Measurement of top quark polarization in top–antitop events from proton–proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter presents measurements of the polarization of the top quark in top–antitop quark pair events, using 4.7 fb$^{-1}$ of proton–proton collision data recorded with the ATLAS detector at the Large Hadron Collider at $\sqrt{s} = 7$ TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of $\alpha_{\ell}P$, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving (CPC) or a CP violating (CPV) production process. The measurements obtained, $\alpha_{\ell}P_{\text{CPC}} = -0.035 \pm 0.014(\text{stat}) \pm 0.037(\text{syst})$ and $\alpha_{\ell}P_{\text{CPV}} = 0.020 \pm 0.016(\text{stat})^{+0.013}_{-0.017}(\text{syst})$, are in good agreement with the Standard Model prediction of negligible top quark polarization.
Measurement of top quark polarization in top–antitop events from proton–proton collisions at √s = 7 TeV using the ATLAS detector
(The ATLAS Collaboration)
(Dated: September 9, 2013)

This Letter presents measurements of the polarization of the top quark in top–antitop quark pair events, using 4.7 fb⁻¹ of proton–proton collision data recorded with the ATLAS detector at the Large Hadron Collider at √s = 7 TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of αtP, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving (CPC) or a CP violating (CPV) production process. The measurements obtained, αtP_CPC = −0.035 ± 0.014(stat) ± 0.037(syst) and αtP_CPV = 0.020 ± 0.016(stat)+0.013(syst), are in good agreement with the Standard Model prediction of negligible top quark polarization.

PACS numbers: 14.65.Ha,12.38.Qk

The short lifetime of the top quark [1–5] implies that it decays before hadronization takes place, allowing its spin state to be studied using the angular distributions of its decay products. In the Standard Model (SM), parity conservation in the strong production of top–antitop quark pairs (tt) in proton–proton (pp) collisions implies zero longitudinal polarization of the quarks. A negligible polarization (0.003) is generated by the weak interaction [6]. Physics beyond the SM can induce top quark polarization. For example, models that predict the top quark forward-backward production asymmetry to be larger than the SM prediction, as seen by the Tevatron experiments D0 [7,8] and CDF [9], can generate non-zero polarization of top quarks [10–12]. A first study of polarization in tt events has been performed by the D0 collaboration [8], showing good agreement between the SM prediction and data.

In this Letter, measurements are presented of the polarization of the top quark in inclusive tt production in single charged lepton (tt → ℓνq̄q̄b̄b) and dilepton (tt → ℓ⁺νℓ⁻ q̄q̄b̄b) events. The double differential distribution in polar angles, θ, of two of the final-state decay products, with respect to a given quantization axis is given by [13]

\[
\frac{dσ}{d\cos θ_1 d\cos θ_2} = \frac{1}{4} \left(1 + α_1 P_1 \cos θ_1 + α_2 P_2 \cos θ_2 - C \cos θ_1 \cos θ_2\right),
\]

where θ₁ (θ₂) is the angular distribution of the decay daughter particle of the top (antitop) quark. Here, C represents the tt spin correlation, P₁ (P₂) represents the degree of polarization of the top (antitop) quark along the chosen quantization axis, and α₁ is the spin-analyzing power of the final state object [14,15], which is a measure of the sensitivity of the daughter particle to the spin state of the parent. At leading order, charged leptons and down-type quarks from W-boson decays are predicted to have the largest sensitivity to the spin state of the top quark with a spin-analyzing power of α = 1. The helicity basis is used, in which the momentum direction of the top quark in the tt center-of-mass frame is chosen as the quantization axis. The cos θ_ℓ distributions of the charged leptons are used as observables to extract a measurement of αtP.

The analysis is based on the full 2011 dataset of pp collision events, collected at a center-of-mass energy of 7 TeV by the ATLAS detector [16], corresponding to an integrated luminosity of 4.66 ± 0.08 fb⁻¹ [17] after data quality requirements.

