Evidence for the decay $B^0 \rightarrow K^+ K^- \pi^0$

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
3Faculty of Mathematics and Physics, Charles University, 121 16 Prague
4University of Cincinnati, Cincinnati, Ohio 45221
5University of Connecticut, Storrs, Connecticut 06269
6Deutsches Elektronen-Synchrotron, 22607 Hamburg
7Justus-Liebig-Universität Gießen, 35392 Gießen
8Gifu University, Gifu 501-1193
9II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
10Gyeongsang National University, Chinju 660-701
11Hanyang University, Seoul 133-791
12University of Hawaii, Honolulu, Hawaii 96822
13High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
14Ikerbasque, 48011 Bilbao
15Indian Institute of Technology Guwahati, Assam 781039
16Indian Institute of Technology Madras, Chennai 600036
17Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
18Institute of High Energy Physics, Vienna 1050
19Institute of High Energy Physics, Protvino 142281
20Institute of Mathematical Sciences, Chennai 600113
21INFN - Sezione di Torino, 10125 Torino
22II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
23J. Stefan Institute, 1000 Ljubljana
24Institut für Experimentelle Kernphysik, Karlsruhe Institut für Technologie, 76131 Karlsruhe
25Korea Institute of Science and Technology Information, Daejeon 305-806
26Korea University, Seoul 136-713
27Kyungpook National University, Daegu 702-701
28École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
served such as (having two kaons in the final state) that are already ob-
ing fraction $[1–4]$. This is in contrast to the related decays
which only upper limits have been placed on the branch-

B_{tree} transition followed by the internal

for new physics beyond the SM. Figure 1 shows typical
the standard model (SM) and thus offers a useful probe
B_{latter} diagram dominates in the decay

$B_{\text{meson decay}}$ $B \to K^+ K^- \pi^0$.
The results are based on a 711fb^{-1} data sample that contains $772 \times 10^6 \overline{B}B$ pairs, and was collected
at the $Y(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We
find the first evidence for this decay with a significance of 3.5 standard deviations and measure its
branching fraction as $B(B^0 \to K^+ K^- \pi^0) = [2.17 \pm 0.60(\text{stat}) \pm 0.24(\text{syst})] \times 10^{-6}$.

PACS numbers: 13.25.Hw, 14.40.Nd

The B-meson decay $B^0 \to K^+ K^- \pi^0$ is suppressed in
the standard model (SM) and thus offers a useful probe
for new physics beyond the SM. Figure 1 shows typical
Feynman diagrams that contribute to this decay. The
dominant one is the color- and Cabibbo-suppressed $b \to u$
tree transition followed by the internal W exchange dia-
gram leading to $B^0 \to K^{*\pm} K^{\mp}$ with $K^{*\pm} \to K^{\pm} \pi^0$. The
latter diagram dominates in the decay $B^0 \to K^+ K^-$, for
which only upper limits have been placed on the branching
fraction $[3, 4]$. This is in contrast to the related decays
(having two kaons in the final state) that are already ob-
served such as $B^0 \to K^0 \overline{K^0}$, $B^+ \to K^0 K^+ [4, 5]$, and
$B^+ \to K^+ K^- \pi^+ [4, 6]$, where the $b \to d$ gluonic penguin
amplitude can contribute as well $[6]$.

The three-body decay $B^0 \to K^+ K^- \pi^0$ has not yet
been observed, with only one measured upper limit of
$B(B^0 \to K^+ K^- \pi^0) < 19 \times 10^{-6}$ at 90% confidence level

modes that decay preferentially to this final state have
also not been seen. A search for a related channel by Belle
has set an upper limit of $B(B^0 \to \phi \pi^0) < 1.5 \times 10^{-7}$ $[10]$.
The latter mode is quite sensitive to possible beyond-
the-SM contributions: a branching fraction of $O(10^{-7})$
would constitute evidence for new physics $[11]$. No exper-
FIG. 1: Typical Feynman diagrams that contribute to the decay $B^0 \to K^+K^-\pi^0$: (a) $b \to u$ tree and (b) internal W exchange.

With the same motivation as for other potential resonance modes such as $K^* (892)^\pm K^\mp$, $K^0 (1430)^\pm K^\mp$, and $f_0 (980)\pi^0$. For the decay $B^0 \to K^* (892)^\pm K^\mp$ dominated by internal W exchange [Fig. 1(b)], the branching fraction is predicted to be in the range 10^{-9} to 10^{-7}.

