Loop Suppression of Dirac Neutrino Mass in the Neutrinophilic Two Higgs Doublet Model

Shinya Kanemura,1∗ Toshinori Matsui,1† and Hiroaki Sugiyama2‡

1 Department of Physics, University of Toyama, Toyama 930-8555, Japan
2 Maskawa Institute for Science and Culture, Kyoto Sangyo University, Kyoto 603-8555, Japan

Abstract

We extend the scalar sector of the neutrinophilic two Higgs doublet model, where small masses of Dirac neutrinos are obtained via a small vacuum expectation value v_ν of the neutrinophilic SU(2)$_L$-doublet scalar field which has a Yukawa interaction with only right-handed neutrinos. A global U(1)$_X$ symmetry is used for the neutrinophilic nature of the second SU(2)$_L$-doublet scalar field and also for eliminating Majorana mass terms of neutrinos. By virtue of an appropriate assignment of the U(1)$_X$-charges to new particles, our model has an unbroken Z_2 symmetry, under which the lightest Z_2-odd scalar boson can be a dark matter candidate. In our model, v_ν is generated by the one-loop diagram to which Z_2-odd particles contribute. We briefly discuss a possible signature of our model at the LHC.

PACS numbers: 14.60.Pq, 12.60.Fr, 14.80.Ec, 95.35.+d

∗Electronic address: kanemu@sci.u-toyama.ac.jp
†Electronic address: matsui@jodo.sci.u-toyama.ac.jp
‡Electronic address: sugiyama@cc.kyoto-su.ac.jp
I. INTRODUCTION

It has been well established that neutrinos have nonzero masses as shown in the neutrino oscillation measurements \cite{1-6} although they are massless particles in the standard model (SM) of particle physics. Since the scale of neutrino masses is much different from that of the other fermion masses, they might be generated by a different mechanism from the one for the other fermions. Usually, the possibility that neutrinos are Majorana fermions is utilized as a characteristic feature of the neutrino masses. The most popular example is the seesaw mechanism \cite{7} where very heavy right-handed Majorana neutrinos are introduced. However, lepton number violation which is caused by masses of the Majorana neutrinos has not been discovered. Thus it is worth considering the possibility that neutrinos are not Majorana fermions but Dirac fermions similarly to charged fermions.

The neutrinophilic two Higgs doublet model (νTHDM) is a new physics model where neutrinos are regarded as Dirac fermions. The second SU(2)$_L$-doublet scalar field which couples only with right-handed neutrinos ν_R was first introduced in Ref. \cite{8} for Majorana neutrinos. Phenomenology in the model of Majorana neutrinos is discussed in Ref. \cite{9, 10}. The neutrinophilic doublet field is also utilized for Dirac neutrinos \cite{11} where a spontaneously broken Z_2 parity is introduced in order to achieve the neutrinophilic property. Smallness of neutrino masses are explained by a tiny vacuum expectation value (VEV) of the neutrinophilic scalar without extremely small Yukawa coupling constant for neutrinos. Instead of the Z_2 parity, the model in Ref. \cite{12} uses a global U(1)$_X$ symmetry that is softly broken in the scalar potential. The U(1)$_X$ symmetry forbids Majorana mass terms of ν_R, and then neutrinos are Dirac fermions\footnote{Since the Majorana mass terms of ν_R can also be acceptable as soft breaking terms of the U(1)$_X$, the lepton number conservation may be imposed to the Lagrangian.}. We refer to the model in Ref. \cite{12} as the νTHDM.

The new particle which was discovered at the LHC \cite{13, 14} is likely to be the SM Higgs boson \cite{15-18}. It opens the new era of probing the origin of particle masses. Then it would be a natural desire to expect that the origin of neutrino masses are also uncovered. If the neutrinophilic scalars in the νTHDM exist within the experimentally accessible energy scale (namely the TeV-scale), decays of the neutrinophilic charged scalar into leptons can provide direct information on the neutrino mass matrix because it is proportional to the matrix of new Yukawa coupling constants for the neutrinophilic scalar field \cite{12, 19}. In such.
a case, the smallness of a new VEV which is relevant to Dirac neutrino masses is interpreted by the smallness of a soft-breaking parameter of the global U(1)$_X$ symmetry. It seems then better to have a suppression mechanism for the soft-breaking parameter by extending the νTHDM with TeV scale particles including a dark matter candidate. The existence of dark matter has also been established in cosmological observations \cite{20, 21}, and it is an important guideline for constructing new physics models.

The reason why the neutrino masses are tiny can be explained by a mechanism that the interaction of neutrinos with the SM Higgs boson is generated via a loop diagram involving a dark matter candidate in the loop while the interaction is forbidden at the tree level \cite{22–32}. Notice that smallness of neutrino masses in such radiative mechanisms does not require new particles to be very heavy. Similarly, if neutrino masses arise from a new VEV, smallness of neutrino masses can be explained by assuming that the VEV is generated at the loop level by utilizing a dark matter candidate \cite{33}. In this paper, we extend the νTHDM such that the new VEV is generated at the one-loop level (see also Ref. \cite{34}) where a dark matter candidate is involved in the loop.