ATLAS includes an inner tracking detector, covering a pseudorapidity [18] range |η| < 2.5, surrounded by a superconducting solenoid providing a 2 T magnetic field. A liquid argon (LAr) electromagnetic sampling calorimeter (|η| < 3.2), an iron–scintillator tile hadronic calorimeter (|η| < 1.7), a LAr hadronic calorimeter (1.4 < |η| < 3.2), and a LAr forward calorimeter (3.1 < |η| < 4.9) provide the energy measurements. The muon spectrometer consists of tracking chambers covering |η| < 2.7, and trigger chambers covering |η| < 2.4, in a toroidal magnetic field. Events considered in this analysis are required to have one high-transverse-momentum (p_T) electron or muon that passes requirements of the three-level trigger system.

Both data-driven techniques and Monte Carlo (MC) simulations are used to estimate the sample composition of the data. For each MC sample, generated events are processed through a GEANT4 [19] simulation of the full ATLAS detector [20], and the same reconstruction and analysis software is used for both the data and the MC events. Signal tt events are simulated by the next-to-leading-order (NLO) generator MC@NLO 3.41 [21] with the NLO parton distribution function (PDF) set CT10 [22], assuming a top quark mass of 172.5 GeV. Parton showering is modeled with HERWIG 6.510 [23], and JIMMY 4.31 [24] is used for the underlying event. A tt production cross section of 1.2 ± 0.18 pb is used, calculated at approximate next-to-next-to-leading-order (NNLO) in QCD using HATHOR 1.2 [25]. Backgrounds are simulated using the MC@NLO, ACRMC [26], ALPGEN [27], and HERWIG generators, as detailed in Ref. [28]. Each simulated signal or background event is overlaid with additional pp collisions. The events are given a weight such that the distribution of the average number of events per beam crossing agrees with data. For each sample the cross section is rescaled to the most up to
date theoretical expectations, as described in Ref. [29].

The data sample is enriched in $t\bar{t}$ events by applying several selection criteria based on the $t\bar{t}$ event topology. The selected $t\bar{t}$ events consist of jets, isolated leptons and missing transverse momentum from the undetected neutrinos. Jets are reconstructed from clustered energy deposits in the calorimeters using the anti-k_t algorithm [30] with a radius parameter $R = 0.4$. Their energies are corrected to correspond on average to the total energy of the stable particles emitted towards the jet using energy- and η-dependent correction factors derived from simulation, and a residual correction derived from in situ measurements [31, 32]. They are required to have $p_T > 25$ GeV and $|\eta| < 2.5$. Furthermore, at least 75% of the scalar sum of the p_T of all the tracks associated with each jet must belong to tracks originating from the primary vertex, which is defined as the vertex with the highest sum of the squared p_T values of the associated tracks in the event. Jets originating from b-quarks are selected by using a neural network algorithm that combines information about the impact parameter, vertex position, and kinematic variables. The algorithm identifies simulated b-jets from top quark decays with 70% efficiency and a rejection factor of about 140 for light partons [33, 35]. Reconstructed electrons must have $p_T > 25$ GeV and be associated with a calorimeter cluster in the range $|\eta_{\ell}| < 2.47$, excluding the transition between calorimeter sections, $1.37 < |\eta_{\ell}| < 1.52$. Selected muons are required to fulfill $|\eta| < 2.5$ and $p_T > 20$ GeV. Each lepton is required to pass quality criteria, to be compatible with being produced at the primary vertex by having a longitudinal impact parameter smaller than 2 mm, and to be isolated from other calorimeter energy deposits and tracks [56]. The E_T^{miss} is calculated as the magnitude of the negative of the vectorial sum of all energy deposits in the calorimeters, and then corrected for the momenta of the reconstructed muons.

