pp interactions at 300 GeV/c: Measurement of the charged-particle multiplicity and the
total and elastic cross sections*

A. Firestone, V. Davidson, D. Lam, F. Nagy, C. Peck, and A. Sheng
California Institute of Technology, Pasadena, California 91109

F. T. Dao, R. Hanft, J. Lach, E. Malamud, and F. Nezrick
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

A. Dzierba
Indiana University, Bloomington, Indiana 47401

R. Poster, P. Schlein, and W. Slater
UCLA, Los Angeles, California 90024
(Received 5 June 1974)

In a 35,000-picture exposure of the 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam at
the Fermi National Accelerator Laboratory, 10,054 interactions have been observed. The measured total cross
section is 40.68 ± 0.55 mb, the elastic cross section is 7.89 ± 0.52 mb, and the average charged-particle
multiplicity for inelastic events is 8.50 ± 0.12.

We present data on a determination of the charged-particle multiplicity distribution and of the
total and elastic cross sections for 300-GeV/c proton-proton interactions. Precise determinations
of these cross sections and of the shape of the multiplicity distribution are of importance to
high-energy strong-interaction dynamics. The data presented here represent approximately 5.4
times the number of events previously reported at this energy.1

The primary proton beam was extracted from the Fermi National Accelerator Laboratory proton
synchrotron and reduced to a suitable intensity for the 30-in. hydrogen bubble chamber. The intensity
of the beam was suitably attenuated by closing collimators and defocusing magnets, and by the insertion
of an aluminum target approximately 1 km upstream of the bubble chamber. The target was
viewed at an angle of 1.5 mrad. Measurements indicated that the beam momentum spread was less
than 0.5%. The proton beam entered the bubble chamber with an angular spread of 1.3 mrad, and
within this angular region the fraction of contaminating particles is <0.2%.2

The bubble chamber operated with the following parameters: B=27 kG, 35-mm film, four views,
bubble size on film ~15 μm, and a bubble density for minimum-ionizing particles of 10–12 bubbles/cm.
The entrance window was ~18 cm high by ~5.5 cm wide.

In the first scan the chamber was imaged at 75% of its true size, and all the film was scanned by
teams of two physicists working together. In this scan a decision was made as to whether a picture
was acceptable based on two criteria:

(1) All beam tracks entering the chamber had to be parallel to the beam to ≤ 1.3 mrad. Frames
with up to three off-angle incident tracks were flagged and were also included in the analysis.

(2) The number of beam tracks entering through the window as projected in view 2 had to be ≤ 15.

Most rejected frames showed evidence of a hadron shower upstream of the visible hydrogen. With
these criteria, 20,619 frames were accepted out of 34,750 frames taken. The recorded information
included the number of entering beam tracks, all events, any secondary interactions, neutron stars,
V°s, kinks, Dalitz pairs, stopping protons, and πµμ decays. The average number of beam tracks
per accepted frame was 6.7.

The second scan was performed by professional scanners independently of the first scan, and a
third scan was performed by physicists on about 35% of the film to resolve conflicts. In this third
scan, event topologies were carefully examined using a magnification of three times chamber size,
and conflicts were usually resolved in favor of the second scan. Scanning was done without fiducial
cut and 12,356 events were found. A fiducial length cut reduced this to our final sample of 10,054
events. From the first two scans, the scanning efficiency for the first scan was computed to be
(95.1 ± 0.9)% for two-pronged events and (97.9 ± 0.2)% for all other topologies. The second scan
efficiency was almost identical to the first, resulting in an overall scan efficiency of 99.7% for
two-pronged events and 99.9% for all other topologies. The fiducial length of 53.09 ± 0.14 cm was
chosen to allow ≥ 15 cm of visible track length at
the downstream end of the chamber in order to minimize the fraction of events of uncertain topology. The quoted uncertainty in the fiducial length includes the effect of uncertainties in the positions of events.

In the determination of the incident proton flux the following sources of systematic error were considered:

(i) Beam-track scanning efficiency. This error is negligible; the two independent scans differed by a total of 12 beam tracks out of 138641 incident beam tracks.

(ii) Beam contamination. We have no evidence for any beam contamination, but we include a contribution of 0.2% to the error in the overall normalization for possible beam contamination.

(iii) Beam attenuation in passing through the chamber. This results in a systematic reduction in the beam path length of (3.88 ± 0.04)%.

The total proton beam path length after all corrections, including possible beam contamination, is (7.074 ± 0.023) × 10⁶ cm.

To determine the total cross section two additional sources of error were considered:

(iv) Contamination in the liquid hydrogen. Measurements indicate the deuterium contamination in the hydrogen is less than 1 part in 10⁴, so this error is negligibly small.

(v) Hydrogen density. There is an uncertainty of 0.8% in the density of the liquid hydrogen. This comes from a study of the range of 290 muons from π⁺ decays at rest in the chamber. We determine the hydrogen density to be 0.0625 ± 0.0005 g/cm².