This paper is organized as follows. We briefly introduce the νTHDM in Sec. II. The νTHDM is extended in Sec. III such that a small VEV is generated via the one-loop diagram which involving a dark matter candidate in the loop. Section IV is devoted to discussion on phenomenology in the extended νTHDM. We conclude in Sec. V.

II. NEUTRINOPHILIC TWO-HIGGS-DOUBLET MODEL

In the νTHDM, the SM is extended with the second SU(2)$_L$-doublet scalar field Φ_ν which has a hypercharge $Y = 1/2$ and right-handed neutrinos ν_{iR} ($i = 1-3$) which are singlet fields under the SM gauge group. A global U(1)$_X$ symmetry is introduced, under which Φ_ν and ν_{iR} have the same nonzero charge while the SM particles have no charge. Then, the Yukawa interaction with Φ_ν is only the following one:

$$L_{\nu-\text{Yukawa}} = -\left(y_\nu\right)_{\ell i} \overline{\ell} \sigma_2 \nu_i \nu_{iR} + \text{h.c.},$$

where $\ell(= e, \mu, \tau)$ denotes the lepton flavor and σ_i ($i = 1-3$) are the Pauli matrices. Since Majorana mass terms $(\nu_{iR})^c \nu_{iR}$ are forbidden by the U(1)$_X$ symmetry, there appears an accidental conservation of the lepton number where lepton numbers of Φ_ν and ν_{iR} are 0 and
1, respectively. When the neutral component \(\phi_0^\nu \) of \(\Phi^\nu \) develops its VEV \(v_\nu \equiv \sqrt{2} \langle \phi_0^\nu \rangle \), the neutrino mass matrix arise as \(m_\nu = v_\nu (y_\nu)_{i\ell} \), where \(m_i \ (i = 1-3) \) are the neutrino mass eigenvalues and a unitary matrix \(U_{\text{MNS}} \) is the so-called Maki-Nakagawa-Sakata (MNS) matrix [35]. Dirac neutrinos are constructed as \(\nu_i = (\sum_\ell (U_{\text{MNS}}^\dagger v_{\ell L}, v_{\ell R})^T \). Smallness of neutrino masses is attributed to that \(v_\nu \) is much smaller than \(v \).

If the VEV \(v_\nu \) is generated spontaneously, a CP-odd scalar \(\phi_0^{\nu i} \) becomes massless as a Nambu-Goldstone boson with respect to the breaking of \(\text{U}(1)_X \), where \(\phi_0^{\nu i} = (v_\nu + \phi_0^{\nu r} + i\phi_0^{\nu i})/\sqrt{2} \). In addition, a CP-even neutral scalar \(\phi_0^{\nu r} \) has a small mass \(\propto v_\nu \ll v \). Therefore, the scenario of the spontaneous breaking of \(\text{U}(1)_X \) is not allowed by the measurement of the invisible decay of the \(Z \) boson. The scalar potential in the \(\nu\text{THDM} \) is given by

\[
V(\nu\text{THDM}) = -\mu_1^2 \Phi^\dagger \Phi + \mu_2^2 \Phi^\dagger \Phi - (\mu_{12}^2 \Phi^\dagger \Phi + \text{h.c.}) + \lambda_1 (\Phi^\dagger \Phi)^2 + \lambda_2 (\Phi^\dagger \Phi)^2 + \lambda_{12} (\Phi^\dagger \Phi)(\Phi^\dagger \Phi) + \lambda'_{12} (\Phi^\dagger \Phi)^2 + \lambda'_{12} (\Phi^\dagger \Phi)(\Phi^\dagger \Phi),
\]

where \(\mu_{12}^2 \) can be real and positive by using rephasing of \(\Phi \) without loss of generality; We take \(\mu_1^2 > 0 \) and \(\mu_2^2 > 0 \). The VEV of \(\phi_0^\nu \) is triggered by \(\mu_{12}^2 \) which softly breaks the \(\text{U}(1)_X \) symmetry. Since the term does not breaks the lepton number conservation, neutrinos are still Dirac particles. Taking \(v_\nu/v \ll 1 \) into account, the VEVs are calculated as

\[
v \simeq \frac{\mu_1}{\sqrt{\lambda_1}}, \quad v_\nu \simeq \frac{2 v \mu_{12}^2}{2 \mu_2^2 + (\lambda_{12} + \lambda'_{12}) v^2}.
\]

If \(\mu_2 \sim v \), we have \(v_\nu \sim \mu_{12}^2/v \). Then, \(\mu_{12}^2/v \) is required to be small \((\sim 10^{-6} \) for \(y_\nu \sim 1 \)). Stability of the tiny \(v_\nu \) is discussed in Refs. [10, 36]. In our model presented in the next section, \(\mu_{12}^2/v \) becomes small because \(\mu_{12}^2 \) is generated at the one-loop level.

