First observation of PeV-energy neutrinos with IceCube

(IceCube Collaboration)

1III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
2School of Chemistry & Physics, University of Adelaide, Adelaide SA, 5005 Australia
3Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
4CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
5School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
6Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA
7Dept. of Physics, University of California, Berkeley, CA 94720, USA
8Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
9Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
10Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
11Physikalisches Institut, Universität Bonn, Nussallee 12, D-53115 Bonn, Germany

Astrophysical neutrinos are key probes of the high-energy universe. Because of their unique properties, neutrinos escape even dense regions, are undeflected in galactic or extra-galactic magnetic fields and traverse the photon-filled universe unhindered. Thus, neutrinos provide direct information about the dynamics and interiors of cosmological objects of the high red-shift Universe like gamma-ray bursts and active galactic nuclei. Neutrinos at energies above several 100 TeV are particularly interesting as the atmospheric background in this region is very low and a few astrophysical neutrinos can be significant. This letter reports on the observation of two high-energy particle shower events discovered in a search for ultra-high energy neutrinos above about 1 PeV using the IceCube detector.

IceCube detects and reconstructs neutrinos by recording Cherenkov photons emitted from secondary charged particles produced in neutral-current (NC) or charged-current (CC) interactions of the neutrinos in the 2,800 m thick glacial ice at the geographic South Pole. IceCube was built between 2005 and 2010. It consists of an array of 5,160 optical sensors (digital optical modules, DOMs) on 86 strings at depths between 1,450 m and 2,450 m that instrument a volume of 1 km³ of ice. Eight
of the 86 strings belong to the DeepCore sub-array [2], a more densely instrumented volume in the bottom center of the detector. Each DOM consists of a 10” photomultiplier tube (PMT) [3] in a spherical glass pressure vessel. Events are recorded as a series of pulses (waveform) in each DOM [4] where two basic neutrino event signatures are distinguished: a track-like light pattern originating from neutrino-induced muons (tracks) and a spherical light pattern produced by hadronic or electromagnetic particle showers (cascades).

The analysis selects neutrino candidates calorimetrically using the total number of observed photo-electrons in each event (NPE) [4] as a proxy of the deposited energy [5], thus retaining both bright tracks and cascades. Backgrounds come from muons and neutrinos generated in interactions of cosmic rays in the atmosphere. Because of their steeply falling energy spectra, little background is expected in the signal region above 1 PeV. The zenith angle distribution of atmospheric muons peaks in the downward-going direction and sharply decreases towards the horizon with a cut-off at a zenith angle θ of $\cos \theta \approx 0.15$ due to absorption in the Earth. The atmospheric neutrino distributions have a weaker zenith-angle dependence. The analysis rejects downward-going atmospheric muons by employing event reconstructions based on a track hypothesis in combination with a higher NPE selection criterion in the downward-going region. All remaining events above the combined NPE threshold are considered to be signal candidates independent of their topological properties.

Data were collected between May 2010 and May 2012, an effective livetime of 615.9 days excluding 54.2 days used for the optimization of the analysis. From May 2010 to May 2011, DOMs on 79 strings (IC79) were operational (285.8 days livetime with 33.4 days excluded). This period was immediately followed by the first year data taking with the full 86-string (IC86) detector that lasted until May 2012 (330.1 days livetime with 20.8 days excluded). The IC86 configuration is shown in Fig. 1. Events are triggered when eight or more DOMs record signals in local coincidences which occur when a nearest or next-to-nearest DOM on the same string triggers within $\pm 1 \mu s$ [4].

The data are filtered at the South Pole with a condition $\text{NPE} \geq 1000$, and then sent to a northern computer farm via satellite. In order to avoid biases, we performed a blind analysis and only $\sim 10\%$ of the data were used to develop the analysis. Photon arrival times are extracted from each waveform and stored as “hits”. To remove hits from coincident noise, a two-staged cleaning technique [8, 9] is utilized to remove hits that have a timing significantly different from what is expected from the bulk of the photons from a muon track. Afterwards, an event selection based on a fit quality parameter is applied to remove events which contain muons from independent air showers. For IC86, a robust regression algorithm is indeed quite different finding nearly arbitrary rejections just described. As they resemble point-like light sources, the reconstruction behavior of the two algorithms is indeed quite different finding nearly arbitrary zenith angles, albeit with a tendency toward upward-going and horizontal directions for the LLH fit and LineFit, respectively. Since for these directions the NPE threshold value is lower than for downward-going events (see Fig. 2 and Eq. 1), such events are retained in the final sample even if they would be rejected on account of their true direction.