The details of the final event selection depend on the W decay channels. This measurement uses five different channels, containing either one or two electrons or muons in the final state, including the ones coming from τ decays. The requirements for the single-lepton channels ($\ell+\text{jets}$) are:

- Exactly one electron or muon;
- At least four jets, at least one of which is b-tagged;
- $E_T^{\text{miss}} > 30$ GeV for the electron channel and $E_T^{\text{miss}} > 20$ GeV for the muon channel;
- The transverse mass of the W boson to be greater than 30 GeV for the electron channel, while $m_T + E_T^{\text{miss}} > 60$ GeV is required for the muon channel. The transverse mass is computed from the lepton p_T and ϕ angle (p_T^ℓ, ϕ^ℓ) and the direction of the E_T^{miss} as

$$m_T = \sqrt{2p_T^\ell E_T^{\text{miss}}[1 - \cos(\phi^\ell - \phi(E_T^{\text{miss}}))]}.$$

The selection of the dilepton channels (ee, $e\mu$, $\mu\mu$) requires:

- Exactly two oppositely charged electrons or muons;
- At least two jets;
- A dilepton invariant mass larger than 15 GeV for all the channels, and more than 10 GeV away from the Z boson mass for the ee and $\mu\mu$ channels;
- $E_T^{\text{miss}} > 60$ GeV for the ee and $\mu\mu$ channels;
- The scalar sum of the p_T of all selected leptons and jets to be larger than 130 GeV for the $e\mu$ channel.

The major backgrounds are due to vector boson production with additional jets, single top quark production, and to misidentified leptons. Their contributions are estimated using data-driven methods and MC simulation. In particular, the normalization of the dominant background in the $\ell+\text{jets}$ channels, $W+\text{jets}$ production, is estimated using a measurement of the lepton charge asymmetry in data [38], while the shape of the distribution of $\cos \theta_t$ is taken from simulation. In the ee (\(\mu\mu\)) channel, the normalization of the $Z/\gamma^*+\text{jets}$ background with Z/γ^* decaying into ee (\(\mu\mu\)) is determined from data. A $Z/\gamma^*+\text{jets}$ enriched control region is defined, where a correction factor for the simulation normalization is derived as a function of the E_T^{miss} in the event, and applied to the signal region in order to account for possible E_T^{miss} mis-modeling.

The contributions of non-prompt leptons from semileptonic hadron decays and of jets misidentified as leptons (fakes) are determined from data using matrix methods [29, 39]. For $\ell+\text{jets}$ channels this contribution comes primarily from multi-jet events, while for dilepton channels it originates primarily from $W+\text{jets}$ events where one charged lepton comes from W decay and the other lepton is a non-prompt or fake lepton.

After selection, the expected yields for signal and background compared to data are shown in Table 1.
TABLE I. Expected signal and background rounded yields compared to data for each of the five lepton flavor channels considered. The approximate NNLO SM prediction [25] is assumed for \(t\bar{t} \) production, and the total systematic and statistical uncertainties are reported.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\ell^+) jets</th>
<th>(\mu^+) jets</th>
<th>(ee)</th>
<th>(e\mu)</th>
<th>(\mu\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t\bar{t})</td>
<td>16200</td>
<td>26500</td>
<td>570</td>
<td>4400</td>
<td>1660</td>
</tr>
<tr>
<td>Background</td>
<td>5100</td>
<td>9400</td>
<td>110</td>
<td>700</td>
<td>320</td>
</tr>
<tr>
<td>Total</td>
<td>21300</td>
<td>35900</td>
<td>690</td>
<td>5000</td>
<td>1980</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>(\pm1300)</td>
<td>(\pm1700)</td>
<td>(\pm80)</td>
<td>(\pm500)</td>
<td>(\pm180)</td>
</tr>
<tr>
<td>Data</td>
<td>21956</td>
<td>37919</td>
<td>740</td>
<td>5328</td>
<td>2057</td>
</tr>
</tbody>
</table>

top quark mass constraints to form the kinematic likelihood. The combined probability is calculated as the product of the maximum kinematic likelihood, the \(b \)-tagging efficiency and light-parton rejection probability. The highest probability permutation is chosen as the best reconstruction and used to calculate the charged lepton \(\cos \theta_\ell \).

