Technicolor with Scalar Doublet After the Discovery of Higgs Boson

Sibo Zheng

Department of Physics, Chongqing University, Chongqing 401331, P.R. China

Abstract

The SM-like Higgs boson with mass of 125 GeV discovered at the LHC is subject to a natural interpretation of electroweak symmetry breaking. As a successful theory in offering this naturalness, technicolor with a scalar doublet and two both $SU(3)_c$ and $SU(N_{TC})$ colored scalars, which is considered as a low-energy effective theory, is proposed after the discovery of SM-like Higgs boson. At present status, the model can be consistent with both the direct and indirect experimental limits. In particular, the consistency with precision electroweak measurements is realized by the colored scalars, which give rise to a large negative contribution to S parameter. It is also promising to detect techni-pions and these colored scalars at the LHC.
1 Introduction

Since the discovery of a standard model (SM)-like Higgs boson with mass around 125 GeV \cite{1} reported by the ATLAS and CMS collaboration, extensive efforts have been devoted to explore its implication to electroweak symmetry breaking (EWSB) in the context of new physics. It is now believed that a part of most favored parameter space of natural supersymmetry (SUSY) fails to achieve this, due to the absence of SUSY signals at the large hadron collider (LHC) with $\sqrt{s} = 8$ TeV.

In parallel to SUSY as candidate of new physics which provides natural EWSB, technicolor (TC) was also considered as an interesting scenario decades ago. TC model differs from SUSY in many ways. In particular, it provides EWSB through condensation of technifermions. Therefore, unlike in SUSY models where the electroweak mass parameters are tightly related to the SUSY-breaking scale due to EWSB, naturalness doesn’t concern us in TC-model. However, it also suffers from its own problems, such as too large S parameter in precision electroweak measurements and explanation of mass hierarchy of SM flavors (for a review, see \cite{2}).

In this paper, we consider a variety of TC model based on previous works in \cite{3, 4}. These authors proposed scalar doublet(s) to original TC, which is known as TC with scalar. This variety of TC-model should be considered as a low-energy effective theory. Otherwise, the hierarchy problem appears as in SM. It can be either embedded into walking TC or supersymmetric TC. In the former case, the scalar is composite \cite{5}. In other words, this variety of TC model imitates the low-energy behavior of a set of extended TC. In the later case, the scalar can be either fundamental or composite. The superpartners receive their masses from supersymmetry breaking, and below SUSY-breaking scale we obtain a TC with massive scalar doublet and SM\footnote{For recent works on other variants of TC model, see, e.g. \cite{6}.}. In contrast to the earliest TC, the SM fermions obtain their mass similarly to SM in this type of TC model, in which the vacuum expectation value (vev) of Higgs is-induced by the condensation of techni-fermions-through the Yukawa couplings of Higgs scalar to techni-fermions.

In particular, we study TC-model with one scalar doublet ϕ and two both $SU(3)_c$ and $SU(N_{TC})$ colored scalars, in which there are two mass scales f and f', respectively, referring to decay constant of techni-pions and vev of ϕ. They are supposed to satisfy $f^2 + f'^2 = v^2 = (246 GeV)^2$ from consideration of EWSB. The coupling of neutral scalar of ϕ to SM
fermions are the same as those of SM except an additional factor f'/v. Therefore this factor determines the deviation of our model from SM. Using the LHC data about Higgs immediately leads to,

$$0 < \theta \lesssim 0.2, \quad \theta \equiv f/f'. \quad (1.1)$$

The couplings of techni-pions to SM fermions are similar to those of charged Higgs boson in type I Higgs doublet model, except a common θ factor also.