The NPE threshold values for the two samples were separately optimized based on the simulations to maximize the signal [10, 11] from the cosmogenic neutrino model [1]. Figure 2 shows the event distributions for the simulations and the experimental IC79 test sample (a livetime of 33.4 days). The solid lines in Fig. 2 represent...
the gluon density at small

tributions, such as intrinsic charm in nuclei [15] or from

background estimation. Potential non-perturbative con-

uses perturbative-QCD calculations are included in the

tainties in our baseline charmed-meson model [14] which

to 0.082

in [14] with the improved cosmic ray spectrum mod-

mic ray spectrum. Adding prompt atmospheric neutri-

tions which accounts now for the “knee” in the cos-

mion sources of experimental uncertainties are the abso-

are from the measurement of NPE and from uncertainties

are dominated by the primary composition (+0%, −37%)

which contribute with (+43%, −26%) and (+0%, −42%),

-associated parameters in the simulation. The two domi-

to previous analyses, the utilized atmospheric neutrino

flux models [14] accommodate an improved parametriza-

which accounts for the “knee” in the cosmic ray spectrum.

 Adding prompt atmospheric neutrinos from decays of charmed mesons assuming the model in [14] with the improved cosmic ray spectrum modeling, the total number of background events increases to 0.082 ± 0.004 (stat) +0.0341 −0.057 (syst). Theoretical uncertainties in our baseline charmed-meson model [14] which uses perturbative-QCD calculations are included in the background estimation. Potential non-perturbative contributions, such as intrinsic charm in nuclei [15] or from the gluon density at small \(x\), could lead to significantly larger cross sections and hence higher prompt neutrino fluxes. Preliminary IceCube limits on the prompt flux at 90% C.L. are a factor of 3.8 higher than the baseline model [16].

The main systematic uncertainties on the backgrounds are from the measurement of NPE and from uncertainties in the cosmic ray flux. They are estimated by varying the associated parameters in the simulation. The two dominant sources of experimental uncertainties are the absolute DOM sensitivity and the optical properties of the ice which contribute with (+43%, −26%) and (+0%, −42%), respectively. Uncertainties in the cosmic ray flux models are dominated by the primary composition (+0%, −37%) and the flux normalization (+19%, −26%). The theoretical uncertainty in the neutrino production from charm decay [14] relative to the total background is (+13%, −16%). The systematic uncertainties are assumed to be evenly distributed in the estimated allowed range and are summed in quadrature.
The atmospheric muon and neutrino background events are simulated independently. However, at higher energies, events induced by downward-going atmospheric neutrinos should also contain a significant amount of atmospheric muons produced in the same air shower as the neutrino [17]. Since these events are reconstructed as downward-going, they are more likely to be rejected with the higher NPE threshold in this region. Thus, the number of simulated atmospheric neutrino background events is likely overestimated here.

After unblinding 615.9 days of data, we observe two events that pass all the selection criteria. The hypothesis that the two events are fully explained by atmospheric background including the baseline prompt atmospheric neutrino flux [14] has a p-value of 2.9×10^{-3} (2.8σ). This value includes the uncertainties on the expected number of background events by marginalizing over a flat error distribution. While the prompt component has large theoretical uncertainties, obtaining two or more events with a probability of 10$^{-3}$ would require a prompt flux that is about 15 times higher than the central value of our perturbative-QCD model. This contradicts our preliminary upper limit on the prompt flux [10]. Using an extreme prompt flux at the level of this upper limit which covers a potential unknown contribution from intrinsic charm [18] yields a significance of 2.3σ.

The two events are shown in Fig. 4. They are from the IC86 sample, but would have also passed the selection criteria of the IC79 sample. Their spherical photon distributions are consistent with the pattern of Cherenkov photons from particle cascades induced by neutrino interactions within the IceCube detector. There are no indications for photons from in-coming or out-going muon or tau tracks. Hence, these events are most likely induced by either CC interactions of ν_e or NC interactions of ν_e, ν_μ or ν_τ. CC interactions of ν_τ induce tau leptons with mean decay lengths of about 50 m at these energies [21].

The primary neutrino interaction and the secondary tau decay initiate separate cascades which in a fraction of such events lead to an observable double-peak structure in the recorded waveforms. The two events do not show a significant indication of such a signature. Figure 5 shows the final-selection NPE distributions for the experimental data, signal models and background simulations. The two events are near the NPE threshold of the analysis and are consistent with a previous upper limit by IceCube [10] on an unbroken E^{-2} flux, while a flux corresponding to this upper limit predicts about 10 events above the NPE cut. The cosmogenic neutrino model [2] predicts an event rate of about 2 events in the corresponding livetime but at significantly higher energies.