Another motivation for the study of $B^0 \to K^+K^-\pi^0$ comes from the observation of $B^+ \to K^+K^-\pi^+$ by the BaBar Collaboration. In particular, an unexpected structure is seen near 1.5 GeV/c² in the K^+K^- invariant-mass spectrum, which accounts for about half of the total events. Similar structures have also been observed in the Dalitz plots of $B^+ \to K^+K^-K^+$ and $B^0 \to K^+K^-K^0$ decays. If these structures are due to a particular K^+K^- resonant state, it should show up in $B^0 \to K^+K^-\pi^0$; on the other hand, if it is a reflection from the $b \to d$ penguin, it will not contribute to $K^+K^-\pi^0$. Since the u and d quarks are spectators in the $b \to u$ tree diagram [Fig. 1(a)] for $B^+ \to K^+K^-\pi^+$ and $B^0 \to K^+K^-\pi^0$, respectively, one can estimate the branching fraction for the latter using the BaBar results. Assuming isospin symmetry and the $b \to u$ transition to be the main contributor to $B^0 \to K^+K^-\pi^0$, we expect its branching fraction to be at the level of 3×10^{-6}, which is well within Belle’s reach.

Our results are based on a data sample containing 772×10⁶ $B\overline{B}$ pairs collected at the $\Upsilon (4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. The principal detector components used in the study are a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and a CsI(Tl) crystal electromagnetic calorimeter (ECL). All these components are located inside a 1.5 T solenoidal magnetic field.

To reconstruct $B^0 \to K^+K^-\pi^0$ decay candidates, we combine two oppositely charged kaons with a π^0 meson. Each track candidate must have a minimum transverse momentum of 100 MeV/c, and a distance of closest approach with respect to the interaction point of less than 0.2 cm in the transverse $r-\phi$ plane and less than 5.0 cm along the z axis, where the z axis is defined by the direction opposite the e^+ beam. Identification of charged kaons is based on a likelihood ratio $R_{K/\pi} = \frac{\mathcal{L}_K}{\mathcal{L}_K + \mathcal{L}_\pi}$, where \mathcal{L}_K and \mathcal{L}_π denote the individual likelihoods for kaons and pions, respectively, calculated using specific ionization in the CDC, time-of-flight information from the TOF, and the number of photoelectrons from the ACC. A requirement $R_{K/\pi} > 0.6$ is applied to select both kaon candidates. The kaon identification efficiency is approximately 86% and the probability of misidentifying a pion as a kaon is 11%. We reconstruct π^0 candidates from photon pairs that have an invariant mass between 112 and 156 MeV/c², corresponding to $\pm 3.5 \sigma$ around the nominal π^0 mass. These photons are reconstructed from neutral clusters in the ECL with energy above 60 (100) MeV in the barrel (endcap) region. In addition, requirements on the π^0 decay helicity angle, $|\cos \theta_{\text{hel}}| < 0.95$, and the π^0 mass-constrained fit statistic, $x^2_{\text{mass}} < 50$, are imposed. Here, θ_{hel} is the angle between one of the daughter photons and the B momentum in the π^0 rest frame.

The dominant background is from the $e^+e^- \to q\overline{q}$ ($q = u, d, s, c$) continuum process. To suppress this background, observables based on the event topology are utilized. The event shape in the CM frame is more spherical for $B\overline{B}$ events and jetlike for continuum events. We employ a neural network to combine the following six input variables: the Fisher discriminant formed from 16 modified Fox-Wolfram moments (20), the cosine of the angle between the B momentum and the z axis, the cosine of the angle between the B thrust and the z axis, the cosine of the angle between the thrust axis of the B candidate and that of the rest of the event, the ratio of the second- to the zeroth-order Fox-Wolfram moments (all of these quantities being calculated in the CM frame), and the separation along the z axis between the vertex of the B candidate and that of the remaining tracks. The training and optimization of the neural network are accomplished with signal and $q\overline{q}$ Monte Carlo (MC) simulated events. The signal MC sample is generated with the EvtGen program by assuming a three-body phase...
space. We require the neural network output \((C_{NB}) \) to be above 0.2 to substantially reduce the continuum background. The relative signal efficiency due to this requirement is approximately 88\%, whereas the continuum suppression achieved is close to 92\%. The remainder of the \(C_{NB} \) distribution peaks strongly near 1.0 for signal, and thus we have difficulty in modeling it with an analytic function. However, its transformed variable