Elastic events, which constitute about 3/4 of the two-prong sample, were identified by kinematic fitting. All two-prong events were completely measured on image-plane digitizers at FNAL and processed by the standard reconstruction and fitting programs TVGP and SQUAW. From a study of transverse momentum balance, we have concluded that a 3-constraint fit to the elastic hypothesis

![Optical point graph](image)

FIG. 1. Differential cross section for elastic pp scattering at 300 GeV/c. The data points shown have been corrected for the loss of proton recoils along the lens axis. The very forward points with |δ| < 0.04 GeV/c suffer additional loss of short recoils at all azimuths about the beam. Those points have not been included in any fit. The smooth curve represents our best estimate of the elastic scattering differential cross section, and is a function of the form \(d \sigma/dt = A e^{bt} \) with \(A = 85.82 ± 2.06 \text{ mb/(GeV/c)}^2 \) and \(b = 10.8 ± 0.3 \text{ (GeV/c)}^{-2} \).

TABLE I. Topological cross sections at 300 GeV.

<table>
<thead>
<tr>
<th>Charged prongs</th>
<th>Events found</th>
<th>Corrected number (^a)</th>
<th>Cross section (mb) (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10.29 ± 0.37</td>
<td>2562 ± 52</td>
</tr>
<tr>
<td>2</td>
<td>2174</td>
<td>7.99 ± 0.52</td>
<td>2042 ± 106</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2.10 ± 0.51</td>
<td>620 ± 105</td>
</tr>
<tr>
<td>4</td>
<td>1313</td>
<td>5.08 ± 0.19</td>
<td>1313 ± 37</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5.84 ± 0.20</td>
<td>1515 ± 10</td>
</tr>
<tr>
<td>6</td>
<td>1519</td>
<td>5.86 ± 0.20</td>
<td>1519 ± 10</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>5.09 ± 0.19</td>
<td>1315 ± 37</td>
</tr>
<tr>
<td>8</td>
<td>1286</td>
<td>3.07 ± 0.17</td>
<td>950 ± 33</td>
</tr>
<tr>
<td>9</td>
<td>1515</td>
<td>2.54 ± 0.15</td>
<td>295 ± 22</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>1.13 ± 0.12</td>
<td>174 ± 15</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>0.65 ± 0.07</td>
<td>172 ± 15</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.26 ± 0.05</td>
<td>67 ± 11</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.18 ± 0.04</td>
<td>47 ± 8</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0.64 ± 0.026</td>
<td>11 ± 5</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>0.03 ± 0.020</td>
<td>9 ± 1</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>0.00 ± 0.004</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>4.06 ± 0.05</td>
<td>10.519 ± 103</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>40.68 ± 0.55</td>
<td>10.519 ± 103</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>10.519 ± 103</td>
<td>40.68 ± 0.55</td>
</tr>
</tbody>
</table>

\(^a\) The total error is the statistical error combined with the errors on the corrections.

\(^b\) The cross section errors contain an additional uncertainty contributed by the hydrogen density and total path-length errors.
(with the fast outgoing proton momentum determined by the fit) correctly identifies 92% of all true elastic events. There is a 5% contamination from inelastic events. Corrections for these effects have been included in the quoted cross sections.

The elastic differential cross section is shown in Fig. 1. We have fitted the distribution to the function \(\frac{da}{dt} = Ae^{bt} \) in the range 0.04 \(\leq t \leq 0.6 \) (GeV/\(c \))^2, and obtained the values \(A = 83.82 \pm 2.06 \) mb/(GeV/c)^2 and \(b = 10.6 \pm 0.3 \) (GeV/c)^2, with a \(\chi^2 \) of 7.2 for 9 degrees of freedom. After applying a correction of (17.8 \(\pm 1.2 \))% to the two-prong sample to account for systematic scanning losses at low \(t \) for both elastic and inelastic events, we find total and elastic cross sections of 40.68 \(\pm 0.55 \) mb and 7.89 \(\pm 0.52 \) mb, respectively. We point out, from Fig. 1, that the elastic differential cross section, extrapolated to \(t = 0 \) with constant slope \(b \), is in agreement with the optical point calculated from our measured total cross section. We have also fitted the differential elastic cross section data to a function of the form \(\frac{da}{dt} = Ae^{bt} + ct^2 \) and obtained no evidence of \(c \) different from zero. It is worth noting that our measured total cross section is in agreement with the value 40.4 \(\pm 0.28 \) mb for the total pp cross section, found in a counter experiment at this energy. Our elastic slope may be compared with previous results at this energy.

