Large $SU(3)$ breaking effects and CP violation in $B^+$ decays into three charged octet pseudoscalar mesons

Dong Xu$^1$*, Guan-Nan Li$^1$†, and Xiao-Gang He$^{1,2,3}$‡

$^1$INPAC, SKLPPC and Department of Physics, Shanghai Jiao Tong University, Shanghai, China

$^2$Physics Division, National Center for Theoretical Sciences, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

$^3$CTS, CASTS and Department of Physics, National Taiwan University, Taipei, Taiwan

(Dated: November 19, 2013)

Abstract

The LHCb collaboration has recently reported evidence for non-zero CP asymmetries in $B^+$ decays into $\pi^+ K^+ K^-$, $\pi^+ \pi^+ \pi^-$, $K^+ K^+ K^-$ and $K^+ \pi^+ \pi^-$. The branching ratios for these decays have also been measured with different values ranging from $5 \times 10^{-6}$ to $51 \times 10^{-6}$. If flavor $SU(3)$ symmetry is a good symmetry for $B$ decays, in the case that the dominant amplitude is momentum independent it is expected that branching ratios $Br$ and CP violating rate differences $\Delta_{CP} = \Gamma - \overline{\Gamma}$ satisfy, $Br(\pi^+ \pi^+ \pi^-) = 2Br(\pi^+ K^+ K^-)$, $Br(\pi^+ \pi^+ \pi^-) = 2Br(K^+ \pi^+ \pi^-)$, and $\Delta_{CP}(\pi^+ \pi^+ \pi^-) = 2\Delta_{CP}(\pi^+ K^+ K^-) = -\Delta_{CP}(K^+ K^+ K^-) = -2\Delta_{CP}(K^+ \pi^+ \pi^-)$. The experimental data do not exhibit the expected pattern for the branching ratios. The rate differences for $B^+ \to \pi^+ \pi^+ \pi^-$ and $B^+ \to K^+ K^+ K^-$ satisfy the relation between $\Delta S = 0$ and $\Delta S = 1$ well, but the other two do not, with the CP asymmetries having different signs than expected. In this work we study how to including momentum dependent and also $SU(3)$ breaking effects on these decays to explain experimental data. We find that only including lowest order derivative terms, in the $SU(3)$ limit, the decay patterns cannot be explained. Large $SU(3)$ breaking effects are needed to explain the data.

Keywords:

---

* xudong1104@gmail.com
† lgn198741@126.com
‡ hexg@phys.ntu.edu.tw
I. INTRODUCTION

Decays involving a heavy b-quark have been a subject of very active research in the past decade and continue to be so at present. Data on B decays from SLAC and KEK B-factory experiments BaBar and Belle provided much information about standard model (SM), in particular in confirming SM predictions for CP violation based on Kobayashi-Maskawa (KM) mechanism \cite{1}. Data from Tevatron confirmed many of the B-factor measurements. The LHCb experiment also started to provide interesting data about B decays after the successful running of LHC. The LHCb collaboration has recently reported evidences for CP asymmetries in B decays as charged 3-body asymmetries in B LHCb experiment also started to provide interesting data about B decays after the successful running of LHC. The LHCb collaboration has recently reported evidences for CP asymmetries in B+ decays into π+π+π−, π+K+K−, K+π+π−, and K+K+K−. We will refer to these decays as charged 3-body B+ decays.

The CP asymmetries measured for the two ΔS = 1, K+π+π− and K+K+K− final states are \cite{2}

\[ A_{CP}(K^+\pi^+\pi^-) = +0.032 \pm 0.008(stat) \pm 0.004(syst) \pm 0.007(J/\psi K^+) \]
\[ A_{CP}(K^+K^+K^-) = -0.043 \pm 0.009(stat) \pm 0.003(syst) \pm 0.007(J/\psi K^+) \]  

(1.1)

which are 2.8σ and 3.7σ away from zero, respectively. Recently BaBar collaboration also reported their measurement \cite{3} of \[ A_{CP}(K^+K^+K^-) = -0.017^{+0.019}_{-0.014} \pm 0.014 \] which is consistent with the LHCb result within 1.1σ.

The other two CP asymmetries are given by \cite{4}

\[ A_{CP}(\pi^+\pi^+\pi^-) = +0.117 \pm 0.021(stat) \pm 0.009(syst) \pm 0.007(J/\psi K^+) \]
\[ A_{CP}(\pi^+K^+K^-) = -0.141 \pm 0.040(stat) \pm 0.018(syst) \pm 0.007(J/\psi K^+) \]  

(1.2)

The significances are 4.2σ and 3.0σ, respectively.

The branching ratios for these decays have also been measured with \cite{5}

\[ Br(\pi^+\pi^+\pi^-) = (15.2 \pm 1.4) \times 10^{-6} \], \[ Br(\pi^+K^+K^-) = (5.0 \pm 0.7) \times 10^{-6} \]
\[ Br(K^+\pi^+\pi^-) = (34.0 \pm 1.0) \times 10^{-6} \], \[ Br(K^+K^+K^-) = (51.0 \pm 3.0) \times 10^{-6} \]  

(1.3)

These charged 3-body B+ decays can provide new information about the SM and for strong interaction which determine the hadronic matrix elements for B decays. If flavor SU(3) symmetry is a good symmetry for B decays \cite{6} and the decay amplitude is dominated by the momentum independent contribution, it is expected that branching ratios for the pairs with ΔS = 0 and ΔS = 1 have the following relations \cite{7},

\[ Br(\pi^+\pi^+\pi^-) = 2Br(\pi^+K^+K^-) \]
\[ Br(K^+\pi^+\pi^-) = Br(K^+K^+K^-) = (51.0 \pm 3.0) \times 10^{-6} \]  

(1.4)

It is also expected that the rate asymmetries ΔCP = Γ − Γ to satisfy,

\[ \Delta_{CP}(\pi^+\pi^+\pi^-) = 2\Delta_{CP}(\pi^+K^+K^-) = -2\Delta_{CP}(K^+K^+K^-) = -2\Delta_{CP}(K^+K^+K^-) \]  

(1.5)

Note that ΔCP and ACP is related by ACP = τBΔCP/2Br. Therefore one can obtain relations between asymmetries ACP for different decays.
In electroweak interaction for hadronic charmless $B$ flavor $SU(3)$

large $\Delta S$ some predictions work very well, such as rate differences between some of the $\Delta S = 1$ two-body pseudoscalar meson $B$ decays $[8,10]$. It is natural to ask that whether with $SU(3)$ breaking effects, one can explain the above mentioned charged 3-body $B^+$ decay pattern. The $SU(3)$ breaking quark mass contributions can be considered as sub-leading corrections to the leading $SU(3)$ breaking effects mentioned earlier.

Inclusion of contributions from quark masses should be considered consistently with other possible sub-leading contributions. To this end we note that the $K$ and $\pi$ masses squared are proportional to light quark masses in chiral perturbation theory, to include light quark mass contribution consistently one should also consider terms with two derivatives. By doing this it will allow new terms which do not exist in the momentum independent $SU(3)$ amplitude, such as terms like, $(\partial^\mu K^+\pi^+ - \partial^\mu \pi^+ K^+)\partial_\mu K^-$ and $(\partial^\mu K^+\pi^+ - \partial^\mu \pi^+ K^+)\partial_\mu \pi^-$. These terms will contribute to $B^+ \to \pi^+K^+K^-$, $K^+\pi^+\pi^-$. There is no equivalent contribution to $B^+ \to \pi^+K^+K^-$ and $B^+ \to K^+K^+K^-$. Therefore such contributions can lead to deviation from Eq.\(1.4\) and may help to explain data.

In this work we study the above mentioned two types of effects in these decays in the framework of flavor $SU(3)$ symmetry. We find that to explain the observed decay pattern large $SU(3)$ breaking effects are needed.

II. $SU(3)$ CONSERVING MOMENTUM INDEPENDENT AMPLITUDES

We start with the description of $B$ decays into three pseudoscalar octet mesons from flavor $SU(3)$ symmetry. The leading quark level effective Hamiltonian up to one loop level in electroweak interaction for hadronic charmless $B$ decays in the SM can be written as

$$H^q_{eff} = \frac{4G_F}{\sqrt{2}}[V_{ub}V_{ug}^*(c_1O_1 + c_2O_2) - \sum_{i=3}^{12}(V_{ub}V_{ug}^*c_i^{uc} + V_{tb}V_{tg}^*c_i^{tc})O_i],$$

where $q$ can be $d$ or $s$ the coefficients $c_{1,2}$ and $c_i^{jk} = c_i^j - c_i^k$, with $j$ and $k$ indicate the internal quark, are the Wilson Coefficients (WC). The tree WCs are of order one with, $c_1 = -0.31$, and $c_2 = 1.15$. The penguin WCs are much smaller with the largest one $c_6$ to be $-0.05$. These WC’s have been evaluated by several groups $[11]$. $V_{ij}$ are the KM matrix elements.
In the above the factor $V_{ub}V_{cq}^*$ has been eliminated using the unitarity property of the KM matrix.