Maximum-likelihood methods are used to reconstruct the two events. The likelihood is the product of the Poisson probabilities to observe the recorded number of photo-electrons in a given time interval and DOM for a cascade hypothesis which depends on the interaction vertex, deposited energy and direction. Here, the time of the first hit mainly determines the vertex position and the recorded NPE plays a dominant role in estimating the deposited energy. The hit information used in the reconstruction is extracted from an unfolding procedure of the waveforms. The open circles in Fig. 4 indicate the strings closest to the reconstructed vertex positions.
TABLE I. Characteristics of the two observed events. The depths of the reconstructed vertex positions “z” are with respect to the center of the IceCube detector at a depth of 1948 m.

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of Recorded DOMs</th>
<th>Reconstructed Deposited Energy (PeV)</th>
<th>Reconstructed z Vertex (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 8, 2011</td>
<td>354</td>
<td>1.04 ± 0.16</td>
<td>122 ± 5</td>
</tr>
<tr>
<td>Jan. 3, 2012</td>
<td>312</td>
<td>1.14 ± 0.17</td>
<td>25 ± 5</td>
</tr>
</tbody>
</table>

The reconstructed deposited energies of the two cascades are 1.04 PeV and 1.14 PeV, respectively, with combined statistical and systematic uncertainties of ±15% each. The errors on the deposited energies are obtained by simulating cascade events in the vicinity of the reconstructed energies and vertices. The study is specifically performed on each event and the larger of the two event uncertainties is cited for both events. Thus, the error associated with the two events differs from that of other cascade events observed in IceCube [22]. Since there is no absolute energy standard with adequate precision at these energies, the energy scale is derived from simulations based on measured ice properties and PMT efficiencies which are assured by measurements of atmospheric muons. The main sources of systematic uncertainty on the reconstructed deposited energies are the absolute DOM sensitivity and the optical properties of the ice [22]. The effect of the latter is estimated to be +9% and −5% and is obtained by varying the scattering and absorption coefficients for the photon propagation by 10%. The reconstruction algorithm includes variations of the scattering and absorption coefficients with depth (ice layers) [24]. The effect of a possible azimuthal anisotropy of the ice parameters and a tilt of the ice layers on the reconstructed energies is estimated to be ±5%. The reconstructed energy depends linearly on the DOM efficiency, which has a 10% systematic uncertainty. The suppression of bremsstrahlung and pair production due to the LPM effect [25] is negligible in this energy range. The properties of the two observed events are summarized in Tab. I.

The reconstructed deposited energy is the energy of the incoming neutrino if the observed cascade is the result of a CC interaction of ν_e neutrino, as in this case the total neutrino energy is deposited near the interaction vertex [26]. On the other hand, NC interactions of neutrinos of any flavor or interactions of $\overline{\nu}_e$ via the Glashow resonance at 6.3 PeV [12] with outgoing leptons induce cascades which carry only a fraction of the neutrino energy. The observed cascades are unlikely to originate from the Glashow resonance as only about 10% of these interactions will deposit 1.2 PeV or less in the detector in cascade-like signatures.

The two PeV neutrino events observed in two years of data taken with the IceCube neutrino telescope may be a first hint of an astrophysical high-energy neutrino flux. Given the yet rather moderate significance of 2.8σ with respect to the expected atmospheric background and the large uncertainties on its prompt component, a firm astrophysical interpretation requires more data in combination with analyses in other detection channels and energy ranges.

We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Opti cal Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, Compute Canada and Compute West High Performance Computing; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland.

* Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
† Los Alamos National Laboratory, Los Alamos, NM 87545, USA
‡ Corresponding author: aya@hepburn.s.chiba-u.ac.jp (A. Ishihara)
§ also Sezione INFN, Dipartimento di Fisica, I-70126, Bari, Italy
¶ Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
** NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Meth. A618, 139 (2010).
[6] S. Yoshida and M. Teshima, Prog.Theor.Phys. 89, 833 (1993) the model with the source evolution $(z_{\text{max}} + 1)^m$ with $m = 4$ extending to $z_{\text{max}} = 4.0$.
[26] The energy reconstruction assumes that all light emission originates from an electromagnetic shower. A hadronic cascade with the same light yield as the observed events would on average have an about 10% higher energy.