The physical states below the scale $4\pi f$ are σ scalar identified as Higgs boson, techni-pions and colored techni-scalars. Distinctive features in this model include (1) the small $\theta \sim 0.2$ in (1.1) is sufficient to provide a Higgs scalar of 125 GeV and techni-pion of 210 − 280 GeV simultaneously; (2) the suppression from θ factor is sufficient for the techni-pions to evade both the direct and indirect experimental limits; (3) the colored techni-scalars receive their masses of order v via their ϕ^4 couplings to scalar doublet ϕ; (4) finally the colored techni-scalars provide a large negative contribution to S, which eliminates the large positive contribution arising from condensation, and therefore reconciles the model with precision electroweak measurements.

The paper is organized as follows. In section 2, we present our model in details. Then we discuss direct experimental limits on Higgs scalar, techni-pions and colored techni-scalars in subsection 3.1. We address indirect experimental limits on techni-pions in subsection 3.2 and colored techni-scalars in subsection 3.3, respectively. We discuss masses of colored techni-scalars and corrections to parameters of precision electroweak measurements due to these scalars. We finally conclude in section 4.

2 The Model

The content of TC model which we will explore in this paper is as follows,

$$Y_L = \begin{pmatrix} p \\ m \end{pmatrix}_L : (N_{TC}, 1, 2)_0$$

$$p_R : (N_{TC}, 1, 1)_{1/2}$$

$$m_R : (N_{TC}, 1, 1)_{-1/2}$$

$$\omega_t : (N_{TC}, \bar{3}, 1)_{-1/6}$$

$$\omega_b : (N_{TC}, \bar{3}, 1)_{+1/6} \quad (2.1)$$
with addition of a fundamental scalar $\phi : (1, 1, 2)_{1/2}$. The assignments of representations are under the notation of $SU(N_{TC}) \times SU(3)_c \times SU(2)_L \times U(1)_Y$. In comparison with the simplest model of TC with scalar, two additional colored scalars $\omega_{t,b}$ are added. The choices of hypercharge follow from the requirement of anomaly free.

The Lagrangian for the model reads,

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{TC} + \mathcal{L}_\phi + \mathcal{L}_\omega - V(\phi, \omega) \quad (2.2)$$

The hidden TC and SM matters communicate either via ϕ or ω scalars. For the former case, doublet ϕ couples to techni-fermions and SM flavors in $\mathcal{L}_\phi = \mathcal{L}(\phi, T) + \mathcal{L}(\phi, f_{SM})$ respectively, which read

$$\mathcal{L}(\phi, T) = h_+ \bar{Y}_L \tilde{\phi} p_R + h_- \bar{Y}_L \phi m_R + H.C \quad (2.3)$$

and

$$\mathcal{L}(\phi, f_{SM}) = h_t \bar{t}_R \phi_R + h_U \bar{Q}_L \phi_U + h_D \bar{Q}_L \phi_D + H.C \quad (2.4)$$

Here, Q_L and L being the quark and lepton doublets of SM, respectively, U_R, D_R being right-hand top and bottom quark respectively, and l_R the right hand lepton. hs in (2.4) are the ordinary SM Yukawa couplings.

There also exists strong communication between the quarks of third family and techni-fermions through ω scalars2,

$$\mathcal{L}_\omega = \lambda_{t_R} \bar{R}_R \omega_t^\dagger + \lambda_{b_R} \bar{R}_R \omega_b^\dagger + H.C \quad (2.5)$$

An advantage of adding ω scalars is that the four-fermions operators involving top and bottom quark induced by Yukawa interaction in (2.5) contribute to significantly negative S, which cancels the large positive tree-level contribution due to condensation of techni-fermions. There is also a disadvantage of introducing colored scalars. Because carrying colors implies that ω scalars can be directly produced at hadron colliders, making the model more constrained. This will be discussed in the next section.