The operators $O_i$ are given by

$$
O_1 = (\bar{q}_i u_j)_{V-A}(\bar{u}_ib_j)_{V-A}, \quad O_2 = (\bar{q}u)_{V-A}(\bar{u}b)_{V-A},
$$

$$
O_{3,5} = (\bar{q}b)_{V-A} \sum_q (\bar{q}'q')_{V-\pm A}, \quad O_{4,6} = (\bar{q}_i b_j)_{V-A} \sum_q (\bar{q}'_j q'_i)_{V-\mp A},
$$

$$
O_{7,9} = \frac{3}{2}(\bar{q}b)_{V-A} \sum_q e_q (\bar{q}'q')_{V-\pm A}, \quad O_{8,10} = \frac{3}{2}(\bar{q}_i b_j)_{V-A} \sum_q e_q (\bar{q}'_j q'_i)_{V-\pm A}, \quad O_{11} = \frac{g_\sigma}{16\pi^2} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} (1 + \gamma_5) b, \quad O_{12} = \frac{Q_{\epsilon}}{16\pi^2} \bar{q} \sigma_{\mu \nu} F^{\mu \nu} (1 + \gamma_5) b.
$$

(2.2)

where $(\bar{a}b)_{V-A} = \bar{a} \gamma_\mu (1 - \gamma_5) b$, $G^{\mu \nu}$ and $F^{\mu \nu}$ are the field strengths of the gluon and photon, respectively.

At the hadron level, the decay amplitude can be generically written as

$$
A = \langle \text{final state} | H_{\text{eff}}^3 | \bar{B} \rangle = V_{ub}V_{cq}^* T(q) + V_{cb}V_{tq}^* P(q),
$$

(2.3)

where $T(q)$ contains contributions from the tree as well as penguin due to charm and up quark loop corrections to the matrix elements, while $P(q)$ contains contributions purely from one loop penguin contributions. $B$ indicates one of the $B^+, B^0, B_s$. $B_i = (B^+, B^0, B_s)$ forms an $SU(3)$ triplet.

The flavor $SU(3)$ symmetry transformation properties for operators $O_{1,2}, O_{3-6,11,12}$, and $O_{7-10}$ are: $\bar{3}_a + \bar{3}_b + 6 + \bar{15}$, $\bar{3}$, and $\bar{3}_a + \bar{3}_b + 6 + \bar{15}$, respectively. We indicate these representations by matrices in $SU(3)$ flavor space by $H(\bar{3}), H(\bar{6})$ and $H(\bar{15})$. For $q = d$, the non-zero entries of the matrices $H(i)$ are given by [9]

$$
H(\bar{3})^2 = 1, \quad H(\bar{6})^1_2 = H(\bar{6})^3_3 = 1, \quad H(\bar{6})^{21}_1 = H(\bar{6})^{32}_3 = -1,
$$

$$
H(\bar{15})^{12}_1 = H(\bar{15})^{21}_1 = 3, \quad H(\bar{15})^{22}_2 = -2, \quad H(\bar{15})^{32}_3 = H(\bar{15})^{33}_3 = -1.
$$

(2.4)

And for $q = s$, the non-zero entries are

$$
H(\bar{3})^3 = 1, \quad H(\bar{6})^{13}_1 = H(\bar{6})^{32}_2 = 1, \quad H(\bar{6})^{31}_1 = H(\bar{6})^{23}_2 = -1,
$$

$$
H(\bar{15})^{13}_1 = H(\bar{15})^{31}_1 = 3, \quad H(\bar{15})^{33}_2 = -2, \quad H(\bar{15})^{32}_3 = H(\bar{15})^{23}_3 = -1.
$$

(2.5)

These properties enable one to write the decay amplitudes for $B \to PPP$ decays in only a few $SU(3)$ invariant amplitudes [6]. Here $P$ is one of the mesons in the pseudoscalar octet meson $M = (M_{ij})$ which is given by,

$$
M = \begin{pmatrix}
\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+
\pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0
K^- & \bar{K}^0 & -\frac{2\eta}{\sqrt{6}}
\end{pmatrix}.
$$

(2.6)

Construction of $B^+ \to PPP$ decay amplitude can be done order by order by using three $M$’s, $B$, and the Hamiltonian $H$, and also derivatives on the mesons to form $SU(3)$. Let us discuss $SU(3)$ conserving momentum independent amplitudes in the following.
For the $T(q)$ amplitude, we have

\[ T(q) = a^T(\bar{3})B_iH_i^i(\bar{3})M_i^kM_j^kM_j^lM_l^k + b^T(\bar{3})H_i^i(\bar{3})M_i^kM_j^kM_k^l + c^T(\bar{3})H_i^i(\bar{3})M_i^kM_j^kM_l^kB_k \\
+ a^T(6)B_iH_i^j(6)M_j^lM_k^lM_l^i + b^T(6)B_iH_i^j(6)M_j^lM_l^iM_i^k \\
+ c^T(6)B_iH_i^j(6)M_j^iM_l^iM_i^k + d^T(6)B_iH_i^j(6)M_j^lM_i^lM_i^k \\
+ a^T(15)B_iH_i^j(15)M_j^iM_l^iM_l^i + b^T(15)B_iH_i^j(15)M_i^iM_j^iM_i^j \\
+ c^T(15)B_iH_i^j(15)M_i^iM_j^iM_l^iM_l^k . \quad (2.7) \]

One can write similar amplitude $P(q)$ for the penguin contributions.

The coefficients $a(i), b(i), c(i)$ and $d(i)$ are constants which contain the WCs and information about QCD dynamics. Several groups have studied $B \to PPP$ decays [12–15]. In general there may be resonant contributions [12–16] due to exchange of intermediate particles resulting in the parameters $a(i)$ to $d(i)$ to be dependent of momenta exchanged, such as dependent on the s, t and u variables. There may be other contributions which can also make the decay amplitudes momentum dependent. The LHCb has also measured CP asymmetries for localized regions of phase space according to invariant masses of $\pi^+\pi^-$ and $K^+K^-$ with larger asymmetries [2,4]. If confirmed, this indicates that the decay amplitudes have momentum dependent from exchanging particles [16]. If only considering the momentum independent contributions given above, one will not be able to estimate the localized CP asymmetries. We will not consider localized CP asymmetries, but concentrate on CP violation in these decays with phase space integrated over.

Expanding the above $T(q)$ amplitude, one can extract the decay amplitudes $T(PPP)$ for $B^+ \to \pi^+\pi^+\pi^-$, $B^+ \to \pi^+K^+K^-$, and $B^+ \to K^+\pi^+\pi^-$, $B^+ \to K^+K^+K^-$. We find that they are all equal. Indicating it by $T$, we have

\[ T = 2b^T(\bar{3}) + c^T(\bar{3}) + 2a^T(6) + b^T(6) - c^T(6) - d^T(6) \\
+ 6a^T(15) + 3b(15) + c^T(15) + 3d^T(15) . \quad (2.8) \]

Similarly, we find the same situation for the penguin amplitude $P$. $P$ amplitude can be obtained by replacing $T$ by $P$ in the above expression.

The amplitudes for the four charged 3-body $B^+$ decays can be written as

\[ A(B^+ \to \pi^+\pi^+\pi^-) = V_{ub}^*V_{ud}T + V_{tb}^*V_{td}P , \]
\[ A(B^+ \to \pi^+K^+K^-) = V_{ub}^*V_{ud}T + V_{tb}^*V_{td}P , \]
\[ A(B^+ \to K^+\pi^+\pi^-) = V_{ub}^*V_{us}T + V_{tb}^*V_{ts}P , \]
\[ A(B^+ \to K^+K^+K^-) = V_{ub}^*V_{us}T + V_{tb}^*V_{ts}P . \quad (2.9) \]

For amplitude involving identical particles, we use the convention to include the identical particle factor at the branching ratio calculation stage.

The corresponding decay amplitudes for $B^-$ decays can be obtained from the above by replacing $V_{ub}V_{aq}$ and $V_{tb}V_{tq}$ by $V_{ub}V_{q}^*$ and $V_{tb}V_{q}^*$, respectively.

In the $SU(3)$ limit, we have

\[ Br(\pi^+\pi^+\pi^-) = 2Br(\pi^+K^+K^-) , \quad Br(K^+\pi^+\pi^-) = 2Br(K^+K^+K^-) . \quad (2.10) \]
The factor of 2 in the above equations are due to identical particles $\pi^+\pi^+$ and $K^+K^+$ in $B^+ \rightarrow \pi^+\pi^+\pi^-$ and $B^+ \rightarrow K^+K^+K^-$. 