\[
C'_{NB} = \log \left[\frac{C_{NB} - C_{NB,\text{min}}}{C_{NB,\text{max}} - C_{NB}} \right],
\]

where \(C_{NB,\text{min}} = 0.2 \) and \(C_{NB,\text{max}} = 1.0 \), has a distribution with a Gaussian-like tail.

The background due to \(B \) decays via the dominant \(b \rightarrow c \) transition is studied with an MC sample of a collection of such decays. The resulting \(M_{bc} \) distribution is found to peak strongly in the signal region. We also observe two peaks in the \(K^+K^- \) invariant-mass spectrum that corresponds to the contributions from (a) \(D^0 \rightarrow K^+K^- \) peaking at the nominal \(D^0 \) mass \([20]\), and (b) \(D^0 \rightarrow K^-\pi^+ \) with the peak shifted slightly from the \(D^0 \) mass owing to \(K^-\pi^+ \) misidentification. To suppress these peaking contributions, we exclude candidates for which the invariant mass of the \(K^+K^- \) system lies in the range of \([1846, 1884]\) MeV/\(c^2 \) (about \(\pm 5\sigma \) around the nominal \(D^0 \) mass). In the case of (b), we use the pion hypothesis for one of the tracks. The surviving events constitute the “generic \(BB' \)” background.

There are a few background modes that contribute in the \(M_{bc} \) signal region having the \(\Delta E \) peak shifted to positive values. The so-called “rare peaking” background modes arising mostly from \(K^-\pi^+ \) misidentification are identified with a \(BB' \) MC sample in which one of the \(B \) mesons decays via \(b \rightarrow u, d, s \) transitions with known or estimated branching fractions. The rare peaking background includes the \(B^0 \rightarrow K^+\pi^-\pi^0 \) nonresonant decay as well as possible intermediate resonant modes that result in the \(K^+\pi^-\pi^0 \) final state, such as \(B^0 \rightarrow K^* \rightarrow B^0 \rightarrow K^* \) and \(B^0 \rightarrow K^* \rightarrow B^0 \rightarrow K^* \). The events that remain after removing the signal and rare peaking components comprise the “rare combinatorial” background.

The signal yield is obtained with an unbinned extended maximum likelihood fit to the two-dimensional distributions of \(\Delta E \) and \(C'_{NB} \): We define a probability density function (PDF) for each event category \(j \) (signal, \(q\bar{q} \), generic \(BB' \), rare peaking, and rare combinatorial \(BB' \) backgrounds):

\[
P_j^i = P_j(\Delta E^i)P_j(C'_{NB}^i),
\]

where \(i \) denotes the event index. Since the correlation between \(\Delta E \) and \(C'_{NB} \) is found to be negligible, the product of two individual PDFs is a good approximation for the combined PDF. We apply a tight requirement on \(M_{bc} \) rather than including it in the fit because it exhibits an irreducible correlation with \(\Delta E \) owing to shower leakage in the ECL. The extended likelihood function is

\[
L = \exp \left(-\sum_j n_j \right) \times \prod_i \left[\sum_j n_j P_j^i \right],
\]

where \(n_j \) is the yield of event category \(j \). The correctly reconstructed (CR) and misreconstructed fragments of the \(B \)-meson decay referred to as self-crossed (SCF) components of the signal are considered distinct in the fitter: their combined PDF is \(n_{sig} \times (1-f) P_{CR} + f P_{SCF} \), where \(n_{sig} \) is the total signal yield and \(f \) is the SCF fraction fixed to the MC expected value of 3\%.

Table I lists the PDF shapes used to model the \(\Delta E \) and \(C'_{NB} \) distributions for various event categories. G, AG, CB, and Poly2 denote Gaussian, asymmetric Gaussian, Crystal Ball [24], and second-order Chebyshev polynomial function, respectively.