The potential $V(\phi, \omega)$ in (2.2) can be determined from the symmetries in (2.1). Below the scale of $\Lambda_{TC} = 4\pi f$ we will work in effective field analysis, it is more convenient to express ϕ doublet and its conjugate in the form of unitary matrix $\Phi [4]$, which can be defined as,

$$\Phi = \frac{\sigma + f^\prime}{\sqrt{2}} \Sigma', \quad \Sigma' = \exp(2i\Pi'/f') \quad (2.6)$$

2In dynamical models of EWSB, similarly to the magnitudes of Yukawa couplings of Higgs boson to SM fermions, we assume that the largest effect is in the Yukawa couplings of top-bottom doublet.
Using Φ, we can write the self-couplings as,

$$V(\phi, \omega) = \frac{\lambda_1}{8}[Tr(\Phi^\dagger \Phi)]^2 + \lambda_5[\omega^\dagger_i \omega_i]^2 + \lambda_6[\omega^\dagger_i \omega_b]^2 + \lambda_2 Tr(\Phi^\dagger \Phi)\omega^\dagger t \omega_t + \lambda_3 Tr(\Phi^\dagger \Phi)\omega^\dagger b \omega_b + \lambda_4 \omega^\dagger t \omega_t \omega^\dagger b \omega_b$$

(2.7)

3 Experimental Limits

As well known we can use the effective chiral Lagrangian to describe the TC model below the TC scale Λ_{TC}. In this approach, the pseudoscalars that result from the chiral symmetry breaking are the isotriplet of technipion Σ. Guided by non-linear realization of π mesons in QCD, Σ can also be similarly treated as,

$$\Sigma = \exp(2i\Pi/f)$$

(3.1)

which transforms as $\Sigma \rightarrow L\Sigma^R$ under the chiral symmetries. It is then straightforward to write the kinetic terms of our model,

$$\mathcal{L} = \frac{f^2}{4} Tr(D_\mu \Sigma^\dagger D^\mu \Sigma) + \frac{1}{2} Tr(D_\mu \Phi^\dagger D^\mu \Phi)$$

(3.2)

with the derivative $D_\mu \Sigma = \partial^\mu \Sigma - igW^a_\mu \tau^a \Sigma + ig' B^\mu \Sigma \tau^3_2$. From (3.2) one observes that the linear combination $\pi_a \sim f\Pi + f'\Pi'$ become the longitudinal components of the EW gauge bosons, leaving its orthogonal combination $\pi_p = (-f'\Pi + f\Pi')/\sqrt{f^2 + f'^2}$ as the physical states of low energy region. One finds that $f^2 + f'^2 = v^2$.

3.1 Direct Searches

Now we understand σ and π_p are the freedoms below Λ_{TC}. The mass of σ can be directly determined from (2.7) as in [4],

$$m^2_{\sigma} = \frac{3}{2} \tilde{\lambda} f'^2$$

(3.3)

where

$$\tilde{\lambda} = \lambda_1 + \frac{11}{24} \left[3h^4 + N_{TF}(h^4_+ + h^4_-)\right].$$

(3.4)

As for mass of π_p, it follows from the effective potential [3],

$$V_{eff}(\sigma) = c_1 4\pi f^3 Tr(\Phi H \Sigma^\dagger) + H.C$$

(3.5)

3Here $H = \begin{pmatrix} h_+ & 0 \\ 0 & h_- \end{pmatrix}$. As manifested in (2.3), it combines with Φ to transform as $\Phi H \rightarrow L\Phi HR^\dagger$.

with the coefficient \(c_1 \sim O(1) \). Substituting \(\pi_p \) into (3.5) gives rise to

\[
m_{\pi_p} = 2c_1\sqrt{2}\frac{4\pi f}{f'}h\nu^2 = 8\sqrt{2}\pi h\theta\nu^2, \quad h = (h_+ + h_-)/2. \tag{3.6}
\]

Direct search on \(\sigma \)

The couplings of \(\sigma \) to SM fermions and EW gauge bosons are suppressed by a factor \(f'/\nu \). Identifying \(\sigma \) as the Higgs boson discovered at the LHC implies that the ratio \(\mu_\gamma \) of signal strength of \(h \to \gamma\gamma \) over its SM prediction, and ratio \(\mu_V \) of signal strength of Higgs decaying into four-leptons via \(WW^* \) and \(ZZ^* \) both equal to

\[
\mu_\gamma = \mu_{VV} = (f'/\nu)^2, \tag{3.7}
\]

Global fit to the LHC data [7] suggests that (1.1) and

\[
\tilde{\lambda} = 0.15 - 0.18, \quad h = 1.75\tilde{\lambda}. \tag{3.8}
\]

The requirement \(4\pi f > \nu \) from consistency further constrains \(\theta \) being in the range \((0.08, 0.2)\).