Because the KM factors involved for the above two $\Delta S = 0$ and two $\Delta S = 1$ decays are different, their branching ratios are not expected to be the same. However, because the relation of KM matrix element $Im(V_{ub}V_{td}^*V_{ub}V_{td}) = -Im(V_{us}V_{ub}^*V_{bs}V_{ts})$, the CP violating rate difference of the $\Delta S = 0$ and $\Delta S = 1$ are related. We have

$$2\Delta(K^+\pi^+\pi^-) = \Delta(K^+K^+K^-) = -\Delta(\pi^+\pi^+\pi^-) = -2\Delta(\pi^+K^+K^-), \quad (2.11)$$

which leads to the relations for $A_{CP}$ given by

$$A_{CP}(\pi^+K^+K^-) = -\frac{Br(K^+\pi^+\pi^-)}{Br(\pi^+K^+K^-)}, \quad A_{CP}(K^+K^+K^-) = -\frac{Br(K^+K^+)}{Br(\pi^+\pi^-)}; \quad A_{CP}(K^+\pi^+\pi^-) = -\frac{Br(K^+K^+K^-)}{Br(\pi^+\pi^+\pi^-)}, \quad A_{CP}(K^+\pi^+\pi^-) = -\frac{Br(K^+K^+K^-)}{Br(\pi^+\pi^+\pi^-)}. \quad (2.12)$$

The LHCb data obviously do not support the branching ratio relations given above. The relations for CP asymmetry $A_{CP}$ do not agree with data either, except the ratio $A_{CP}(\pi^+\pi^+\pi^-)/A_{CP}(K^+K^+K^-)$. The LHCb data $A_{CP}(\pi^+\pi^+\pi^-)/A_{CP}(K^+K^+K^-) = -2.7 \pm 0.9$ agrees with the predicted value [7] $-2.2 \pm 0.2$ very well using Eq. (2.12). If experimental data at the LHCb will be further confirmed, one needs to include contributions from beyond the $SU(3)$ conserving momentum independent effects to explain the data. There may be different sources which can cause the deviations, one of the possibilities is the $SU(3)$ breaking effects. To be consistent in carrying out the analysis, as mentioned earlier, one also needs to take into account contributions from terms with two derivatives. In the next section we study these contributions.

<table>
<thead>
<tr>
<th>$A_{CP}(\Delta S = 0)/A_{CP}(\Delta S = 1)$</th>
<th>Momentum independent amplitude predictions</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{CP}(\pi^+K^+K^-)/A_{CP}(K^+\pi^+\pi^-)$</td>
<td>$-10.2 \pm 1.5$</td>
<td>$-4.4 \pm 2.0$</td>
</tr>
<tr>
<td>$A_{CP}(\pi^+\pi^+\pi^-)/A_{CP}(K^+K^+K^-)$</td>
<td>$-2.2 \pm 0.2$</td>
<td>$-2.7 \pm 0.9$</td>
</tr>
<tr>
<td>$A_{CP}(\pi^+K^+K^-)/A_{CP}(K^+K^+K^-)$</td>
<td>$-6.8 \pm 1.1$</td>
<td>$+3.3 \pm 1.4$</td>
</tr>
<tr>
<td>$A_{CP}(\pi^+\pi^+\pi^-)/A_{CP}(K^+\pi^+\pi^-)$</td>
<td>$-3.4 \pm 0.3$</td>
<td>$+3.7 \pm 1.5$</td>
</tr>
</tbody>
</table>

TABLE I: Comparison of $SU(3)$ conserving momentum independent amplitude predictions and data for $A_{CP}(\Delta S = 0)/A_{CP}(\Delta S = 1)$. 

6
III. CONTRIBUTIONS FROM SU(3) BREAKING AND DERIVATIVE TERMS

A. SU(3) Breaking Due To Light Quark Masses

Flavor SU(3) symmetry breaking effects come from difference in masses of $u$, $d$ and $s$ quarks. Under SU(3), the mass matrix can be viewed as combinations of representations from $3 \times 3$, to matching the $(u, d, s)$ transformation property as a fundamental representation, which contains an 1 and an 8 irreducible representations. The diagonalized mass matrix can be expressed as a linear combination of the identity matrix $I$, and the Gell-Mann matrices $\lambda_3$ and $\lambda_8$. Compared with $s$-quark mass $m_s$, the $u$ and $d$ quark masses $m_{u,d}$ are much smaller which can be neglected and therefore the term proportional to $\lambda_3$ disappears. The $s$-quark mass is the main source for flavor SU(3) symmetry breaking which is of a diagonal matrix form, $m_sW$ with $W = diag(0, 0, 1)$. It can be further decomposed into $I$ and $\lambda_8$. The identity $I$ part contributes to the $B$ decay amplitudes in a similar way as that given in eq. (2.7), which can be absorbed into the coefficients $a(i)$ to $d(i)$. Only $\lambda_8$ piece will contribute to the SU(3) breaking effects. We will use this to construct SU(3) breaking decay amplitudes and indicate it by $[20]$.

$$W = (W^i_j) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$ (3.1)

To construct relevant decay amplitudes for charged 3-body $B^+$ decays, one first breaks the contraction of indices at any joint in eq. (2.7), and inserts a $W$ in between, and then contracts all indices appropriately as shown in Appendix A. Each possible way will be associated with a coefficient which we will treat as a free parameter.

Expanding the above expression, we obtain the $\Delta T$ amplitudes as follows.

$$\begin{align*}
\Delta T(\pi^+\pi^+\pi^-) &= 2b_1^T(3) + 2b_2^T(3) + 2b_3^T(3) + c_1^T(3) + c_2^T(3) + c_3^T(3) + c_4^T(3) + c_5^T(3) + c_6^T(3) + c_7^T(3) + c_8^T(3) \\
&+ 2a_1^T(6) + 2a_2^T(6) + 2a_3^T(6) + 2a_4^T(6) + 2b_1^T(6) + 2b_2^T(6) + 2b_3^T(6) + 2b_4^T(6) + 2b_5^T(6) + 2b_6^T(6) + 2b_7^T(6) + 2b_8^T(6)
\end{align*}$$

$$\begin{align*}
\Delta T(K^+K^-\pi^-) &= 2b_1^T(3) + 2b_2^T(3) + 2b_3^T(3) + c_1^T(3) + c_2^T(3) + c_3^T(3) + c_4^T(3) + c_5^T(3) + c_6^T(3) + c_7^T(3) + c_8^T(3) \\
&+ 2a_1^T(6) + 2a_2^T(6) + 2a_3^T(6) + 2a_4^T(6) + 2b_1^T(6) + 2b_2^T(6) + 2b_3^T(6) + 2b_4^T(6) + 2b_5^T(6) + 2b_6^T(6) + 2b_7^T(6) + 2b_8^T(6)
\end{align*}$$

$$\begin{align*}
\Delta T(K^+K^-\pi^-) &= 2b_1^T(3) + 2b_2^T(3) + 2b_3^T(3) + c_1^T(3) + c_2^T(3) + c_3^T(3) + c_4^T(3) + c_5^T(3) + c_6^T(3) + c_7^T(3) + c_8^T(3) \\
&+ 2a_1^T(6) + 2a_2^T(6) + 2a_3^T(6) + 2a_4^T(6) + 2b_1^T(6) + 2b_2^T(6) + 2b_3^T(6) + 2b_4^T(6) + 2b_5^T(6) + 2b_6^T(6) + 2b_7^T(6) + 2b_8^T(6)
\end{align*}$$
\[
\Delta T(K^+\pi^+\pi^-) = -4b_1^T(\bar{3}) + 2b_2^T(\bar{3}) + 2b_3^T(\bar{3}) - 2c_1^T(\bar{3}) + 3c_f^T(\bar{3}) + c_4^T(\bar{3}) \\
+ 2a_1^T(6) - 4a_2^T(6) + 2a_3^T(6) + 2a_4^T(6) + b_1^T(6) - 2b_2^T(6) - b_3^T(6) \\
+ b_4^T(6) - b_5^T(6) - c_1^T(6) - c_2^T(6) + 2c_3^T(6) - c_4^T(6) - c_5^T(6) \\
- d_1^T(6) + 2d_2^T(6) - d_3^T(6) - d_4^T(6) - d_5^T(6) + 6a_1^T(\bar{15}) \\
- 12a_2^T(\bar{15}) + 6a_3^T(\bar{15}) + 6a_4^T(\bar{15}) + 3b_1^T(\bar{15}) - 6b_2^T(\bar{15}) + 3b_3^T(\bar{15}) + 3b_4^T(\bar{15}) \\
+ 3b_5^T(\bar{15}) + c_1^T(\bar{15}) - 5c_2^T(\bar{15}) + 4c_3^T(\bar{15}) + c_4^T(\bar{15}) + c_5^T(\bar{15}) + 3d_1^T(\bar{15}) \\
- 6d_2^T(\bar{15}) + 3d_3^T(\bar{15}) + 3d_4^T(\bar{15}) + 3d_5^T(\bar{15}) ,
\]