<table>
<thead>
<tr>
<th>Event category</th>
<th>(\Delta E)</th>
<th>(C'_{NB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR signal</td>
<td>CB+AG</td>
<td>3 AG</td>
</tr>
<tr>
<td>SCF signal</td>
<td>histogram</td>
<td>histogram</td>
</tr>
<tr>
<td>Continuum (q\bar{q})</td>
<td>Poly2</td>
<td>AG</td>
</tr>
<tr>
<td>Generic (BB')</td>
<td>Poly2</td>
<td>AG</td>
</tr>
<tr>
<td>Rare peaking (BB')</td>
<td>2 G</td>
<td>AG</td>
</tr>
<tr>
<td>Rare combinatorial (BB')</td>
<td>histogram</td>
<td>3 AG</td>
</tr>
</tbody>
</table>

Table I lists the PDF shapes used to model the \(\Delta E \) and \(C'_{NB} \) distributions for each event category. Distributions that are difficult to parametrize analytically are modeled with histograms. The yields for all event categories except the rare peaking \(BB' \) background are allowed to vary in the fit. We fix the yield of the rare peaking \(BB' \) component to the value calculated using the branching fraction measured in an amplitude analysis of \(B^0 \rightarrow K^+\pi^-\pi^0 \) [23]. The following PDF shape parameters of the \(q\bar{q} \) background are floated: the two parameters of the second-order Chebyshev polynomial used for \(\Delta E \), and the mean and two widths of the asymmetric Gaussian function used to model \(C'_{NB} \). The PDF shapes for signal and other background components are fixed to the corresponding MC expectations. We adjust the parameters of the signal \(\Delta E \) and \(C'_{NB} \) PDFs to account for possible data-MC differences, according to the values obtained with a large-statistics control sample of \(B^+ \rightarrow D^0(\pi^-\pi^0)\pi^+ \). The same correction factors are also applied for the rare peaking \(BB' \) background.

Figure 2 shows the \(\Delta E \) and \(C'_{NB} \) projections of the fit applied to 39066 candidate events. We obtain 299 ± 83 signal events (\(n_{sig} \)), 32167 ± 428 continuum \(q\bar{q} \), 3814 ± 517 generic \(BB' \), and 2691 ± 321 rare combinatorial \(BB' \) background events. The statistical significance of the signal is 3.8 standard deviations. It is calculated as \(\sqrt{2 \log(L_0/L_{max})} \), where \(L_0 \) and \(L_{max} \) are the fit likelihood values with the signal yield set to zero and the best-fit case, respectively. The obtained background yields are
branching fraction calculation presented in Eq. (4), we
factor is almost constant over the Dalitz plot. For the
ted (green) curves are the sum of continuum $q\bar{q}$ and generic
track is 0
where
are estimated by varying all fixed parameters by
spectively. The contributions to the systematic uncer-
tation in data (MC simulations). The
production of B^0 and B^0 pairs at the $Y(4S)$ resonance. The resulting value is
$B(B^0 \to K^+K^-\pi^0) = [2.17 \pm 0.60 \pm 0.24] \times 10^{-6}$, (6)
where the uncertainties are statistical and systematic, re-
respectively. The contributions to the systematic uncer-
tainty are discussed below and listed in Table III
The uncertainties due to the PDF shape parameters are estimated by varying all fixed parameters by $\pm 1\sigma$.
To assign a systematic error for the histogram PDF used to model ΔE for the rare combinatorial component, we carry out a series of fits by fluctuating each of the histo-
gram bin contents according to the Poisson distribution. The spread of the fitted signal yields is taken as the
systematic error. We also vary the yield of final states that dominantly contribute to that component according
to their errors. As we use a fairly complex function (a
sum of three asymmetric Gaussians) to model the sig-
ral C'_{NB} PDF shape, we evaluate possible systematics
due to the uncertainty in the functional dependence by
checking other alternatives. This systematic contribution
is denoted as “Signal C'_{NB} functional dependence” in Table III. The uncertainty due to the fixed (small) SCF frac-
tion is estimated without knowing a priori how these SCF
events vary across the Dalitz plot. We adopt a conserva-
tive approach to vary the SCF fraction by $\pm 50\%$ when
calculating the associated systematic error. The poten-
tial fit bias is evaluated by performing an ensemble test
comprising 200 pseudoexperiments, where the signal and
rare peaking background components are embedded from
the corresponding MC samples, and the PDF shapes are
used to generate the data for the other event categories. We obtain an almost Gaussian pull distribution of unit
width, and add the mean and error on the pull in quadra-
ture for assigning the systematics. Uncertainty due to
continuum suppression is derived with the control sample
by comparing the nominal fit result with that obtained
without any C_{NB} requirement. We estimate the error due to
the M_{rec} requirement by varying its nominal selection
threshold by the resolution. The $D^{*+} \to D^0(K^-\pi^+)\pi^+$
control sample is used to determine the systematic un-
certainty due to the $R_{K/\pi}$ requirement. The systematic
uncertainty due to π^0 reconstruction is evaluated by com-
paring data-MC differences of the yield ratio between
$\eta \to \pi^0\pi^0\pi^0$ and $\eta \to \pi^+\pi^-\pi^0$. We use partially recon-
structed $D^{*+} \to D^0(K^-\pi^+)\pi^+$ decays to assign the
systematic uncertainty due to charged-track reconstruction
(0.35% per track). To account for the possible vari-
ation of efficiency across the Dalitz-plot distribution, we
calculate a weighted signal reconstruction efficiency by
fitting different regions of that distribution. The mean
value is used to obtain the branching fraction and the
error is taken as the systematic contribution due to the
efficiency variation. The total systematic uncertainty is
calculated by summing all these uncertainties in quadra-
ture. To determine the significance of our measurement, we use a convolution of the statistical likelihood with
a Gaussian function of width equal to the additive sys-
tematic errors that only affect the signal yield. The total
significance, including these uncertainties, is 3.5 standard
deviations.