As for the decays of Higgs boson to \(bb \) and \(\tau\tau \), the uncertainty is still large at present status.

Direct search on \(\pi_p \)

The Yukawa couplings of charged technipion to SM fermions can be extracted from (2.4) [4]

\[
i\left(\frac{f}{\nu}\right)\left[D_LV^+\pi_p-\pi_p^-U_R + \bar{U}_L\pi_p^+Vh_DD_R + H.c\right] \tag{3.9}
\]

where \(V \) denotes the CKM matrix of SM. Eq.(3.9) implies that couplings of \(\pi_p \) to SM fermions are similar to those of charged Higgs boson in type I Higgs doublet model, except a suppression by \(f/\nu \simeq f/f' = \theta \). From (3.6) and (3.8) \(m_{\pi_p} \) is determined to be in the range \((210.3, 334.3) \) (GeV). Searches on this range of mass for charged Higgs boson are mainly from the channel \(H^+ \to t\bar{b} \). We find that the ratio of signal strength for \(\pi_p \to t\bar{b} \) over SM background can be expressed in terms of that for \(H^+ \),

\[
\mu^{(\pi_p)}(\pi_p^+ \to t\bar{b}) = \theta^2\mu^{(H^+)}(H^+ \to t\bar{b}) \tag{3.10}
\]

Charged Higgs boson mass below 78.6 GeV has been excluded by direct searches at LEP [8] (for searches at the LHC, see, e.g., [10]). This bound on \(m_{\pi_p} \) however can be significantly relaxed due to the \(\theta^2 \) suppression on event rate.

\(^4\)In what follows, we set \(c_1 = 1 \) for discussion.
Direct search on \(\omega_{t,b} \)

As we will discuss in the next section, the fit to precision electroweak measurements typically suggests that,

\[
\lambda_{\omega_t} \simeq 0.3 - 1.0, \quad m_{\omega_t} \simeq 580 - 1500 \text{ GeV}, \\
\lambda_{\omega_b} \simeq 1.3 - 3.0, \quad m_{\omega_b} \simeq 100 - 250 \text{ GeV}
\]

Note that this spectra are constrained to be no excess at 1\(\sigma \) level. Allowing no excess at 3\(\sigma \) level further decreases the values of \(\lambda_{\omega_t,b} \) required, which helps evading the direct experimental limits. The spectra of (3.11) can easily evade the direct detection at the \(e^+e^- \) collider. The dominant channel for searching \(\omega_{t,b} \) scalars is through \(e^+e^- \to \omega_{t/b}\omega_{t/b}^* \to t\bar{t}/b\bar{b} \). The ratio of cross section of \(\sigma(e^+e^- \to \omega_{t/b}\omega_{t/b}^*) \) over its SM background \(\sigma_{SM}(e^+e^- \to t\bar{t}/b\bar{b}) \) is very small for each of them. The reason is due to severe suppression by \(\beta = \sqrt{1 - 4m_{\omega}^2/s} \) even if light \(\omega \) scalars near 100 GeV can be produced. At a hadron collider such as LHC \(\omega_{t/b} \) scalar is mainly produced from gluon fusion (GF), and its decay is dominated by \(\omega_{t/b} \to t/b + p_R/m_R \). The SM background for this is \(gg \to m\text{-jets} \) (with either 2t-jets for \(\omega_t \) or 2b-jets for \(\omega_b \) included) plus missing energy. Their mass bounds can be estimated in terms of their analogies in supersymmetric models, i.e, stop and sbottom,