\[
\Delta T(K^+K^-K^+) = -4b_1^T(\bar{3}) + 2b_2^T(\bar{3}) - 2b_3^T(\bar{3}) - 2c_1^T(\bar{3}) + 3c_f^T(\bar{3}) + c_4^T(\bar{3}) - 2c_5^T(\bar{3}) \\
+ 2a_1^T(6) - 4a_2^T(6) + 2a_3^T(6) - a_4^T(6) + b_1^T(6) - 2b_2^T(6) + b_3^T(6) \\
- 2b_4^T(6) + b_5^T(6) - c_1^T(6) - c_2^T(6) + 2c_3^T(6) - c_4^T(6) + c_5^T(6) \\
- d_1^T(6) + 2d_2^T(6) - d_3^T(6) - d_4^T(6) + 2d_5^T(6) + 6a_1^T(\bar{15}) \\
- 12a_2^T(\bar{15}) + 6a_3^T(\bar{15}) - 3a_4^T(\bar{15}) + 3b_1^T(\bar{15}) - 6b_2^T(\bar{15}) + 3b_3^T(\bar{15}) - 6b_4^T(\bar{15}) \\
+ 3b_5^T(\bar{15}) + c_1^T(\bar{15}) - 2c_2^T(\bar{15}) + 7c_3^T(\bar{15}) + 7c_4^T(\bar{15}) - 8c_5^T(\bar{15}) + 3d_1^T(\bar{15}) \\
- 6d_2^T(\bar{15}) + 3d_3^T(\bar{15}) + 3d_4^T(\bar{15}) - 6d_5^T(\bar{15}) .
\] (3.2)

Had one used \( W = \text{diag}(0, 0, 1) \) for \( W \), the correction to \( \Delta T(\pi^+\pi^+\pi^-) \) would vanish. But both ways of calculating the corrections are equivalent. This can be easily understood by substracting the same among correction as to \( \Delta T(\pi^+\pi^+\pi^-) \) from the other three amplitudes and absorb them into the leading order amplitudes in Eq. (2.5).

Note that the amplitudes are not all independent, but satisfy,

\[
\Delta T(K^+K^-K^+) - \Delta T(K^+\pi^+\pi^-) = \Delta T(K^+\pi^-\pi^-) - \Delta T(\pi^+\pi^+\pi^-) .
\] (3.3)

Similarly one can obtain the penguin amplitudes \( \Delta P \).

**B. Terms With Derivatives**

The lowest order terms with derivatives lead to two powers of momentum dependent. One can obtain relevant terms by taking two times of derivatives on each of the terms in Eq. (2.7) and then collecting them together. Not all of the terms are independent. If the two derivatives are taken on one field, \( \partial^2 B \) or \( \partial^2 M \), by using on-shell conditions of the particles, these terms will be proportional to the ones already existed which can be absorbed into redefinition of the coefficients in Eq. (2.7) in the \( SU(3) \) limit. When \( SU(3) \) is broken due to quark mass differences, terms containing \( \partial^2 K = m_k^2 K \) and \( \partial^2 \pi = m_\pi^2 \pi \) will generate \( SU(3) \) breaking terms. However, they will not create new terms already discussed in the previous section. We find that independent terms can only come from taking derivatives on two different fields. For example after taking derivatives for \( B_i H^i(\bar{3}) M_i^k M_j^l \), we have the following terms

\[
(\partial_\mu B_i) H^i(\bar{3})(\partial^\mu M_i^k) M_j^l, \quad (\partial_\mu B_i) H^i(\bar{3}) M_i^k (\partial^\mu M_i^k) M_j^l, \quad (\partial_\mu B_i) H^i(\bar{3}) M_i^k M_i^k (\partial^\mu M_j^l) , \\
B_i H^i(\bar{3})(\partial_\mu M_i^k)(\partial^\mu M_i^k) M_j^l, \quad B_i H^i(\bar{3})(\partial_\mu M_i^k) M_i^k (\partial^\mu M_j^l) , \quad B_i H^i(\bar{3}) M_i^k (\partial_\mu M_i^k)(\partial^\mu M_j^l) .
\] (3.4)
In the above the lower and upper indices are contracted. One may wonder whether the indices which are contracted by $\epsilon^{ijk}$ and $\epsilon_{ijk}$ give new terms. This is not the case because of the identity

$$\varepsilon_{ijk}\varepsilon^{abc} = \left| \begin{array}{ccc} \delta^a_i & \delta^b_j & \delta^c_k \\ \delta^a_i & \delta^b_j & \delta^c_k \\ \delta^a_i & \delta^b_j & \delta^c_k \end{array} \right|. \quad \text{(3.5)}$$

The full list of the possible terms are given in Appendix B.

Expanding terms in Appendix B, one obtains the lowest derivative amplitude $T^p$ for $B^+ \to K^+K^+\pi^-$ different from that for $B^+ \to K^+\pi^+\pi^-$, and therefore providing another source of violating the relation in Eq. (2.10). Similarly, one can work out the independent amplitude to the same order as the above \cite{18}. The terms (1), (4), ((3) and (6)) are obtained by \((a)-(c)) \left( ((a)+(c))/2 \right) \text{, and by } (e)-(d) \left( ((e)+(d))/2 \right) \text{, respectively.}

There are no analogous terms in the $SU(3)$ symmetric momentum independent contribution for the first two terms above. The existence of these terms make the amplitude for $B^+ \to K^+K^+\pi^-$ different from that for $B^+ \to K^+\pi^+\pi^-$, and therefore providing another source of violating the relation in Eq. (2.10). Similarly, one can work out the independent terms for $\Delta S = 0$ decays. Note that these terms contribute to the zero U-spin amplitude $A_0$ formed by the two charged mesons in the final state in the U-spin analysis \cite{17,18}. One should, however, be careful that with just the momentum independent amplitudes, $A_0$ is zero, due to Bose-Einstein statistics. It is not correct to make $A_0$ momentum independent \cite{18}. Direct U-spin construction of decay amplitudes obtain the same structure of momentum dependence to the same order as the above \cite{18}.

Expanding the terms in Appendix B, the $\Delta S = -1$ amplitudes $T^p$ are proportional to

$$\frac{1}{m_B^2} \left( \alpha_1(1) + \alpha_2(2) + \alpha_3(3) + \alpha_4(4) + \alpha_5(5) + \alpha_6(6) \right). \quad \text{(3.8)}$$

In the above, we have normalized the dimension of the coefficients $\alpha_i$ so that they are dimensionless. Similarly, one can define the amplitude $P^p$ for the penguin contribution. The
coefficients $\alpha_i$ are given in terms of the coefficients in Appendix B. A similar expressions apply to the $\Delta S = 0$ amplitudes.

Replacing $\partial^\mu$ by momentum $p^\mu$ in the above expressions, we obtain the tree momentum dependent amplitude $T^p$

$$T^p(K^+(p_1)K^+(p_2)K^-(p_3))$$

$$= \frac{1}{2m_B^2}(2\alpha_2 p_B \cdot p_3 + \alpha_3 p_B \cdot (p_1 + p_2) + 2\alpha_5 p_1 \cdot p_2 + \alpha_6 (p_1 + p_2) \cdot p_3)$$

$$T^p(K^+(p_1)\pi^+(p_2)\pi^-(p_3))$$

$$= \frac{1}{2m_B^2}(2\alpha_2 p_B \cdot p_3 + \alpha_3 p_B \cdot (p_1 + p_2) + 2\alpha_5 p_1 \cdot p_2 + \alpha_6 (p_1 + p_2) \cdot p_3$$

$$+ 2(\alpha_1 p_B \cdot (p_1 - p_2) + \alpha_4 (p_1 - p_2) \cdot p_3)$$

$$T^p(\pi^+(p_1)\pi^+(p_2)\pi^-(p_3))$$

$$= \frac{1}{2m_B^2}(2\alpha_2 p_B \cdot p_3 + \alpha_3 p_B \cdot (p_1 + p_2) + 2\alpha_5 p_1 \cdot p_2 + \alpha_6 (p_1 + p_2) \cdot p_3$$

$$+ 2(\alpha_1 p_B \cdot (p_1 - p_2) + \alpha_4 (p_1 - p_2) \cdot p_3)$$.

Note that in the $SU(3)$ limit, one has

$$T^p(K^+(p_1)K^+(p_2)K^-(p_3)) = T^p(\pi^+(p_1)\pi^+(p_2)\pi^-(p_3))$$

$$T^p(K^+(p_1)\pi^+(p_2)\pi^-(p_3)) = T^p(\pi^+(p_1)K^+(p_2)K^-(p_3))$$.

Similarly, one can write down the penguin amplitude $P^p$.