III. AN EXTENSION OF THE \(\nu\text{THDM} \)

Since we try to generate \(\mu_{12}^2 \) at the loop level, it does not appear in the Lagrangian. Then the \(\text{U}(1)_X \) symmetry should be broken spontaneously. For the spontaneous breaking, we rely on an additional scalar \(s_0^1 \) which is a singlet field under the SM gauge group. Similarly to the singlet Majoron model [37] where a VEV of a singlet field spontaneously breaks the lepton number conservation by two units, the Nambu-Goldstone boson from \(s_0^1 \) is acceptable [37];
the Nambu-Goldstone boson couples first with only neutrinos among fermions. If $U(1)_X$-charges of Φ_ν and s_0^1 are 3 and 1, respectively, a dimension-5 operator $(s_0^1)^3\Phi_\nu^\dagger \Phi$ is allowed by the $U(1)_X$ symmetry although $\Phi_\nu^\dagger \Phi$ is forbidden. Then, $\mu_{\Phi_12}^2$ is generated from the dimension-5 operator with the VEV of s_1^0. In this paper, we show the simplest realization of the dimension-5 operator at the one-loop level where dark matter candidates are involved in the loop.

Table I is the list of new particles added to the SM. In the table, ν_{iR} and Φ_ν are the particles which exist in the νTHDM. The $U(1)_X$ symmetry is spontaneously broken by the VEV of s_1^0. We take a scenario where η and s_2^0 do not have VEVs. Since their $U(1)_X$-charges are half-integers while the one for s_1^0 is an integer, a Z_2 symmetry remains unbroken after the $U(1)_X$ breaking. Here, η and s_2^0 are Z_2-odd particles. The Z_2 symmetry stabilizes the lightest Z_2-odd particle which can be a dark matter candidate.

The Yukawa interaction in this model is identical to those in the νTHDM (see Eq. (1)). The scalar potential in this model is expressed as

$$V = -\mu_{s1}^2 |s_1|^2 + \mu_{s2}^2 |s_2|^2 - \mu_{\Phi_1}^2 \Phi_\nu^\dagger \Phi + \mu_{\Phi_2}^2 \Phi_\nu^\dagger \Phi_\nu + \mu_{\eta}^2 \eta^\dagger \eta$$

$$- (\mu s_1^{0*} (s_2^0)^2 + \text{h.c.})$$

$$+ \left(\lambda_{s\Phi_1\eta} s_1^{0*} (s_2^0)^* \Phi_\nu^\dagger \eta + \text{h.c.} \right) + \left(\lambda_{s\Phi_2\eta} s_2^0 s_1^0 \Phi_\nu^\dagger \Phi_\nu + \text{h.c.} \right) + \cdots.$$ \hspace{1cm} (4)

Only the relevant parts to our discussion are presented in Eq. (4). The other terms are shown in Appendix. Parameters μ, $\lambda_{s\Phi_1\eta}$, and $\lambda_{s\Phi_2\eta}$ are taken to be real and positive values by rephasing of scalar fields without loss of generality. At the tree level, v_ν, v, and $v_s (= \sqrt{2}s_1^0)$ are given by

$$v_\nu = 0, \quad \frac{v^2}{v_s^2} = \frac{2}{4\lambda_{s1}^2 \lambda_{s1}^2 - \lambda_{s1}^2 \lambda_{s1}^2} \begin{pmatrix} 2\lambda_{s1} & -\lambda_{s1} \Phi_1 \\ -\lambda_{s1} \Phi_1 & 2\lambda_{s1} \end{pmatrix} \begin{pmatrix} \mu_{\Phi_1}^2 \\ \mu_{s1}^2 \end{pmatrix}. \hspace{1cm} (5)$$

<table>
<thead>
<tr>
<th>TABLE I: New particles which are added to the SM in our model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_{iR}</td>
</tr>
<tr>
<td>$SU(2)_L$</td>
</tr>
<tr>
<td>$U(1)_Y$</td>
</tr>
<tr>
<td>Global $U(1)_X$</td>
</tr>
</tbody>
</table>
The Z_2-odd scalar fields (η and s^0_2) result in the following particles: two CP-even neutral scalars (H^0_1 and H^0_2), two CP-odd neutral ones (A^0_1 and A^0_2), and a pair of charged ones (H^\pm_1). It is clear that $H^\pm = \eta^\pm$. When H^0_1 (or A^0_1) is lighter than H^\pm, the neutral one becomes the dark matter candidate. On the other hand, from Z_2-even scalar fields (Φ, Φ_ν, and s^0_1), we have three CP-even particles (h^0, H^0, and H^0_ν), two CP-odd ones (A^0_ν and a massless z^0_2), and a pair of charged scalars (H^\pm_ν). The mixings between ϕ^0_ν and others are ignored because we take $v_\nu/v \ll 1$ and $v_\nu/v_s \ll 1$. Then, Φ_ν provides H^0_ν ($= \phi^0_{\nu r}$), A^0_ν ($= \phi^0_{\nu i}$), and H^\pm_ν ($= \phi^\pm_\nu$). It is easy to see that $z^0_2 = s^0_{11}$, where $s^0_1 = (v_s + s^0_{1 r} + i s^0_{1 i}) / \sqrt{2}$. The formulae of scalar mixings and scalar masses are presented in Appendix. Hereafter, we assume that scalar fields in Tab. I are almost mass eigenstates just for simplicity, which is achieved when $\lambda_{s\Phi_1\eta}$ and $\lambda_{s\Phi_2\eta}$ are small.