To elucidate the nature of the observed signal, es-
pecially whether there are contributions from the
decays with intermediate resonant states, we study the
K^+K^- and $K^+\pi^0$ invariant mass distributions. We perform the $|\Delta E; C'_{NB}|$ two-dimensional fit in bins of the
$m(K^+K^-)$ and $m(K^+\pi^0)$ distributions after applying
the orthogonal requirements $m(K^+\pi^0) > 1.5 \text{ GeV}/c^2$ and
$m(K^+K^-) > 2.0 \text{ GeV}/c^2$, respectively. These require-
ments suppress kinematic reflections. Figure 4 shows the
resulting signal yields along with their statistical errors.
With these data, we cannot make any definitive state-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{(color online). Projections of candidate events onto
(left) ΔE for $C'_{NB} > 3$ and (right) C'_{NB} for $|\Delta E| < 30$ MeV.
Points with error bars are the data, solid (blue) curves are the total PDF, dashed (red) curves are the total background, dotted (green) curves are the sum of continuum $q\bar{q}$ and generic $B\bar{B}$ backgrounds, dash-dotted (magenta) curves are the con-

\end{figure}
fied structure in the same mass range; however, it is only
sured branching fraction
B
 It is worth noting here that the recent LHCb study of
multiplicative systematic uncertainties, respectively.
A detailed interpretation will require an amplitude anal-

TABLE II: Summary of various systematic uncertainties. The
first and second horizontal blocks denote the additive and
multiplicative systematic uncertainties, respectively.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainties (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal PDF</td>
<td>3.4 ± 2.9</td>
</tr>
<tr>
<td>Generic BB PDF</td>
<td>2.4 ± 3.1</td>
</tr>
<tr>
<td>Combinatorial background PDF</td>
<td>1.3 ± 2.0</td>
</tr>
<tr>
<td>Peaking background PDFs</td>
<td>1.7 ± 1.9</td>
</tr>
<tr>
<td>Fixed histogram PDF</td>
<td>1.7 ± 2.0</td>
</tr>
<tr>
<td>Signal C_{NB} functional depe</td>
<td>2.3 ± 2.3</td>
</tr>
<tr>
<td>Fixed SCF fraction</td>
<td>1.7 ± 1.7</td>
</tr>
<tr>
<td>Fit bias</td>
<td>2.4 ± 2.4</td>
</tr>
<tr>
<td>Continuum suppression</td>
<td>2.2 ± 2.2</td>
</tr>
<tr>
<td>Requirement on M_{bc}</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>Kaon ID requirement</td>
<td>1.9 ± 1.9</td>
</tr>
<tr>
<td>π^0 detection efficiency</td>
<td>4.0 ± 4.0</td>
</tr>
<tr>
<td>Charged track reconstruction</td>
<td>0.7 ± 0.7</td>
</tr>
<tr>
<td>Efficiency variation over Dal</td>
<td>7.5 ± 7.5</td>
</tr>
<tr>
<td>Number of BB pairs</td>
<td>1.4 ± 1.4</td>
</tr>
<tr>
<td>Total</td>
<td>11.1 ± 11.3</td>
</tr>
</tbody>
</table>