## IV. NUMERICAL ANALYSIS

Combining all contributions discussed in previous sections, the total tree $T_t$ and penguin $P_t$ decay amplitudes are then given by

$$T_t = T + T^p + \Delta T$$

$$P_t = P + P^p + \Delta P$$.

The momentum independent contributions have two problems in explaining the data. One problem is that the differences of the branching ratios, that is, the data do not satisfy the prediction in the approximation given in Eq.\((2.10)\). The other problem is that except the ratio of CP asymmetry in $B^+ \to K^+K^+K^-$ and $B^+ \to \pi^+\pi^+\pi^-$ agree with data, the other ratios predicted in Eq.\((2.12)\) do not agree with data. We now study whether the new total amplitudes in the above can explain the data.

### A. Modifications from $T^p$ and $P^p$ only

If there is no $SU(3)$ breaking contributions, that is $\Delta T$ and $\Delta P$ vanish, the modifications come from $T^p$ and $P^p$. In this case, due to contributions from (1) and (2) terms in Eq.\((3.7)\),
the problem caused by the prediction of Eq. (2.10) can be fixed. However, note that in this case one still has in the $SU(3)$ limit

$$T_t(K^+K^+K^-) = T_t(\pi^+\pi^+\pi^-), \quad T_t(\pi^+K^+K^-) = T_t(K^+\pi^+\pi^-),
$$

$$P_t(K^+K^+K^-) = P_t(\pi^+\pi^+\pi^-), \quad P_t(\pi^+K^+K^-) = P_t(K^+\pi^+\pi^-),$$

(4.2)

Because of the above, one has

$$\frac{A_{CP}(\pi^+K^+K^-)}{A_{CP}(K^+\pi^+\pi^-)} = -\frac{Br(K^+\pi^+\pi^-)}{Br(\pi^+K^+K^-)},$$

(4.3)

which is in contradiction with data.

One may wonder if the addition of $T^p$ and $P^p$ can be help to obtain reasonable branching ratios for these decays. We find that this is not the case. Neglecting the masses of $K$, the total decay amplitudes are in the form

$$T_t = a^T + \frac{b^T}{m_B^2}(s + t) + \frac{c^T}{m_B^2}(s - t), \quad P_t = a^P + \frac{b^P}{m_B^2}(s + t) + \frac{c^P}{m_B^2}(s - t),$$

(4.4)

where $s = (p_2 + p_3)^2$ and $t = (p_1 + p_3)^2$.

The coefficients $a$, $b$ and $c$ can be read off from Eq.s (2.8) and Eq.(3.10). We have for all the four decay modes,

$$a^T = T + \frac{1}{4}(\alpha_3^T + \alpha_5^T), \quad b^T = \frac{1}{2}(\alpha_2^T - \frac{1}{2}\alpha_3^T - \alpha_5^T + \frac{1}{2}\alpha_6^T),
$$

(4.5)

and $c^T$ is non-zero only for $B^+ \to K^+\pi^+\pi^-$, $\pi^+K^+K^-$ decays. It is given by

$$c^T = \frac{1}{2}(\alpha_1^T + \alpha_4^T).$$

(4.6)

Similarly, the penguin amplitudes $P^p$ can be written in the same form by replacing $T$ by $P$.

The decay width is then in the form

$$\Gamma = \frac{M_B}{512\pi^3} \left( |\vec{a}|^2 + \frac{2}{3}(\vec{a}\vec{b}^* + \vec{b}\vec{a}^*) + \frac{1}{2} |\vec{b}|^2 + \frac{1}{6} |\vec{c}|^2 \right),$$

(4.7)

where

$$\vec{a} = V_{ub}^*V_{ud}a^T + V_{tb}^*V_{td}a^P, \quad \vec{b} = V_{ub}^*V_{ud}b^T + V_{tb}^*V_{td}b^P, \quad \vec{c} = V_{ub}^*V_{ud}c^T + V_{tb}^*V_{td}c^P.$$

(4.8)

From the above formula, we note that the contribution from $\vec{c}$ does not interfere with the other two terms. Because this property inclusion of $\vec{c}$, if it enhances the branching ratios of $B^+ \to K^+\pi^+\pi^-$, it also enhances $B^+ \to \pi^+K^+K^-$ compared with $B^+ \to K^+K^+K^-$ and $B^+ \to \pi^+\pi^+\pi^-$, respectively. Therefore the addition of contributions from $\vec{c}$ does help to improve fit to data which requires enhancement of branching ratio for $B^+ \to K^+\pi^+\pi^-$, but reduction for $B^+ \to \pi^+K^+K^-$. We need to include $SU(3)$ breaking $\Delta T$ and $\Delta P$ terms. Before considering both contributions, let us study whether another extreme case, where $T^p$ and $P^p$ are vanishing, but $\Delta T$ and $\Delta P$ are kept non-zero, can explain the data.
B. Modifications from $\Delta T$ and $\Delta P$ only

For this case, we find it convenient to carry out the analysis by shifting the amplitudes in the following way, indicated by a “′” on the amplitudes. For the tree amplitude, redefine $T(\pi^+\pi^+\pi^-)_t = T' = T + \Delta T(\pi^+\pi^+\pi^-)$. Then the other decay amplitudes are

\[
\begin{align*}
T(K^+K^+K^-)_t &= T' + \Delta T'(K^+K^+K^-), \\
T(\pi^+K^+K^-)_t &= T' + \Delta T'(\pi^+K^+K^-), \\
T(K^+\pi^+\pi^-)_t &= T' + \Delta T'(K^+\pi^+\pi^-),
\end{align*}
\]

where

\[
\begin{align*}
\Delta T'(K^+K^+K^-) &= \Delta T(K^+K^+K^-) - \Delta T(\pi^+\pi^+\pi^-), \\
\Delta T'(\pi^+K^+K^-) &= \Delta T(\pi^+K^+K^-) - \Delta T(\pi^+\pi^+\pi^-), \\
\Delta T'(K^+\pi^+\pi^-) &= \Delta T(K^+\pi^+\pi^-) - \Delta T(\pi^+\pi^+\pi^-).
\end{align*}
\]

We then have

\[
\Delta T'(K^+K^-K^+) - \Delta T'((\pi^+\pi^-)) = \Delta T'((\pi^+K^-)).
\]

We will take $\Delta T'(K^+\pi^+\pi^-)$ and $\Delta T'(\pi^+K^+K^-)$ as independent variables in our later analysis. Similarly, one can redefine $P$ and $\Delta P$ to $P'$ and $\Delta P'$.

The complete decay amplitudes, in this case, can be written as

\[
\begin{align*}
A(\pi^+\pi^+\pi^-) &= V_{ub}V_{ud}T' + V_{tb}V_{td}P', \\
A(K^+K^+K^-) &= V_{ub}V_{us}[T' + \Delta T'(K^+K^+K^-)] + V_{tb}V_{ts}[P' + \Delta P'(K^+K^+K^-)], \\
A(\pi^+K^+K^-) &= V_{ub}V_{ud}[T' + \Delta T'(\pi^+K^+K^-)] + V_{tb}V_{td}[P' + \Delta P'(\pi^+K^+K^-)], \\
A(K^+\pi^+\pi^-) &= V_{ub}V_{us}[T' + \Delta T'(K^+\pi^+\pi^-)] + V_{tb}V_{ts}[P' + \Delta P'(K^+\pi^+\pi^-)].
\end{align*}
\]

The amplitudes for corresponding $B^-$ decays can be obtained by replacing $V_{ub}V_{us}^*$ and $V_{tb}V_{ts}^*$ in the above by $V_{ub}V_{uq}$ and $V_{tb}V_{tq}$, respectively. One can always choose a convention in which $T'$ is real, and write $P' = P_a + P_{bi}, \Delta T' = \Delta T_a + \Delta T_{bi}$, and $\Delta P' = \Delta P_a + \Delta P_{bi}$.