By using cubic and quartic interactions shown in Eq. (4), the interaction $\Phi_\nu \Phi$ is obtained with the one-loop diagram in Fig. 1. The coefficient $(\mu^2_{\Phi_1\Phi})_{\text{eff}}$ of the interaction is calculated as

$$(\mu^2_{\Phi_1\Phi})_{\text{eff}} = \frac{\mu \lambda_{s\Phi_1\eta} \lambda_{s\Phi_2\eta} v_s^3}{32 \sqrt{2} \pi^2 (m^2_\eta - m^2_{s_2})} \left(1 - \frac{m^2_\eta}{m^2_\eta - m^2_{s_2}} \ln \frac{m^2_\eta}{m^2_{s_2}} \right),$$

where

$$m^2_\eta \equiv \mu^2_\eta + \frac{1}{2} \left\{ \left(\lambda_{\Phi_1\eta} + \lambda'_{\Phi_1\eta} \right) v^2 + \lambda_{s1\eta} v^2_s \right\},$$

and

$$m^2_{s_2} \equiv \mu^2_{s_2} + \frac{1}{2} \left(\lambda_{s2\Phi_1} v^2 + \lambda_{s12} v^2_s \right).$$
Ignoring loop corrections to terms which exist at the tree-level, we finally arrive at

\[v_\nu = \frac{v (\mu^2_{\Phi 12})_{\text{eff}}}{m^2_{H_0}} \]

where \(m^2_{H_0} \equiv \mu^2_{\Phi 2} + \frac{1}{2} (\lambda_{\Phi 12} + \lambda_{\Phi 12}^\prime) v^2 + \frac{1}{2} \lambda s_{1\Phi 2} v_s^2 \) which is the mass of \(H^0_\nu = (\phi^0_{\nu r}) \). For example, we have \(m_\nu = \mathcal{O}(0.1) \text{ eV} \) for \(m_{s2} = \mathcal{O}(10) \text{ GeV} \) (as the dark matter mass), \(v_s \sim m_\eta \sim m_{H_0} = \mathcal{O}(100) \text{ GeV} \), \(\mu = \mathcal{O}(1) \text{ GeV} \), \(y_\nu = \mathcal{O}(10^{-4}) \), and \(\lambda_{s\Phi 1\eta} \sim \lambda_{s\Phi 2\eta} = \mathcal{O}(10^{-2}) \).

IV. PHENOMENOLOGY

Hereafter, we take the following values of parameters as an example:

\[(y_\nu)_{ei} \sim 10^{-4}, \quad \lambda_{s\Phi 1\eta} = \lambda_{s\Phi 2\eta} = 10^{-2}, \quad \mu = 1 \text{ GeV}, \quad v_s = 300 \text{ GeV}, \]

\[m_{H_0} = m_{A_0} = m_{H_0^\pm} = 300 \text{ GeV}, \quad m_{H_0^0} = 230 \text{ GeV}, \quad m_{H_1^0} = 60 \text{ GeV}. \]

(10)

These values can satisfy constraints from the \(\rho \) parameter, searches of lepton flavor violating processes, the relic abundance of dark matter, and direct searches for dark matter. In order to satisfy \(\rho \approx 1 \), particles which come from an SU(2) multiplet have a common mass. If \(H_1^0 \approx \eta_r^0 \), for example, we take \(m_{H_0^\pm} \sim m_{A_0} \sim m_{H_1^0} \). Since \(y_\nu \) is not assumed to be very large, contributions of \(H_0^\pm \) to lepton flavor violating decays of charged leptons are negligible. For example, the branching ratio \(\text{BR}(\mu \rightarrow e\gamma) \[12\] \) is proportional to \(|(y_\nu y_\nu^\dagger)_{\mu e}|^2 \) and becomes about \(10^{-22} \) which is much smaller than the current bound at the MEG experiment [38]: \(\text{BR}(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13} \) at the 90% confidence level.