\[
\mu_{\omega_b}^{(GF)} = \frac{\sigma(gg \to \omega_b\omega_b^*)Br(\omega_b\omega_b^* \to b\bar{b} + E_T)}{\sigma(gg \to b_1\bar{b}_1)Br(b_1\bar{b}_1 \to b\bar{b} + E_T)} \mu_{\tilde{t}_1}^{(GF)}(gg \to \tilde{t}_1\tilde{t}_1^* \to 2b - \text{jets} + \text{other jets} + E_T), \\
\mu_{\omega_t}^{(GF)} = \frac{\sigma(gg \to \omega_t\omega_t^*)Br(\tilde{t}_1\tilde{t}_1^* \to t\bar{t} + E_T)}{\sigma(gg \to \tilde{t}_1\tilde{t}_1^*)Br(\tilde{t}_1\tilde{t}_1^* \to t\bar{t} + E_T)} \mu_{\tilde{t}_1}^{(GF)}(gg \to \tilde{t}_1\tilde{t}_1^* \to 2t - \text{jets} + \text{other jets} + E_T)
\]

(3.12)

where \(\mu^{(GF)} \)'s refer to the ratio of signal strength over the SM prediction via production of gluon fusion. The small ratio between couplings \(\lambda_{\omega_t}/h_t^{SM} \simeq 0.5 \) indicates that mass bound on \(m_{\omega_t} \) can be relaxed in comparison with that on \(m_{\tilde{t}_1} \). The bound on \(m_{\omega_b} \) is heavily dependent on the mass of techni-fermion \(m_R \) \cite{9}, a large part of mass range in (3.11) can still survive in specific situation.

3.2 Indirect Searches

In what follows, we consider the indirect experimental limits on \(\pi_p \) in the case of \(\theta \sim 0.08 - 0.2 \).

Correction to \(Br(Z \to b\bar{b}) \)

The radiative correction to \(Br(Z \to b\bar{b}) \) coming from technipion is mostly through the
exchange of technipion and top quark. There are three kinds of Feynman diagrams, the
calculation of which can be similarly considered as for that of charged Higgs bosons in
the minimal supersymmetric standard model in [11]. In addition, there are higher-order
corrections due to ω_t scalar, which are smaller effects and will be neglected. We summarize
the experimental and theoretical results in Table one. One observes that small θ factor
severely suppresses the correction for technipion, and forbids it from exposition through the
measurement of R_b.

<table>
<thead>
<tr>
<th>R_b</th>
<th>Exp value</th>
<th>SM prediction</th>
<th>Exp-SM</th>
<th>TC-correction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.21629 ± 0.00066 [12]</td>
<td>0.21581</td>
<td>(4.8 ± 6.6) $\times 10^{-4}$</td>
<td>$-5.0 \times 10^{-4} \cdot \theta^2$</td>
</tr>
</tbody>
</table>

Table 1: The correction to $\text{Br}(Z \rightarrow b\bar{b})$ and its experimental limit.

Corrections to $B_s^0 - \bar{B}_s^0$
The measurement of $B_s^0 - \bar{B}_s^0$ mixing is another experiment which can be useful to expose the
technipion. Because π_p^\pm gives rise to two additional one-loop diagrams to this process, which
involve one-π_p^\pm-W and two-π_p^\pm exchange, respectively. Following the results in [4, 13](for an
earlier work, see [14]), the correction is derived to be,

$$\Delta M_s^{(\pi_p)} \simeq \Delta M_s^{SM} (-0.18 \cdot \theta^2 - 0.63 \cdot \theta^4) \quad (3.13)$$

when θ closes to θ_{max}. The updated analysis of ΔM_s^{SM} in SM is discussed in [16], whereas
its latest experimental value is given in [12]. We collect these results in Table 2. Similar
to the correction to $\text{Br}(Z \rightarrow b\bar{b})$, as a result of θ suppression technipion doesn’t produce
obviously effects in this experiment.