The KM elements $V_{ij}$ have been very well determined from various experimental data \cite{21}. In our analysis, we take the KM matrix elements to be known ones and use their central values in the Particle Data Group parameterization \cite{21},

\[
\begin{align*}
\theta_{13} &= 0.0034^{+0.0002}_{-0.0001}, \theta_{23} = 0.0412^{+0.0011}_{-0.0007}, \theta_{12} = 0.2273^{+0.0007}_{-0.0007}, \\
\delta &= 1.208^{+0.057}_{-0.039}.
\end{align*}
\]

We have seen in section II that the ratio $A_{CP}(\pi^+\pi^+\pi^-)/A_{CP}(K^+K^+K^-)$ predicted by $SU(3)$ conserving momentum independent contributions agree with experimental data well. If one takes this as an indication that the decay amplitudes for these two decays obey predictions with just $SU(3)$ momentum independent contributions, and works with the assumption that the $SU(3)$ breaking effects do not modify the relative size of these two decay amplitudes, that is, $T'(K^+K^+K^-) = T'(\pi^+\pi^+\pi^-)$, one then has

\[
\begin{align*}
\Delta T'(K^+K^+K^-) &= T'(\pi^+\pi^+\pi^-) = 0, \\
\Delta T'(K^+\pi^+\pi^-) &= -\Delta T'(\pi^+K^+K^-).
\end{align*}
\]
In this case, there are seven parameters for the hadronic matrix elements \( T, P_a, P_b, \Delta T_a, \Delta T_b, \Delta P_a \) and \( \Delta P_b \), to fit the four branching ratios \( Br(i) \) and four CP asymmetries \( A_{CP}(i) \). We find that the fit is very good with the minimal \( \chi^2 \) to be 0.044. The central values and their 1\( \sigma \) allowed ranges are given by,

\[
T' = (2.70^{+0.14}_{-0.12}) \times 10^{-5}, \quad P' = P_a + P_b' = (4.16^{+0.07}_{-0.05}) \times 10^{-6} - (7.22^{+1.2}_{-1.0}) \times 10^{-7}i, \\
\Delta T' = \Delta T_a + \Delta T_b' = (-2.04^{+0.21}_{-0.20}) \times 10^{-5} - (2.05^{+0.19}_{-0.17}) \times 10^{-5}i, \\
\Delta P' = \Delta P_a + \Delta P_b' = (-1.74^{+0.25}_{-0.24}) \times 10^{-6} - (4.06^{+0.32}_{-0.31}) \times 10^{-6}i. \quad (4.15)
\]

We list the values for the eight physical observables for the central values for the parameters given above in the first columns of the \( A_{CP}[\text{output}] \) and \( Br[\text{output}] \) in Table II and compare them with data. From these numbers, one can also see that the fit can be considered as a good one.

<table>
<thead>
<tr>
<th>( B^+ ) decay modes</th>
<th>( A_{CP}[\text{output}] )</th>
<th>( A_{CP}[\text{data}] )</th>
<th>( Br(10^{-6})[\text{output}] )</th>
<th>( Br(10^{-6})[\text{data}] )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( K^+\pi^+\pi^- )</td>
<td>0.031, 0.032, 0.032</td>
<td>0.032 ± 0.011</td>
<td>51.0, 51.0, 51.1</td>
<td>51.0 ± 3.0</td>
</tr>
<tr>
<td>( K^+K^+K^- )</td>
<td>-0.042, -0.043, -0.043</td>
<td>-0.043 ± 0.012</td>
<td>33.9, 34.1, 33.9</td>
<td>34.0 ± 1.0</td>
</tr>
<tr>
<td>( \pi^+\pi^+\pi^- )</td>
<td>0.120, 0.117, 0.118</td>
<td>0.117 ± 0.024</td>
<td>15.2, 15.2, 15.2</td>
<td>15.2 ± 1.4</td>
</tr>
<tr>
<td>( \pi^+K^+K^- )</td>
<td>-0.142, -0.143, -0.140</td>
<td>-0.141 ± 0.044</td>
<td>5.0, 5.0, 5.0</td>
<td>5.0 ± 0.7</td>
</tr>
</tbody>
</table>

TABLE II: Comparison of experimental data and fit values with \( SU(3) \) breaking effects. The first, second and third columns for outputs are for the cases of input parameters from Eq.(4.15), Eq.(4.16) and Eq.(4.19), respectively.

The ratio for \( A_{CP}(\pi^+\pi^+\pi^-)/A_{CP}(K^+K^+K^-) \) is predicted to be \(-2.2 ± 0.2\). This agrees with \(-2.7 ± 0.9\) determined from data within error bars. The central values are, however, different. If this persists with more data, one may need to keep \( \Delta T'(K^+K^+K^-) \) to be non-zero to fit data. For example with the following value for the amplitudes

\[
T' = 1.7 \times 10^{-5}, \quad P' = -4.5 \times 10^{-6} - 5.7 \times 10^{-7}i, \\
\Delta T'(K^+\pi^+\pi^-) = 3.3 \times 10^{-5} + 4.2 \times 10^{-5}i, \\
\Delta P'(K^+\pi^+\pi^-) = -3.3 \times 10^{-6} - 4.4 \times 10^{-6}i, \\
\Delta T'(\pi^+K^+K^-) = -3.4 \times 10^{-5} - 1.8 \times 10^{-5}i, \\
\Delta P'(\pi^+K^+K^-) = -4.5 \times 10^{-6} - 5.7 \times 10^{-7}i,
\]

we can have \( A_{CP}(\pi^+\pi^+\pi^-)/A_{CP}(K^+K^+K^-) = -2.7 \) coincident with the central value of the data. The corresponding outputs for other observables are given in the second columns of Table II for outputs.

The above analysis shows that it is possible to have consistent solution with the branching ratios and CP asymmetries provided that the \( SU(3) \) breaking effects are large.
C. Modifications from both SU(3) breaking and derivative terms

We now carry out an analysis by including both $\Delta T$ ($\Delta P$), and $T^p(P^p)$ terms to see how things will change. In particular one wonders if including $T^p(P^p)$ contributions, one can fit data well with small $SU(3)$ breaking effects.

If finite $m_K$ is kept, the derivative terms also contain $SU(3)$ breaking terms. These additional terms satisfy Eq. (4.11) and by appropriate redefinition of the amplitudes, one can group them into $T(P)$, $\Delta T'(\Delta P')$ terms. The total amplitudes can be written as

\[
T_t = a^T + \frac{b^T}{m_B^2}(s + t) + \frac{c^T}{m_B^2}(s - t) + \Delta a^T ,
\]

\[
P_t = a^P + \frac{b^P}{m_B^2}(s + t) + \frac{c^P}{m_B^2}(s - t) + \Delta a^P ,
\]

where

\[
\Delta a^T(\pi^+\pi^+\pi^-) = 0 ,
\]

\[
\Delta a^T(K^+K^+K^-) = \Delta T'(K^+K^+K^-) ,
\]

\[
\Delta a^T(K^+\pi^+\pi^-) = \Delta T'(K^+\pi^+\pi^-) ,
\]

\[
\Delta a^T(\pi^+K^+K^-) = \Delta T'(\pi^+K^+K^-) .
\]  

(4.16)

Eq. (4.17) can still be used for decay width calculation by replacing $a^T$ and $a^P$ by $a^T + \Delta a^T$ and $a^P + \Delta a^P$. We find that the situation does not change much compared with including just $\Delta T'$ and $\Delta P'$ corrections. We cannot find solutions with $SU(3)$ breaking terms to be much smaller than the $SU(3)$ conserving terms. The reasons are that the momentum dependent contributions contribute to all $T'(P')$, $\Delta T'(\Delta P')$ and also have pieces $\tilde{c}^T(\tilde{c}^P)$.

The former two contributions can be absorbed into $T'(P')$ and $\Delta T'(\Delta P')$, and therefore the net results cannot be improved by these two terms. The pieces $\tilde{c}^T(\tilde{c}^P)$ do not interfere with the other two terms. Because this property, as already pointed out before, inclusion of $\beta$ only enhances the branching ratios of $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to \pi^+K^+K^-$ compared with $B^+ \to K^+K^+K^-$ and $B^+ \to \pi^+\pi^+\pi^-$, respectively. The addition of contributions from $\beta$ does not help to improve fit for small $\Delta T'(\Delta P')$.

We have made a scan of parameter space and have not found solutions with the magnitude of $\Delta T'(\Delta P')$ to be a few times smaller than the magnitudes of $T'(P')$. But the magnitudes of $T^p$ and $P^p$ are not necessarily to be small (in the limit they are zero, the situation goes back to the case discussed in the previous sub-section). For example, with

\[
a^T = 1.3 \times 10^{-5} , \quad a^P = 1.1 \times 10^{-6} + 5.7 \times 10^{-6}i ,
\]

\[
b^T = 1.1 \times 10^{-5} - 1.2 \times 10^{-5}i , \quad b^P = 7.0 \times 10^{-6} - 2.1 \times 10^{-5}i ,
\]

\[
c^T = 2.4 \times 10^{-5} + 4.3 \times 10^{-5}i , \quad c^P = 1.5 \times 10^{-5} + 3.4 \times 10^{-5}i ,
\]

\[
\Delta a^T(K^+\pi^+\pi^-) = -1.2 \times 10^{-5} - 1.1 \times 10^{-5}i ,
\]

\[
\Delta a^P(K^+\pi^+\pi^-) = 3.0 \times 10^{-6} - 1.4 \times 10^{-6}i ,
\]

\[
\Delta a^T(K^+K^-\pi^+) = -1.4 \times 10^{-5} + 1.4 \times 10^{-5}i ,
\]

\[
\Delta a^P(K^+K^-\pi^+) = -3.8 \times 10^{-6} + 5.0 \times 10^{-6}i ,
\]  

(4.18)
we can obtain results in good agreement with the experiment data as in the third columns for outputs in Table II.