Table I shows the topological cross sections. The raw charged-particle multiplicity data obtained in the scan are found in the column marked "Events found." In order to obtain an unbiased multiplicity distribution, we corrected these data for the following effects:

(I) Odd-prong events. There are a total of 80 odd-prong events. These may be due to an undetectable low-\(t \) proton or to an unresolvable secondary interaction close to the primary vertex. The latter effect appears mostly for high-multiplicity events, and will be discussed in the next paragraph. The procedure adopted here is to assign all odd-prong events to the next higher number of even prongs, and then to correct this revised multiplicity distribution for the effect of close-in secondary interactions.

(II) Close-in secondaries and close-in vees. There are 2947 secondary interactions and 2059 \(V^0 \) decays from events in the fiducial volume. From a study of the distance of secondary interactions and of \(V^0 \)'s from the primary vertex we observe that within 2.2 cm of the primary vertex there is a loss of 46 close-in secondaries and 93 close-in \(V^0 \)'s.

Both of these corrections will lower the multiplicity. The 2947 observed secondary interactions have a distribution heavily peaked at low multiplicity, i.e., 62% 2-prong secondaries, 20% 4-prongs, 9% 6-prongs, 5% 8-prongs, and 4% \(\geq 10 \)-prongs. Thus the bulk of this correction lowers the primary multiplicity by only 2. Nevertheless, this correction is applied separately for each primary multiplicity according to its observed secondary multiplicity distribution. The close-in \(V^0 \) correction always lowers the primary multiplicity by 2.

(III) Dalitz pairs. We calculate that 1054 events should contain 404 Dalitz pairs. The observed number of Dalitz pairs is only 137, and the data have been corrected for the missing Dalitz pairs according to the measured average \(\pi^0 \) multiplicity as a function of charged-particle multiplicity as measured in phase I of this experiment.

The column labeled "Corrected number" in Table I lists the charged-particle multiplicities corrected for all the above effects. The quoted errors include the statistical error combined with the errors on the corrections. The cross sections quoted in Table I also include errors due to the uncertainties in the density of the liquid hydrogen and in the total path length.

In Table II we list some of the moments of the charged-multiplicity distribution in the fiducial volume.

We thank the staffs of the accelerator, Neutrino Laboratory, 30-in. Bubble Chamber, and Film Analysis Facility at the Fermi National Accelerator Laboratory for their diligent help during the course of this experiment. We also thank Kwan-Wu Lai and Ricardo Gomez for helpful discussions.
Measurement of the K_S branching ratio into two pions*

P. Cowell,† J. Lee-Franzini, and R. Orcutt

State University of New York at Stony Brook, Stony Brook, New York 11790

P. Franzini, R. Newman, and S. Zubarik

Columbia University, New York, New York 10027

(Received 3 April 1974)

A spark-chamber experiment to measure the branching ratio of the short-lived K_1 meson into the modes $\pi^+\pi^-$ and $\pi^0\pi^0$ was performed at the Princeton-Pennsylvania Accelerator. A 1.0-GeV/c beam of incident π^- mesons produced Λ^0K^0 from a polyethylene target. The decay of Λ into π^0p was used as a signal for the associated production of a K^0. A total of 160,000 pictures, taken in two views, were completely scanned for V's (charged decays of neutral particles), and all tracks were measured. A final sample of 16,000 K^0 charged decays and 65,000 Λ^0 charged decays directly determined the branching fraction for K_1 to decay into $\pi^+\pi^-$ to be 0.684 ± 0.009. The branching ratio found by this experiment is then $\Gamma(K_1 \to \pi^+\pi^-)/\Gamma(K_1 \to \pi^0\pi^0) = 2.169 \pm 0.004$.

INTRODUCTION

In 1964 the discovery of CP violation by Christenson et al.1 revived interest in a better measurement of the properties of the neutral K meson. In particular, it was pointed out by Wu and Yang2 that CP violation, if it occurs directly in the decay channel $K^0 \to 2\pi$, must be due to a nonvanishing imaginary part of the amplitude A_2 for the decay of a neutral K into two pions in a state with isospin 2.

The phenomenological treatment of $K^0 \to \pi\pi$ decay requires, in general, the introduction of the quantities $Re(A_2/A_0)$ and $Im(A_2/A_0)$, and the knowledge of the $\pi\pi$ scattering phases at the K^0 mass, or rather, the difference $\delta(J=2, L=0) - \delta(J=0, L=0)$. Of course, a nonvanishing $Re(A_2/A_0)$ implies a direct violation of the $\Delta I = \frac{1}{2}$ rule in the two-pion decay of the K^0 meson. It is easy to show that

$$R = \frac{\Gamma(K_2 \to \pi^+\pi^-)}{\Gamma(K_2 \to \pi^0\pi^0)} = 2 + 6\sqrt{2} \left[Re(A_2/A_0) \cos(\delta_2 - \delta_0) \right]$$

apart from phase-space and radiative corrections. Although the $\Delta I = \frac{1}{2}$ rule was invented to explain