ment about possible intermediate \(K^+ K^- \) resonances, in-
cluding the structure seen by Babar near 1.5 GeV/c^2. It is
worth noting here that the recent LHCb study of
\(B^\pm \rightarrow K^+ K^- \pi^\pm \) decays has revealed an uniden-
tified structure in the same mass range; however, it is only
present in \(B^+ \) events, giving rise to a large local \(CP \) asym-
metry. Furthermore, we observe some excess of events around
1.4 GeV/c^2 in the \(K^+ \pi^0 \) invariant-mass spectrum.
A detailed interpretation will require an amplitude anal-
ysis with higher statistics that would be available at a
next-generation flavor factory.

![Figure 3: Signal yield distributions as a function of (left) \(m(K^+ K^-) \) with \(m(K^+ \pi^0) > 1.5 \) GeV/c^2 and (right) \(m(K^+ \pi^0) \) with \(m(K^+ K^-) > 2.0 \) GeV/c^2. Each point is ob-
tained from a two-dimensional \([\Delta E, C_{NB}]\) fit.

In summary, we report measurement of the suppressed
decay \(B^0 \rightarrow K^+ K^- \pi^0 \) using the full \(\Upsilon(4S) \) data sam-
ples collected with the Belle detector. We employ a two-
dimensional fit for extracting the signal yield. Our mea-
sured branching fraction \(B(B^0 \rightarrow K^+ K^- \pi^0) = (2.17 \pm 0.60) \times 10^{-6} \) constitutes the first evi-
dence for the decay.

We thank the KEKB group for the excellent opera-
tion of the accelerator, the KEK cryogenics group for the
efficient operation of the solenoid, and the KEK com-
puter group, the National Institute of Informatics, and
the PNNL/EMSL computing group for valuable computing
and SINET4 network support. We acknowledge sup-
port from the Ministry of Education, Culture, Sports,
Science, and Technology (MEXT) of Japan, the Japan
Society for the Promotion of Science (JSPS), and the
Tau-Lepton Physics Research Center of Nagoya Uni-
versity; the Australian Research Council and the Aus-
dalian Department of Industry, Innovation, Science and
Research; Austrian Science Fund under Grant No. P
22742-N16; the National Natural Science Foundation of
China under Contracts No. 10575109, No. 10775142,
No. 10875115, and No. 10825524; the Ministry of Educa-
tion, Youth and Sports of the Czech Republic under Con-
tract No. MSM0021620859; the Carl Zeiss Foundation,
the Deutsche Forschungsgemeinschaft and the Volkswa-
genStiftung; the Department of Science and Technology
of India: the Istituto Nazionale di Fisica Nucleare of
Italy; The BK21 and WCU program of the Ministry Education
Science and Technology, National Research Foundation
of Korea Grants No. 2010-0021174, No. 2011-0029457,
No. 2012-0008143, No. 2012R1A1A2008330, BRL pro-
gram under NRF Grant No. KRF-2011-0020333, and
GSDC of the Korea Institute of Science and Technology
Information; the Polish Ministry of Science and Higher
Education and the National Science Center; the Minis-
try of Education and Science of the Russian Federation
and the Russian Federal Agency for Atomic Energy;
the Slovenian Research Agency; the Basque Founda-
tion for Science (IKERBASQUE) and the UPV/EHU under pro-
gram UFI 11/55; the Swiss National Science Foundation;
the National Science Council and the Ministry of Educa-
tion of Taiwan; and the U.S. Department of Energy and
the National Science Foundation. This work is supported
by a Grant-in-Aid from MEXT for Science Research in
a Priority Area (“New Development of Flavor Physics”),
and from JSPS for Creative Scientific Research (“Evolu-
tion of Tau-lepton Physics”).

Throughout this paper, inclusion of the charge-conjugate process is implied unless otherwise explicitly mentioned.