A. Dark Matter

We assume that the mixing between \(s_2^0 \) and \(\eta_r^0 \) is negligible for simplicity, which corresponds to the case \(\lambda_{s\Phi 1\eta} \ll 1 \). Then, the dark matter candidate \(H_1^0 \) is dominantly made from \(s_{2r}^0 \) or \(\eta_r^0 \). We also assume that \(\lambda_{s12}|s_1^0|^2|s_2^0|^2 \) and \(\lambda_{s1\eta}|s_1^0|^2(|\eta^\dagger\eta|) \) are negligible in order to avoid \(\mathcal{H}_1^0 H_1^0 \rightarrow \pm_2^0 \eta_2^0 \) which would reduce the dark matter abundance too much. Notice that these coupling constants (\(\lambda_{s12} \) and \(\lambda_{s1\eta} \)) are not used in the loop diagram in Fig. [1]. When \(H_1^0 \approx s_{2r}^0 \), the \(H_1^0 \) is similar to the real singlet dark matter in Ref. [39]. Experimental constraints on the singlet dark matter can be found e.g. in Ref. [40]. We see that \(53 \text{ GeV} \lesssim m_{H_1^0} \lesssim 64 \text{ GeV} \) and \(90 \text{ GeV} \lesssim m_{H_1^0} \) are allowed. On the other hand, when \(H_1^0 \approx \eta_r^0 \), the dark matter is similar to
the one in the so-called inert doublet model \[41, 42\]. See e.g. Refs. \[43, 44\] for experimental constraints on the inert doublet model. It is shown that \(45 \text{ GeV} \lesssim m_{H_0^1} \lesssim 80 \text{ GeV}\) is allowed.

In order to suppress the scattering of \(H_0^1\) on nuclei mediated by the \(Z\) boson, sufficient splitting of \(m_{H_0^1}\) and \(m_{A_1^0}\) is required: \(m_{A_1^0} - m_{H_0^1} \gtrsim 100 \text{ keV}\) (See e.g. Ref. \[44\]). Values of \(m_{H_0^1}\) and \(m_{A_1^0}\) in Eq. (10) are obtained by using \(m_\eta = 60 \text{ GeV}\) and \(m_s = 231 \text{ GeV}\) in Eqs. (23) and (24) in Appendix, and then these values of \(m_\eta\) and \(m_s\) give \(m_{H_0^1} - m_{H_0^1} \simeq 400 \text{ keV}\).

Since we discuss in the next subsection a possible collider signature where \(H_\nu^0\) decays into \(H_1^0\), a light dark matter \((m_{H_1^0} \simeq m_{h_0^0}/2)\) is interesting such that \(H_\nu^0\) (and \(H_\nu^\pm\)) can also be light. We take \(m_{H_1^0} = 60 \text{ GeV}\) as an example for both cases, \(H_1^0 \simeq s_2^0\) and \(H_1^0 \simeq \eta_\nu^0\).

B. Collider

In the \(\nu\)THDM as well as in our model, the neutrino mass matrix \(m_\nu\) is simply proportional to \(y_\nu\). The flavor structure of \(H_\nu^+ \rightarrow \bar{\ell}_L \nu_R\) (summed over the neutrinos) is predicted \[12\] by using current information on \(m_\nu\) obtained by neutrino oscillation measurements. The prediction enables the \(\nu\)THDM to be tested at collider experiments. Since this advantage should not be spoiled, \(H_\nu^+ \rightarrow H_1^{00} \Phi^\pm (\Phi^\pm H_2^0)\) should be forbidden for \(H_1^0 \simeq s_2^0\) (\(H_1^0 \simeq \eta_\nu^0\)). Therefore, we assume that \(m_{H_\nu^\pm}\) satisfies \(m_{H_\nu^\pm} \leq m_{H_1^0} + m_{H_\nu^+}\) for \(H_1^0 \simeq s_2^0\) or \(m_{H_\nu^\pm} \leq m_{H_\nu^0} + m_{H_2^0}\) for \(H_1^0 \simeq \eta_\nu^0\); for example, \(m_{H_\nu^\pm} = 250 \text{ GeV}\) (100 GeV) for \(H_1^0 \simeq s_2^0\) (\(\eta_\nu^0\)).

The process in Fig. 2 would be a characteristic collider signature of our model. Notice that the process utilizes two coupling constants \((\lambda_{s\Phi 1\eta} \text{ and } \lambda_{s\Phi 2\eta})\) which appear also in Fig. 1. Thus, the process indicates that \(\mu_{\Phi 1\Phi 2\nu}^2 \Phi^\dagger \nu\) is radiatively generated with a contribution...
of dark matter. In the original νTHDM in comparison, H^0_ν decays into $\nu\bar{\nu}$ for the case with $m_{H^0_\nu} = m_{H^\pm}$. In order to observe the process in Fig. 2 the partial decay width $\Gamma(H^0_\nu \to H^0_1 H^0_2)$ should be larger than $\Gamma(H^0_\nu \to \nu\bar{\nu})$. Using our benchmark values, we have

$$\Gamma(H^0_\nu \to \nu\bar{\nu}) = \frac{\text{tr}(y_\nu^\dagger y_\nu) m_{H^0_\nu}}{16\pi} \approx 60 \text{ eV}, \quad (11)$$

$$\Gamma(H^0_\nu \to H^0_1 H^0_2) = \frac{\lambda^2_{\Phi\nu\nu} v_s^2}{64\pi m_{H^0_\nu}} \sqrt{1 - \frac{(m_{H^0_2} + m_{H^0_1})^2}{m_{H^0_\nu}^2}} \sqrt{1 - \frac{(m_{H^0_2} - m_{H^0_1})^2}{m_{H^0_\nu}^2}} \approx 30 \text{ keV}. \quad (12)$$

