDF experiment and were found to be consistent with zero over the full q^2 range. Thus this result does not confirm the deviation observed by LHCb.

In $B^0 \to K^{(*)} \mu^+ \mu^-$ decays the muon forward-backward asymmetry (A_{FB}) and the K^* longitudinal polarisation (F_L) are extracted from the angular distributions cos θ_μ and
Figure 5. Longitudinal polarisation (left) and forward-backward asymmetry (right) for $B^0 \rightarrow K^\ast \mu^+ \mu^-$ decays as function of the dimuon invariant mass. The SM expectation is represented by the solid line.

Table 2. Relative branching ratios for $b \rightarrow s \mu^+ \mu^-$ decays measured with the CDF experiment.

<table>
<thead>
<tr>
<th>Channel ratio</th>
<th>Relative branching ratio (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(B^+ \rightarrow K^+ \mu^+ \mu^-)/B(B^+ \rightarrow K^+ J/\psi)$</td>
<td>0.44 ± 0.03(stat)± 0.02(syst)</td>
</tr>
<tr>
<td>$B(B^0 \rightarrow K^0 \mu^+ \mu^-)/B(B^0 \rightarrow K^0 J/\psi)$</td>
<td>0.85 ± 0.07(stat)± 0.03(syst)</td>
</tr>
<tr>
<td>$B(B^+ \rightarrow \phi \mu^+ \mu^-)/B(B^+ \rightarrow \phi J/\psi)$</td>
<td>0.90 ± 0.14(stat)± 0.07(syst)</td>
</tr>
<tr>
<td>$B(B^0 \rightarrow K^0 \mu^+ \mu^-)/B(B^0 \rightarrow K^0 J/\psi)$</td>
<td>0.38 ± 0.10(stat)± 0.03(syst)</td>
</tr>
<tr>
<td>$B(B^+ \rightarrow K^+ \mu^+ \mu^-)/B(B^+ \rightarrow K^+ J/\psi)$</td>
<td>0.62 ± 0.18(stat)± 0.06(syst)</td>
</tr>
<tr>
<td>$B(\Lambda_b^0 \rightarrow \mu^+ \mu^-)/B(\Lambda_b^0 \rightarrow J/\psi)$</td>
<td>2.75 ± 0.48(stat)± 0.27(syst)</td>
</tr>
</tbody>
</table>

$\cos \theta_K$, respectively, where θ_J is the angle between the μ^+ direction and the opposite of the B meson direction in the dimuon rest frame, while θ_K is the angle between the kaon direction and the direction opposite to the B meson in the K^\ast rest frame. A simultaneous unbinned maximum likelihood fit of the polarisation angles is performed to extract the angular variables as function of the dimuon invariant mass, as shown in Figure 5. All measurements are consistent with the SM prediction and with previous measurements.

References