<table>
<thead>
<tr>
<th>ΔM_s</th>
<th>Exp value</th>
<th>SM prediction</th>
<th>(Exp-SM)</th>
<th>TC-correction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.719 ± 0.036(stat)</td>
<td>17.3 ± 2.6</td>
<td>0.42 ± 2.6</td>
<td>$-3.11 \cdot \theta^2 - 10.90 \cdot \theta^4$</td>
</tr>
</tbody>
</table>

Table 2: Correction to $B_s^0 - \bar{B}_s^0$ mixing in our model and its experimental limit. Here ΔM_s
is in unite of ps^{-1}.

Corrections to $b \rightarrow s\gamma$
The partial width for $b \rightarrow s\gamma$ in our model is similar to that of type I two Higgs doublet
model (see [15] for the calculation), with the replacement of H^\pm by π_p^\pm in the one-loop
Feynman diagrams. However, our model differs from the type I two Higgs doublet model
in the way that the couplings of π_p to SM fermions are suppressed by θ factor. In Table 3
we show the experimental and theoretic results. In Fig 1, we plot $\delta \Gamma/\Gamma_{SM}$ as function of θ. At present status, no excess beyond 3σ level is expected in the range $\theta = 0.08 - 0.15$, or equivalently in the range of mass $210 - 287$ GeV.

<table>
<thead>
<tr>
<th>Exp value</th>
<th>SM prediction</th>
<th>(Exp-SM)((\lesssim 2\sigma))</th>
<th>(TC-correction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55 ± 0.26 [17]</td>
<td>3.15 ± 0.23 [18]</td>
<td>$-0.3 - 1.1$</td>
<td>Fig.1</td>
</tr>
</tbody>
</table>

Table 3: Correction to $B(b \rightarrow s\gamma)$ and its experimental limit. B is in unite of 10^{-4}.

Figure 1: Contour of $\delta \Gamma/\Gamma_{SM}$ for $b \rightarrow s\gamma$. At present status, no excess beyond 3σ level is expected in the range of $0.08 - 0.16$. Note that the choice of $\theta > 0.08$ is required by $hf' < 4\pi f$ and $\upsilon < 4\pi f$ as explained above.

One may wonder the implications of direct search on the charged Higgs boson to technipion. For π_p with mass of about 90 GeV which is the lower bound found at colliders, it corresponds to $\theta = 0.015$ in our model. It easily evades indirect experiments such as $b \rightarrow s\gamma$.

3.3 Precision Measurement

As well known a severe problem that plagues TC is the precision electroweak measurement since the report of Peskin and Takeuchi [19]. Because the condensation of techni-fermions gives rise to a positive and large tree-level contribution to the oblique parameter

$$S_0 \simeq 0.1 \frac{N_{TF}}{2} N_{TC} \simeq 0.1 \ N_{TC}$$

$$T_0 \simeq 0.01 \left(\frac{\Lambda'}{1 \ TeV} \right)^4$$

(3.14)
for two flavors $N_{TF} = 2$. Λ' is a mass scale close to Λ_{TC}, which is hard to be estimated precisely. As noted from (3.14), S_0 is too large. In what follows, we consider the case $N_{TC} = 4$. The introduction of colored ω scalars also produces significant contributions to S. What is of interest is these new contributions always cancel out the tree-level part of S, and help evading the precision measurements when the masses of $\omega_{t,b}$ are of order $\sim v$.