V. SUMMARY

We have studied CP violation in charged 3-body $B^+$ decays, $B^+ \to \pi^+ K^+ K^-$, $B^+ \to \pi^+\pi^+\pi^-$, $B^+ \to K^+ K^+ K^-$ and $B^+ \to K^+\pi^+\pi^-$, using flavor $SU(3)$ symmetry. Several contributions are considered including $SU(3)$ conserving momentum independent amplitudes ($T'$ and $P'$), and momentum dependent amplitudes ($T_p$ and $P_p$), and also $SU(3)$ breaking amplitudes ($\Delta T'$ and $\Delta P'$). We have studied how to constructed non-resonant contributions to these amplitudes.

With only $SU(3)$ conserving momentum independent contributions, one would have branching ratios and CP violating rate differences satisfy,

- $Br(\pi^+\pi^+\pi^-) = 2 Br(\pi^+K^+K^-)$,
- $Br(K^+K^+K^-) = 2 Br(K^+\pi^+\pi^-)$, and
- $\Delta CP(\pi^+\pi^+\pi^-) = 2 \Delta CP(K^+K^+K^-) = -\Delta CP(K^+K^+K^-) = -2 \Delta CP(K^+\pi^+\pi^-)$.

The LHCb data do not exhibit the expected pattern for the branching ratios. The rate differences for $B^+ \to \pi^+\pi^+\pi^-$ and $B^+ \to K^+ K^+ K^-$ satisfy the relation between $\Delta S = 0$ and $\Delta S = 1$ well, but the other two do not, with the CP asymmetries having different signs than expected. One needs to go beyond the $SU(3)$ limit description for these decays.

With $SU(3)$ conserving momentum dependent amplitudes added, the degeneracy between the amplitudes for $A(\pi^+\pi^+\pi^-)$ and $A(\pi^+K^+K^-)$, and $A(K^+K^+K^-)$ and $A(K^+\pi^+\pi^-)$ can be lifted by a new piece of contribution (the $\tilde{c}T^P$ contributions). Because this new contribution does not interfere with the other contributions if it enhances the branching ratios of $B^+ \to K^+\pi^+\pi^-$, it also enhances $B^+ \to \pi^+ K^+ K^-$ compared with $B^+ \to K^+ K^+ K^-$ and $B^+ \to \pi^+\pi^+\pi^-$, respectively. This does not help to improve fit to data which requires enhancement of branching ratio for $B^+ \to K^+\pi^+\pi^-$, but reduction for $B^+ \to \pi^+ K^+ K^-$. With $SU(3)$ breaking contributions from quark mass differences included, we find that the experimental data can be explained provided that the breaking effects are large, comparable strength with $SU(3)$ conserving amplitudes. One wonders if such a large modification is reasonable. One might expect that the breaking effects should be of order a few decades percent. However, one notices that contributions to each of the $\Delta T'$ and $\Delta P'$ have several terms. Even though each of the terms is only at most 10%, if they contribute constructively, the total effects can be much larger. This might be what is happening for the decays we are considering here. At phenomenological level, this cannot be fully understood. Model calculations do have found large corrections [14]. One hopes that this problem can be understood better from lattice calculations in the future.

Acknowledgments

XG would like to thank Hai-Yang Cheng and Jusak Tandean for useful comments. The work was supported in part by MOE Academic Excellent Program (Grant No: 102R891505) and NSC of ROC, and in part by NNSF(Grant No:11175115) and Shanghai Science and Technology Commission (Grant No: 11DZ2260700) of PRC.
Appendix A: $SU(3)$ breaking terms

Following the description of constructing the $SU(3)$ breaking corrections in the text, the $SU(3)$ breaking tree amplitude $T(q)$ can be expressed as

\[
\Delta T(q) = a_1^T(\bar{3})B_i H^{a}(\bar{3}) W^i_a M_k^i M_l^k M_j^l + a_2^T(\bar{3})B_i H^{i}(\bar{3}) M_k^i M_l^k M_j^l W_a^i \\
+ b_1^T(\bar{3}) H^i(\bar{3}) W^a_i M_j^a B_j M_k^a M_l^k + b_2^T(\bar{3}) H^i(\bar{3}) M_j^a B_a W^a_i M_k^a M_l^k \\
+ b_3^T(\bar{3}) H^i(\bar{3}) M_j^a B_a M_k^a W^a_i \\
+ c_1^T(\bar{3}) H^{a}(\bar{3}) W^a_i M_j^a M_k^a M_l^a B_k + c_2^T(\bar{3}) H^{i}(\bar{3}) M_j^a W^a_i M_k^a B_k \\
+ c_3^T(\bar{3}) H^i(\bar{3}) M_j^a M_k^a W^a_i B_k + c_4^T(\bar{3}) H^i(\bar{3}) M_j^a W^a_i M_k^a B_k \\
+ a_1^T(6) B_a W^a_i H^{ij}_k (6) M_k^i M_l^j M_i^l + a_2^T(6) B_i H^{ia}(6) W^a_i M_k^i M_l^i M_j^l \\
+ a_3^T(6) B_i H^{ij}_k (6) W^a_k M_k^i M_l^j M_i^l + a_4^T(6) B_i H^{ij}_k (6) M_k^i M_l^j W^a_i \\
+ b_1^T(6) B_a W^a_i H^{ij}_k (6) M_k^i M_l^j M_i^l + b_2^T(6) B_i H^{ij}_k (6) W^a_k M_k^i M_l^j M_i^l \\
+ b_3^T(6) B_i H^{ij}_k (6) M_k^i M_l^j W^a_i M_i^l + b_4^T(6) B_i H^{ij}_k (6) M_k^i M_l^j W^a_i \\
+ b_5^T(6) B_i H^{ij}_k (6) W^a_i M_k^i M_l^j M_i^l \\
+ c_1^T(6) B_i H^{ij}_k (6) M_k^i M_l^j M_i^l W^a_i \\
+ d_1^T(6) B_a W^a_i H^{ij}_k (6) M_k^i M_l^j M_i^l + d_2^T(6) B_i H^{ij}_k (6) W^a_k M_k^i M_l^j M_i^l \\
+ d_3^T(6) B_i H^{ia}(6) W^a_i M_k^i M_l^i M_j^l \\
+ d_4^T(6) B_i H^{ij}_k (6) W^a_i M_k^i M_l^j M_i^l \\
+ d_5^T(6) B_i H^{ij}_k (6) W^a_i M_k^i M_l^j M_i^l \\
+ a_1^T(15) B_a W^a_i H^{ij}_k (15) M_k^i M_l^j M_i^l + a_2^T(15) B_i H^{ia}(15) W^a_i M_k^i M_l^i M_j^l \\
+ a_3^T(15) B_i H^{ij}_k (15) W^a_k M_k^i M_l^j M_i^l + a_4^T(15) B_i H^{ij}_k (15) M_k^i M_l^j W^a_i \\
+ b_1^T(15) B_a W^a_i H^{ij}_k (15) M_k^i M_l^j M_i^l + b_2^T(15) B_i H^{ia}(15) W^a_i M_k^i M_l^i M_j^l \\
+ b_3^T(15) B_i H^{ij}_k (15) W^a_k M_k^i M_l^j M_i^l + b_4^T(15) B_i H^{ij}_k (15) M_k^i M_l^j W^a_i \\
+ b_5^T(15) B_i H^{ij}_k (15) W^a_i M_k^i M_l^j M_i^l \\
+ c_1^T(15) B_i H^{ij}_k (15) W^a_i M_k^i M_l^j M_i^l + c_2^T(15) B_i H^{ij}_k (15) W^a_i M_k^i M_l^i M_j^l \\
+ c_3^T(15) B_i H^{ij}_k (15) M_j^a W^a_i M_k^i M_l^j M_i^l + c_4^T(15) B_i H^{ij}_k (15) M_j^a W^a_i M_k^i M_l^j W^a_i \\
+ c_5^T(15) B_i H^{ij}_k (15) M_j^a M_k^i M_l^j M_i^l W^a_i \\
+ d_1^T(15) B_a W^a_i H^{ij}_k (15) M_k^i M_l^j M_i^l + d_2^T(15) B_i H^{ia}(15) W^a_i M_k^i M_l^i M_j^l \\
+ d_3^T(15) B_i H^{ij}_k (15) W^a_k M_k^i M_l^j M_i^l + d_4^T(15) B_i H^{ij}_k (15) W^a_i M_k^i M_l^j M_i^l \\
+ d_5^T(15) B_i H^{ij}_k (15) W^a_i M_k^i M_l^j M_i^l \\
\tag{A1}
\]

The penguin amplitude $P(q)$ can be obtained by replacing $T$ by $P$. 