Then, H^0_ν decays into $H^0_1 H^0_2$ dominantly\(^2\). If y_ν is large enough for $\mu \to e\gamma$ to be discovered in near future, the process in Fig. 2 becomes very rare because $H^0_\nu \to \nu\bar{\nu}$ is the dominant channel. Next, when the mixings between Z_2-odd particles are negligible, H^0_2 can decay only into $H^0_1 h^0$ via $\lambda_{s\Phi\nu\eta}$ because $H^0_2 \to H^0_1 H^0_0$ is kinematically forbidden for the values in Eq. (10). Thus, even if $\lambda_{s\Phi\nu\eta}$ is rather small, the branching ratio for $H^0_2 \to H^0_1 h^0$ can be almost 100\%. As a result, the process in Fig. 2 can be free from the one-loop suppression and smallness of coupling constants (y_ν, $\lambda_{s\Phi\nu\eta}$, and $\lambda_{s\Phi\nu\eta}$) which are used to suppress ν_ν.

The cross section of $pp \to H^0_\nu H^0_\nu + H^0_\nu H^0_\nu$ for the masses in Eq. (10) is 7 fb at the LHC with $\sqrt{s} = 14$ TeV. The SM background events come from $t\bar{t}$, WZ, and tb. Cross sections for $pp \to t\bar{t}$, $W^\pm Z + W^- Z$, and $t\bar{b}$ at the LHC with $\sqrt{s} = 14$ TeV are 833 pb [45], 55.4 pb [46], and 3.91 pb [47], respectively. Detailed analysis on kinematic cuts of the background events is beyond the scope of this paper.

If Nature chooses a parameter set for which the process in Fig. 2 is not possible, the deviation from the νTHDM would be the increase of new scalar particles which might be discovered directly and/or change predictions in the νTHDM about e.g. $h^0 \to \gamma\gamma$.

V. CONCLUSIONS AND DISCUSSION

The νTHDM is a new physics model where masses of Dirac neutrinos are generated by a VEV (v_ν) of the second SU(2)\(_L\)-doublet scalar field Φ_ν which has a Yukawa interaction with only ν_R because of a global U(1)\(_X\) symmetry in the Lagrangian. We have presented a simple extension of the νTHDM by introducing the third SU(2)\(_L\)-doublet scalar field η and two neutral SU(2)\(_L\) singlet fields (s^0_1 and s^0_2). Although the global U(1)\(_X\) is broken by a

\(^2\) Cascade decay of A^0_ν results in $H^0_1 H^0_2$ which is invisible similarly to $A^0_\nu \to \nu\bar{\nu}$.

VEV of s_1^0, there remains a residual Z_2 symmetry under which η and s_2^0 are Z_2-odd particles. These Z_2-odd particles provide a dark matter candidate. The ν_ν for neutrino masses can be suppressed without requiring very heavy particles because the VEV is generated at the one-loop level.

A possible signature of the deviation from the νTHDM at the LHC is $\ell_j j_b E_T$ via $pp \to H_\nu^+ H_\nu^0$ followed by $H_\nu^+ \to \ell \nu$ and $H_\nu^0 \to H_1^0 H_2^0 \to H_1^0 H_1^0 h^0 \to H_1^0 H_1^0 b \bar{b}$. Coupling constants which control $H_\nu^0 \to H_1^0 h^0$ and $H_2^0 \to H_1^0 h^0$ are the ones used in the one-loop diagram which is the key to generate ν_ν.

Acknowledgments

We thank Koji Tsumura and Natsumi Nagata for useful comments. The work of S.K. was supported by Grant-in-Aid for Scientific Research Nos. 22244031, 23104006, and 24340036. The work of H.S. was supported by Grant-in-Aid for Young Scientists (B) No. 23740210.

Appendix

1. Scalar Potential

The scalar potential V is given by

\begin{align}
V &= V_2 + V_3 + V_4, \\
V_2 &= -\mu_1^2 |s_1|^4 + \mu_2^2 |s_2|^4 - \mu_1^2 \Phi \Phi + \mu_2^2 \Phi \Phi + \mu_3^2 \eta \eta, \\
V_3 &= -\mu s_1^2 (s_2^2)^2 + \text{h.c.,} \\
V_4 &= \lambda_{s_1} |s_1|^4 + \lambda_{s_2} |s_2|^4 + \lambda_{s_1} |s_1|^2 |s_2|^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{\eta} (\eta \eta)^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{s_1} (\eta \eta)^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{s_1} (\eta \eta)^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{s_1} (\eta \eta)^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{s_1} (\eta \eta)^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{s_1} (\eta \eta)^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{s_1} (\eta \eta)^2 \\
&\quad + \lambda_{s_1} (\Phi \Phi)^2 + \lambda_{s_2} (\Phi \Phi)^2 + \lambda_{s_1} (\eta \eta)^2.
\end{align}