In the dilepton channels, the neutrino weighting method is used [41]. Because of the presence of two neutrinos from \(W \) boson decays, the final system is underconstrained and assumptions must be made to calculate all particle momenta. Making a hypothesis for the pseudorapidities of the two neutrinos \((\eta_1, \eta_2) \), a weight is assigned for each permutation of jets, based on the compatibility of the total neutrino transverse momentum vector and the measured \(E_T^{\text{miss}} \), accounting for \(E_T^{\text{miss}} \) resolution [27].

For each event, 10000 different hypotheses for \((\eta_1, \eta_2) \) are scanned, drawn from the observed probability distribution in the signal MC sample. The configuration with the maximal weight is selected and used to reconstruct the values of \(\cos \theta_\ell \) for both charged leptons. Events for which no physical solution can be found with this method are discarded, corresponding to 15% of the selected events in the simulated dilepton \(t\bar{t} \) sample. The assumed \(\eta \) distributions of the neutrinos are insensitive to top quark polarization.

To extract the value of \(\alpha_q P \) from the data, a fit using templates for partially polarized top quarks is performed. The signal templates are obtained by reweighting the top and antitop quark decay products in the simulated \(t\bar{t} \) sample according to Eq. [1] using the helicity basis and setting \(C \) to the SM value of \(t\bar{t} \) spin correlation, \(C = 0.31 \) [6]. Two different assumptions about the top quark polarization are made to produce two template fits. In one case, the polarization is assumed to be induced by a charge–parity (CP) conserving process, which leads to top and antitop quarks having equal values of \(\alpha_q P \) and therefore the same angular distribution for the daughter particles. In the other, maximal CP violation is assumed, leading to opposite values of \(\alpha_q P \) for the top and antitop quarks. In this case, when a value of \(\alpha_q P \) is quoted its sign refers to the sign of the coefficient for positively charged leptons.

\(\alpha_q P \) of the positive and negative templates used in the fit are built assuming a value of \(\alpha_q P = \pm0.3 \), to guarantee that the differential decay distribution is positive for all values of \(\cos \theta_\ell \) given the degree of spin correlation. The fraction, \(f \), of the positive template component and the \(t\bar{t} \) production cross section are fitted simultaneously, in order to reduce the influence of normalization uncertainties on the measured polarization. The polarization is computed as \(\alpha_q P = 0.6 f - 0.3 \).

For all the considered channels, a template fit is performed with a binned maximum likelihood method on positive and negative lepton distributions separately. Combinations are made by multiplying the likelihood functions of the single channels for the two single-lepton channels, the dilepton channels, and all channels together. The fitting method is unbiased, which was shown using pseudo-experiments.

For each source of systematic uncertainty, new templates corresponding to the respective one standard deviation up and down variation are considered. When an uncertainty is evaluated as the difference between two points, it is symmetrized around the central value. The mean of the distribution of the respective differences between the central fit values and the up and down results from 1000 pseudo-datasets are taken as the systematic uncertainties on that source. Systematic uncertainties arising from the same source are treated as being correlated between the different lepton charge and flavor samples.

Detector systematic uncertainties, related to the determination of the energy or momentum scales, resolutions, and efficiencies for jets, electrons, and muons, as well as the \(E_T^{\text{miss}} \) are considered [32, 37, 42–46]. Simulated samples are corrected in order to match the reconstructed object properties observed in data, and the correction factors are varied depending on the uncertainties of their values, in order to estimate the uncertainty on the final measurement. The largest uncertainty in this measurement comes from the jet energy scale.