16
Appendix B: Terms with two derivatives

In this appendix, we list independent $SU(3)$ invariant amplitude $T^p$ with two derivatives in the following.

\[
T^p(q) = a'(3)_1(\partial_\mu B_i)H^i(3)(\partial_\nu M_k^l)M_i^l M_j^k + a'(3)_2(\partial_\mu B_i)H^i(3)M_k^l(\partial_\nu M_i^l)M_j^k + a''(3)_3(\partial_\mu B_i)H^i(3)M_k^j M_i^l(\partial_\nu M_j^l) + a''(3)_2 B_i H^i(3)(\partial_\nu M_k^l)(\partial_\mu M_l^j)M_j^k + b'(3)_1(\partial_\mu B_i)H^i(3)(\partial_\nu M_k^l)M_j^k + b'(3)_2(\partial_\mu B_i)H^i(3)(\partial_\nu M_i^l)(\partial_\mu M_j^k)M_j^k + b''(3)_3 B_i H^i(3)(\partial_\nu M_k^l)(\partial_\mu M_j^k)M_j^k + b''(3)_2 B_i H^i(3)(\partial_\nu M_i^l)(\partial_\mu M_j^k)M_j^k + c'(3)_1(\partial_\mu B_k)H^i(3)(\partial_\nu M_i^l)M_j^k(\partial_\mu M_j^k) + c''(3)_2 B_i H^i(3)(\partial_\nu M_k^l)(\partial_\mu M_j^k)M_j^k + c''(3)_3 B_i H^i(3)(\partial_\nu M_i^l)(\partial_\mu M_j^k)M_j^k + a'(6)_1(\partial_\mu B_i)H^i(6)(\partial_\nu M_k^l)M_i^l M_j^k + a'(6)_2(\partial_\mu B_i)H^i(6)(\partial_\nu M_i^l)M_l^k M_j^k + a''(6)_3(\partial_\mu B_i)H^i(6)(\partial_\nu M_k^l)M_i^l M_j^k + a''(6)_4 B_i H^i(6)(\partial_\nu M_k^l M_i^l)(\partial_\mu M_j^k) + b'(6)_1(\partial_\mu B_i)H^i(6)(\partial_\nu M_l^k M_i^l)M_j^k + b'(6)_2(\partial_\mu B_i)H^i(6)(\partial_\nu M_i^l M_l^k)M_j^k + b''(6)_3 B_i H^i(6)(\partial_\nu M_k^l M_i^l)(\partial_\mu M_j^k) + b''(6)_4 B_i H^i(6)(\partial_\nu M_l^k M_i^l)(\partial_\mu M_j^k) + c'(6)_1(\partial_\mu B_i)H^i(6)(\partial_\nu M_i^l M_k^l)(\partial_\mu M_j^k) + c''(6)_2(\partial_\mu B_i)H^i(6)(\partial_\nu M_l^k M_i^l)(\partial_\mu M_j^k) + c''(6)_3(\partial_\mu B_i)H^i(6)(\partial_\nu M_k^l M_i^l)(\partial_\mu M_j^k) + c''(6)_4 B_i H^i(6)(\partial_\nu M_l^k M_i^l)(\partial_\mu M_j^k) + d'(6)_1(\partial_\mu B_i)H^i(6)(\partial_\nu M_i^l M_k^l)(\partial_\mu M_j^k) + d''(6)_2(\partial_\mu B_i)H^i(6)(\partial_\nu M_l^k M_i^l)(\partial_\mu M_j^k) + d''(6)_3(\partial_\mu B_i)H^i(6)(\partial_\nu M_k^l M_i^l)(\partial_\mu M_j^k) + d''(6)_4 B_i H^i(6)(\partial_\nu M_l^k M_i^l)(\partial_\mu M_j^k) + a'(15)_1(\partial_\mu B_i)H^i(15)(\partial_\nu M_k^l M_i^l M_j^k) + a'(15)_2(\partial_\mu B_i)H^i(15)(\partial_\nu M_i^l M_j^k M_l^k) + a''(15)_3(\partial_\mu B_i)H^i(15)(\partial_\nu M_k^l M_i^l M_j^k) + a''(15)_4 B_i H^i(15)(\partial_\nu M_i^l M_l^k M_j^k) + b'(15)_1(\partial_\mu B_i)H^i(15)(\partial_\nu M_l^k M_i^l M_j^k) + b'(15)_2(\partial_\mu B_i)H^i(15)(\partial_\nu M_i^l M_l^k M_j^k) + b''(15)_3 B_i H^i(15)(\partial_\nu M_k^l M_i^l M_j^k) + b''(15)_4 B_i H^i(15)(\partial_\nu M_l^k M_i^l M_j^k) + c'(15)_1(\partial_\mu B_i)H^i(15)(\partial_\nu M_i^l M_k^l M_j^l) + c'(15)_2(\partial_\mu B_i)H^i(15)(\partial_\nu M_l^k M_i^l M_j^l) + c''(15)_3(\partial_\mu B_i)H^i(15)(\partial_\nu M_l^k M_k^l M_j^l) + c''(15)_4 B_i H^i(15)(\partial_\nu M_l^k M_k^l M_j^l) + d'(15)_1(\partial_\mu B_i)H^i(15)(\partial_\nu M_l^k M_k^l M_j^l) + d''(15)_2(\partial_\mu B_i)H^i(15)(\partial_\nu M_l^k M_k^l M_j^l) + d''(15)_3(\partial_\mu B_i)H^i(15)(\partial_\nu M_l^k M_k^l M_j^l) + d''(15)_4 B_i H^i(15)(\partial_\nu M_l^k M_k^l M_j^l)
\]

(17)
\[
\begin{align*}
+ d'(\overline{15})_3 (\partial_\mu B_i) H^{jk}_3 (\overline{15}) M^i_j (\partial_\mu M^n_k) + d''(\overline{15})_1 B_i H^{jk}_3 (\overline{15}) (\partial_\mu M^j_i) (\partial_\mu M^n_k) \\
+ d''(\overline{15})_2 B_i H^{jk}_3 (\overline{15}) (\partial_\mu M^i_j) (\partial_\mu M^n_k) + d''(\overline{15})_3 B_i H^{jk}_3 (\overline{15}) M^i_j (\partial_\mu M^n_k) (\partial_\mu M^n_k) .
\end{align*}
\]

Expanding the above, we obtain the expressions for \( \alpha_i \) in the following.

\[
\frac{\alpha_1}{m^2_B} = - c'(6) + c'(\overline{15})_1
\]

\[
\frac{\alpha_2}{m^2_B} = b' (\overline{3})_2 + b' (\overline{3})_3 + c'(\overline{3})_2 + a'(6)_2 + a'(6)_3 + b'(6)_2 - c'(6)_2 - d'(6)_3
\]

\[
+ 3a'(\overline{15})_2 + 3a'(\overline{15})_3 + 3b'(\overline{15})_2 + 3c'(\overline{15})_2 + 3d'(\overline{15})_3 - 2c'(\overline{15})_3
\]

\[
\frac{\alpha_3}{m^2_B} = \frac{1}{2} \{ [2b' (\overline{3})_1 + c'(\overline{3})_1 + 2a'(6)_1 + b'(6)_3 - d'(6)_2
\]

\[
+ 6a'(\overline{15})_1 + 3b'(\overline{15})_3 + c'(\overline{15})_1 - c'(\overline{15})_2 + 3d'(\overline{15})_2
\]

\[
+ 3a'(\overline{15})_3 + 3b'(\overline{15})_3 + 3c'(\overline{15})_2 + 3d'(\overline{15})_3 - 2c'(\overline{15})_3
\]

\[
\frac{\alpha_4}{m^2_B} = c''(6)_2 - c''(\overline{15})_3
\]

\[
\frac{\alpha_5}{m^2_B} = b''(\overline{3})_1 + b''(\overline{3})_2 + c''(\overline{3})_2 + a''(6)_1 + a''(6)_2 + b''(6)_2 - c''(6)_2
\]

\[
- d''(6)_1 + 3a''(\overline{15})_1 + 3a''(\overline{15})_2 + 3b''(\overline{15})_2 - 2c''(\overline{15})_1 + 3c''(\overline{15})_2 + 3d''(\overline{15})_1
\]

\[
\frac{\alpha_6}{m^2_B} = \frac{1}{2} \{ [2b''(\overline{3})_3 + c''(\overline{3})_3 + 2a''(6)_3 + b''(6)_1 - d''(6)_2
\]

\[
+ 6a''(\overline{15})_3 + 3b''(\overline{15})_1 + c''(\overline{15})_3 - c''(\overline{15})_2 + 3d''(\overline{15})_2
\]

\[
+ 3a''(\overline{15})_2 + 3b''(\overline{15})_3 + 3c''(\overline{15})_2 + 3d''(\overline{15})_3 - 2c''(\overline{15})_3
\}\}
\]

(B2)