\[(13)\]
Actually, the following simplified V_4 is sufficient for our discussion:

$$V_4(\text{simplified}) = \lambda_{\phi_1}(\Phi^\dagger \Phi)^2 + \lambda_{s_2}|s_{21}|^4 + \lambda_{s_2\phi_1}|s_{22}|^2(\Phi^\dagger \Phi)$$

$$+ \lambda_\eta(\eta^\dagger \eta)^2 + \lambda_{\phi_1 \eta}(\Phi^\dagger \Phi)(\eta^\dagger \eta) + \lambda_{\phi_2 \eta}(\Phi^\dagger \eta)(\eta^\dagger \Phi)$$

$$+ \lambda_{s_1}|s_1|^4 + \lambda_{\phi_2}(\Phi^\dagger \Phi_{\nu})^2$$

$$+ (\lambda_{s_1 \phi_1} s_1^0 (s_2^0)^* \Phi^\dagger \eta + \text{h.c.}) + (\lambda_{s_2 \phi_2} s_1^0 s_2^0 \Phi_{\nu} \eta + \text{h.c.}) .$$ (17)

2. Masses of Scalar Bosons

Scalar fields are decomposed as follows: $\phi^0 = \frac{1}{\sqrt{2}} (v + \phi^0_r + i\phi^0_i)$, $\phi^0_r = \frac{1}{\sqrt{2}} (v_r + s_{1r}^0 + is_{1i}^0)$, $\eta^0 = \frac{1}{\sqrt{2}} (\eta^0_r + i\eta^0_i)$, $s_2^0 = \frac{1}{\sqrt{2}} (s_{2r}^0 + is_{2i}^0)$. We ignore ν_ν in the following formulae.

The mass matrix for (s_{2r}^0, η^0_r) is obtained as

$$M_H^2 = \begin{pmatrix} m_{s_{2r}}^2 - \sqrt{2} \mu v_s & \frac{1}{2} \lambda_{s_1 \phi_1} v v_s \\ \frac{1}{2} \lambda_{s_1 \phi_1} v v_s & m_\eta^2 \end{pmatrix} ,$$ (18)

where $m_{s_{2r}}^2 \equiv \mu_{s_{2r}}^2 + \frac{1}{2} (\lambda_{s_2 \phi_1} v^2 + \lambda_{s_{12}} v_s^2)$ and $m_\eta^2 \equiv \mu_\eta^2 + \frac{1}{2} \left\{ (\lambda_{\phi_1 \eta} + \lambda_{\phi_1 \eta}^*) v^2 + \lambda_{s_1 \eta} v_s^2 \right\}$. On the other hand, The mass matrix for (s_{2i}^0, η^0_i) results in

$$M_A^2 = \begin{pmatrix} m_{s_{2i}}^2 + \sqrt{2} \mu v_s & \frac{1}{2} \lambda_{s_1 \phi_1} v v_s \\ \frac{1}{2} \lambda_{s_1 \phi_1} v v_s & m_\eta^2 \end{pmatrix} .$$ (19)

Notice that the difference between M_H^2 and M_A^2 exists only in the $(1, 1)$ element as $(M_A^2)_{11} = (M_H^2)_{11} + 2\sqrt{2} \mu v_s$. Mass eigenstates ($\mathcal{H}_1^0$ and \mathcal{H}_2^0) of Z_2-odd CP-even scalar bosons are given by

$$\begin{pmatrix} \mathcal{H}_1^0 \\ \mathcal{H}_2^0 \end{pmatrix} = \begin{pmatrix} \cos \theta'_0 & -\sin \theta'_0 \\ \sin \theta'_0 & \cos \theta'_0 \end{pmatrix} \begin{pmatrix} s_{2r}^0 \\ \eta^0_r \end{pmatrix} , \quad \tan(2\theta'_0) = \frac{\lambda_{s_1 \phi_1} v v_s}{m_\eta^2 - m_{s_{2r}}^2 + \sqrt{2} \mu v_s} .$$ (20)

while mass eigenstates (\mathcal{A}_1^0 and \mathcal{A}_2^0) of Z_2-odd CP-odd scalar bosons are obtained as

$$\begin{pmatrix} \mathcal{A}_1^0 \\ \mathcal{A}_2^0 \end{pmatrix} = \begin{pmatrix} \cos \theta'_A & -\sin \theta'_A \\ \sin \theta'_A & \cos \theta'_A \end{pmatrix} \begin{pmatrix} s_{2i}^0 \\ \eta^0_i \end{pmatrix} , \quad \tan(2\theta'_A) = \frac{\lambda_{s_1 \phi_1} v v_s}{m_\eta^2 - m_{s_{2i}}^2 - \sqrt{2} \mu v_s} .$$ (21)

The mass eigenstate \mathcal{H}^\pm of Z_2-odd charged scalar boson is identical to η^\pm:

$$\mathcal{H}^\pm = \eta^\pm .$$ (22)
Masses of these Z_2-odd scalar bosons are calculated as
\begin{align}
 m_{H_1^0}^2 &= \frac{1}{2} \left\{ m_{\eta}^2 + m_{s_2}^2 - \sqrt{2} \mu v_s - \sqrt{(m_{\eta}^2 - m_{s_2}^2 + \sqrt{2} \mu v_s)^2 + \lambda_{\phi_1 \eta}^2 v^2 v_s^2} \right\}, \\
 m_{H_2^0}^2 &= \frac{1}{2} \left\{ m_{\eta}^2 + m_{s_2}^2 - \sqrt{2} \mu v_s + \sqrt{(m_{\eta}^2 - m_{s_2}^2 - \sqrt{2} \mu v_s)^2 + \lambda_{\phi_1 \eta}^2 v^2 v_s^2} \right\}, \\
 m_{A_1^0}^2 &= \frac{1}{2} \left\{ m_{\eta}^2 + m_{s_2}^2 + \sqrt{2} \mu v_s - \sqrt{(m_{\eta}^2 - m_{s_2}^2 - \sqrt{2} \mu v_s)^2 + \lambda_{\phi_1 \eta}^2 v^2 v_s^2} \right\}, \\
 m_{A_2^0}^2 &= \frac{1}{2} \left\{ m_{\eta}^2 + m_{s_2}^2 + \sqrt{2} \mu v_s + \sqrt{(m_{\eta}^2 - m_{s_2}^2 + \sqrt{2} \mu v_s)^2 + \lambda_{\phi_1 \eta}^2 v^2 v_s^2} \right\}, \\
 m_{H^\pm}^2 &= m_{\eta}^2 - \frac{1}{2} \lambda_{\phi_1 \eta} v^2.
\end{align}

Next, the mass matrix for $({\phi^0_\nu}, {s^0_{1\nu}})$ is given by
\begin{equation}
 M_H^2 = \begin{pmatrix}
 2\lambda_{\phi_1 \nu} v^2 & \lambda_{s \phi_1} v v_s \\
 \lambda_{s \phi_1} v v_s & 2\lambda_{s \phi_1} v_s^2
 \end{pmatrix}.
\end{equation}

Notice that ϕ^0_ν does not mix with them when we ignore v_ν. Mass eigenstates (h^0, H^0, and H^0_ν) of Z_2-even CP-even scalar bosons are given by
\begin{align}
 \begin{pmatrix}
 h^0 \\
 H^0 \\
 H^0_\nu
 \end{pmatrix}
 &= \begin{pmatrix}
 \cos \theta_0 & -\sin \theta_0 \\
 \sin \theta_0 & \cos \theta_0 \\
 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 \phi^0_\nu \\
 s^0_{1\nu}
 \end{pmatrix},
 \tan(2\theta_0) = \frac{\lambda_{s \phi_1} v v_s}{\lambda_{s \phi_1} v_s^2 - \lambda_{\phi_1} v^2},
\end{align}

The Nambu-Goldstone boson z^0_2 for the $U(1)_X$ breaking, a Z_2-even CP-odd scalar boson A^0_ν, and the Z_2-even charged scalar boson H^\pm_ν are defined as follows:
\begin{equation}
 z^0_2 = s^0_{1\nu}, \quad A^0_\nu = \phi^0_\nu, \quad H^\pm_\nu = \phi^\pm_\nu.
\end{equation}

Masses of these Z_2-even scalar bosons are calculated as
\begin{align}
 m_{h^0}^2 &= \lambda_{s \phi_1} v_s^2 + \lambda_{\phi_1} v^2 - \sqrt{\lambda_{s \phi_1} v_s^2} - \lambda_{\phi_1} v^2 \right\}^2 + \lambda_{s \phi_1} v^2 v_s^2), \\
 m_{H^0}^2 &= \lambda_{s \phi_1} v_s^2 + \lambda_{\phi_1} v^2 + \sqrt{\lambda_{s \phi_1} v_s^2} - \lambda_{\phi_1} v^2 \right\}^2 + \lambda_{s \phi_1} v^2 v_s^2), \\
 m_{z^0_2}^2 &= 0, \\
 m_{H^0_\nu}^2 &= m_{A^0_\nu}^2 = \mu_{\phi_2}^2 + \frac{1}{2} \left\{ (\lambda_{\phi_{12}} + \lambda_{\phi_{12}}') v^2 + \lambda_{s \phi_2} v_s^2 \right\}, \\
 m_{H^\pm}^2 &= \mu_{\phi_2}^2 + \frac{1}{2} \left\{ \lambda_{\phi_{12}} v^2 + \lambda_{s \phi_2} v_s^2 \right\}.
\end{align}