Following the definition of S and T parameters, we derive the total contribution in our model \[5\]

$$S = S_0 + \frac{2}{3\pi}(2\delta g^t_R - \delta g^b_R)$$

$$T = T_0 + \delta g^t_R \frac{3m_t^2}{\pi^2\alpha v^2} \ln \left(\frac{\Lambda_{TC}}{m_t}\right)$$

(3.15)

where

$$\delta g^t_R = -\frac{\lambda^2_{\omega_t}v^2}{8m_{\omega_t}^2}, \quad \delta g^b_R = \frac{\lambda^2_{\omega_b}v^2}{8m_{\omega_b}^2}$$

(3.16)

The experimental limits on S and T of (3.15) have been updated from global fit. Following the results in the second reference of [21],

$$S = 0.07 \pm 0.10, \quad T = 0.05 \pm 0.12.$$

(3.17)

in Table 4 we show four benchmark points involving parameters of ω-scalar mass and their Yukawa couplings.

As shown in Table 4, it is sufficient for $m_{\omega_{t,b}}$ of order \sim EW scale to cancel the tree-level contribution S_0. This requirement can be naturally realized in our model. Note that the vev of Φ induced by the condensation gives rise to masses of techni-scalar in terms of potential $V(\phi, \omega)$ in (2.7), which read,

$$m^2_{\omega_t} = \frac{1}{2}\lambda_2 f'^2, \quad m^2_{\omega_b} = \frac{1}{2}\lambda_3 f'^2.$$

(3.18)

In this sense, bounds on $m_{\omega_{t,b}}$ due to precise electroweak measurements can be used to constrain Yukawa couplings in (2.7).

\(^5\) To calculate S and T we follow the notation in [20]. In this reference, the four fermions interactions below Λ_{TC} induced by the ω scalars are carefully considered. The effects on oblique parameters from these operators can be extracted in terms of the effective field theory analysis.
Table 4: Benchmark points hinted by the precision measurements. Here mass is in unite of GeV. \(\Lambda' = 0.8 (1.5) \) TeV corresponds to central value \(\delta g'_R = -0.002 (-0.003) \), respectively, and \(\delta g^b_R = 1.3 \).

<table>
<thead>
<tr>
<th>(\lambda_{\omega_t})</th>
<th>(\lambda_{\omega_b})</th>
<th>(m_{\omega_t})</th>
<th>(m_{\omega_b})</th>
<th>(\Lambda')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1.3</td>
<td>583.4</td>
<td>100</td>
<td>800</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
<td>972.4</td>
<td>229</td>
<td>800</td>
</tr>
<tr>
<td>0.3</td>
<td>1.3</td>
<td>476.3</td>
<td>100</td>
<td>1500</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
<td>794</td>
<td>229</td>
<td>1500</td>
</tr>
</tbody>
</table>

4 Conclusions

In this paper we consider TC-model with one scalar doublet and two extra colored techni-scalars. After the condensation of techni-fermion at scale \(\Lambda = 4\pi f \sim 480 \) GeV which is above the EW scale, the scalar doublet receives its vev \(f' \) through its coupling to techni-fermions, gives rises to a SM-like scalar \(\sigma \) discovered at the LHC when \(\theta = f/f' \lesssim 0.2 \). With \(m_\sigma = 125 \) GeV, experimental limits suggest that \(m_{\pi_p} \) in the range \(210 - 280 \) GeV. Because of \(\theta \) suppression on Yukawa couplings of techni-pions to SM fermions, they can evade the present experimental limits from both direct and indirect searches.

On the other hand, the colored techni-scalars obtain their masses of order \(\mathcal{O}(0.1 - 1) \) TeV, through \(\phi^4 \) coupling with scalar doublet. They can provide a large negative contribution to \(S \), which eliminates the large positive contribution arising from condensation, therefore reconcile our model with precision electroweak measurements.

A detailed analysis on bounds of \(\omega \) scalars masses is needed in the further. It is also of interest to consider TC models with two fundamental scalar doublets instead.

Acknowledgement

The author thanks C. D. Carone for correspondence and D. Shih for discussions. This work is supported in part by the Natural Science Foundation of China under Grant No. 11247031.

References

S. Samuel, Nucl. Phys. B 347, 625 (1990);
C. D. Carone and E. H. Simmons, Nucl. Phys. B 397, 591 (1993);