Systematic uncertainties from the modeling of the \(t\bar{t} \) final state in simulation are accounted for using alternative signal templates. These templates are produced by varying the MC event generator, initial- and final- state radiation, color reconnection, fragmentation modeling, and the PDF sets, as detailed in Ref. [47]. The estimation of the uncertainty due to the top quark mass is performed by repeating the fitting procedure using seven samples with different mass settings in the simulation, and interpolating the change in the parameter \(f \) corresponding to a variation of the top quark mass of \(\pm1.4 \) GeV [48] around the nominal value. Because an assumption on the degree of spin correlation is made when constructing the template, an additional uncertainty is applied based on the difference in the parton-level spin correlation in simulated \(t\bar{t} \) events between the MC@NLO and POWHEG [39] generators.

For the \(W + \)jets background in the \(\ell^+\)jets final state, the overall normalization is varied according to the residual uncertainty after the rescaling based on the measured uncertainties.
charge asymmetry \(^{[38]}\). In addition, the \(W^+\) jets template is varied in shape and normalization by reweighting events according to both the uncertainty in the associated heavy quark production flavor fractions and the parameters of the simulation of extra jets \(^{[39]}\). For the estimate of the systematic uncertainty due to events with non-prompt or fake leptons, the templates are varied according to its uncertainties in the matrix method inputs \(^{[29, 39]}\). The MC statistical uncertainty is taken into account by performing pseudo-experiments, where the bin content of each template is varied independently according to the uncertainty. Table [1] summarizes the sources of systematic uncertainty and their effect on \(\alpha_t P\) for the combined fit. The two largest uncertainties come from jet reconstruction and MC modeling, both affecting the shape of the \(\cos \theta_t\) distribution. For sources of systematic uncertainty that do not depend on the lepton charge in the event, the uncertainty in the CP violating scenario is greatly reduced. These uncertainties push the fit parameters in opposite directions for the samples with different lepton charge, leading to a smaller total uncertainty in the combination.

The results of the fit to the data in single-lepton and dilepton channels are summarized in Table [III] Figure [1] shows the fitted observable in the single-lepton and dilepton final states with the CP conserving hypothesis, and Fig. [2] shows the same observable in the CP violating hypothesis. The deviation from the expected linear behavior of the \(\cos \theta_t\) distributions is primarily a result of the detector acceptance.

The single-lepton and dilepton channels combined results are:

\[
\alpha_t P_{\text{CPC}} = -0.035 \pm 0.014(\text{stat}) \pm 0.037(\text{syst})
\]

in the CP conserving scenario, and

\[
\alpha_t P_{\text{CPV}} = 0.020 \pm 0.016(\text{stat})^{+0.013}_{-0.017}(\text{syst})
\]

in the CP violating scenario. The polarization in both scenarios agrees with the SM prediction of negligible polarization. The fitted \(\sigma_t\) is in good agreement with the SM prediction as obtained from NNLO QCD calculations \(^{[50, 51]}\).
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DSNRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and CFT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[18] ATLAS uses a right-handed coordinate system with its terms of the polar angle \(\theta \), where \(E \) is the energy associated to the calorimeter cell or energy cluster. Similarly, \(p_T \) is the momentum component transverse to the beam line.
Department of Physics, Carleton University, Ottawa ON, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
University of Science and Technology of China, Anhui
Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
CERN, Geneva, Switzerland
Department of Physics, Carleton University, Ottawa ON, Canada
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas TX, United States of America
Physics Department, University of Texas at Dallas, Richardson TX, United States of America
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham NC, United States of America
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Section de Physique, Université de Genève, Geneva, Switzerland
(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton VA, United States of America
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
127 Czech Technical University in Prague, Praha, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
131 Physics Department, University of Regina, Regina SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
135 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
139 Department of Physics, University of Washington, Seattle WA, United States of America
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
144 SLAC National Accelerator Laboratory, Stanford CA, United States of America
145 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto ON, Canada
160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
165 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada