The effect of bars on the $M_\ast - \sigma_e$ relation: offset, scatter and residuals correlations

Markus Hartmann$^{1,2,\star}$, Victor P. Debattista$^{2,†}$, David R. Cole$^{2,‡}$, Monica Valluri$^{3,§}$, Lawrence M. Widrow$^{4,¶}$, Juntai Shen$^{5,||}$

$^1$Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchhofstr. 12-14, 69120 Heidelberg, Germany
$^2$Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
$^3$Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109, USA
$^4$Department of Physics, Engineering & Physics, and Astronomy, Queen’s University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
$^5$Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China

Accepted xxx Received xxx; in original form 12 September 2013

ABSTRACT

We analyse a set of collisionless disc galaxy simulations to study the consequences of bar formation and evolution on the $M_\ast - \sigma_e$ relation of supermassive black holes. The redistribution of angular momentum driven by bars leads to a mass increase within the central region, raising the velocity dispersion of the bulge, $\sigma_e$, on average by $\sim 12\%$ and as much as $\sim 20\%$. If a disc galaxy with a SMBH satisfying the $M_\ast - \sigma_e$ relation forms a bar; and the SMBH does not grow in the process, then the increase in $\sigma_e$ moves the galaxy off the $M_\ast - \sigma_e$ relation. We explore various effects that can affect this result including contamination from the disc and anisotropy. The displacement from the $M_\ast - \sigma_e$ relation for individual model barred galaxies correlates with both $M(B)/M(B+D)$ and $\beta_e(B+D)$ measured within the effective radius of the bulge. Overall, this process leads to an $M_\ast - \sigma_e$ for barred galaxies offset from that of unbarred galaxies, as well as an increase in its scatter. We assemble samples of unbarred and barred galaxies with classical bulges and find tentative hints of an offset between the two consistent with the predicted. Including all barred galaxies, rather than just those with a classical bulge, leads to a significantly larger offset.

Key words: black hole physics — galaxies: bulges — galaxies: evolution — galaxies: kinematics and dynamics — galaxies: nuclei

1 INTRODUCTION

One of the most striking results to emerge from Hubble Space Telescope observations of galactic nuclei is that essentially every galaxy with a significant stellar spheroid contains a supermassive black hole (SMBH) whose mass is correlated with properties of the host galaxy. For instance the masses of SMBHs, $M_\ast$, are found to correlate with the bulge luminosity, $L_{\text{bulb}}$ (Kormendy & Richstone 1995; Marconi & Hunt 2003; Graham 2007; Gültekin et al. 2009; Sani et al. 2011; McConnell et al. 2013; Beifiori et al. 2013; Graham & Scott 2013), with the bulge mass, $M_{\text{bul}}$ (Marzian et al. 1998; Marconi & Hunt 2003; Häring & Rix 2004; Sani et al. 2011; Beifiori et al. 2013), the bulge velocity dispersion, $\sigma_e$ (Gebhardt et al. 2000; Ferrarese & Merritt 2000; Merritt & Ferrarese 2001; Tremaine et al. 2002; Ferrarese & Ford 2005; Gültekin et al. 2009; McConnell et al. 2013; Graham et al. 2014; Beifiori et al. 2014, with the mass of the galaxy, $M_{\text{gal}}$ (Ferrarese 2002; Baess et al. 2003; Kormendy & Bender 2014; Volonteri, Natarajan & Gültekin 2011; Beifiori et al. 2012), with the Sérsic index of the surface brightness profile, $n$ (Graham & Driver 2007, with the spiral pitch angle Seigar et al. 2008; Berrier et al. 2013, with the number of globular clusters (Burkert & Tremaine 2010; Harris & Harris 2011; Rhode 2012), with the globular cluster system velocity dispersion (Sadoun & Colins 2012; Pota et al. 2013), and with the inner core radius, $r_c$ (Lauer et al. 2007; Kormendy & Bender 2009). Amongst these, the $M_\ast - \sigma_e$ relation with the form $\log (M_\ast/M_\odot) = \alpha + \beta \log (\sigma/200\text{km s}^{-1})$ (Gebhardt et al. 2000; Ferrarese & Merritt 2000) is one of the tightest (Gebhardt et al. 2003; Marconi & Hunt 2003; Gültekin et al. 2009) though the scatter has increased in recent studies (see Table I). Here $\beta$ is the slope and $\alpha$ is the zero point of the relation. Measurements of $\beta$ have produced a variety of different results (see Table I). Early estimates varied from $3.75 \pm 0.3$ (Gebhardt et al. 2000) to $4.8 \pm 0.5$ (Ferrarese & Merritt 2000). More recently Gültekin et al. (2009) found $\beta = 4.24 \pm 0.41$. 

© 0000 RAS
whereas McConnell & Ma (2013) found $\beta = 5.64 \pm 0.32$ and Graham et al. (2013) found $\beta = 5.13 \pm 0.34$, demonstrating that the slope of the relation remains imperfectly defined. Two sources of this variation are the uncertainty in the data (see for example Section 5 of McConnell & Ma (2013) and different slopes in different galaxy types. McConnell & Ma (2013) find different values of $\alpha$ and $\beta$ for early and late type galaxies (see Table 1 while Graham et al. (2013) and Graham & Scott (2013) find different values of $\alpha$ and $\beta$ for barred and unbarred galaxies. Such differences must be explained by any model explaining the link between SMBHs and their hosts.

These scaling relations suggest that there is a connection between the growth of the SMBH and the bulge. However the causal basis of these scaling relations is still not fully understood. Does the presence of a SMBH govern the bulge’s growth or is the growth of the SMBH determined by the bulge it resides in? The vast energy available from an accreting SMBH during its phase as an active galactic nucleus (AGN) can couple the SMBH to its host, since only a small fraction of this energy is needed to alter the temperature and structure of the surrounding interstellar medium (Silk & Rees 1998; King 2003; Wuthe & Loeb 2003; Di Matteo, SPRINGEL & Hernquist 2005; Murray, Quataert & Thompson 2005; Sazonov et al. 2005; Younger et al. 2008; Booth & Schaye 2009; Power et al. 2011). Alternatively, the $M_\bullet - \sigma_e$ relation could merely be a consequence of the merger history in a hierarchical universe (Adams, Graff & Richstone 2001; Adams et al. 2003; Volonteri & Natarajan 2009; Jahnke & Macciò 2011).

Graham (2008a) and Graham & Li (2009) found that SMBHs in barred galaxies have an offset from the $M_\bullet - \sigma_e$ relation of elliptical galaxies (see also Graham et al. 2013). In addition excluding barred galaxies from the $M_\bullet - \sigma_e$ relation reduces the scatter $\sigma_m$ from 0.47 to 0.41 (Graham & Li 2009). Both Hill (2008) and Gadotti & Kauffmann (2009) point out that the presence of bars could be responsible for the difference in these $M_\bullet - \sigma_e$ relations. Graham (2008b) and Graham & Li (2009) obtained a $M_\bullet - \sigma_e$ relation for unbarred galaxies and Graham et al. (2011) showed that barred galaxies have an offset of $\sim 0.5$ dex from this relation. On the other hand, amongst active galaxies with $M_\bullet < 2 \times 10^6 M_\odot$, Xiao et al. (2011) found no significant offset of barred galaxies relative to the $M_\bullet - \sigma_e$ relation of unbarred galaxies. Likewise, in a sample of galaxies with active nuclei for which they obtained upper limits on $M_\bullet$, Forbush et al. (2009) found no systematic difference between barred and unbarred galaxies.

Bars, either weak or strong, are present in $\sim 65\%$ of local luminous disc galaxies (Knapen 1999; Eskridge et al. 2000; Nair & Abraham 2010; Masters et al. 2011). The fraction of strongly barred galaxies rises from $\sim 20\%$ at $z \sim 1$ to $\sim 30\%$ at $z = 0$ (Elmegreen, Elmegreen & Hirschi 2004; Jogee et al. 2004; Sheth et al. 2008; Skibba et al. 2013). Thus bars have had a long time to drive evolution in disc galaxies (Courteau, de Jong & Broeils 1996; Debattista et al. 2004; Kormendy & Kennicutt 2004; Jogee, Scoville & Kennen 2005; Debattista et al. 2006). Bars lead to a redistribution of angular momentum and an increase in the central mass density (Hohl 1971). Therefore they provide a possible mechanism for fuelling central starbursts and AGN activity (Simkin, Su & Schwarz 1986; Athanassoula 1993; Shlosman, Frank & Begelman 1989; Jogee, Scoville & Kennen 2005; Schawinski et al. 2011; Hicks et al. 2013). While near infrared surveys find no difference in the fraction of barred galaxies between active and non-active galaxies (McLeod & Rich 1995; Mulchaey & Regan 1997), this could be due to the vastly disparate timescales involved, with AGN having an active phase of order $10^9$ Myr compared to the $\sim 100 \times$ longer quiescent phase (Shabala et al. 2008).

Besides fuelling the SMBH, bars may affect a galaxy’s position on the $M_\bullet - \sigma_e$ relation in other ways. Graham et al. (2011) proposed that several bar driven effects can cause offsets in the $M_\bullet - \sigma_e$ relation, including velocity anisotropy, and the increase in $\sigma_e$ due to mass inflows, angular momentum redistribution and buckling. Bars can also lead to the growth of pseudo bulges by driving gas to the centre to fuel star formation (Kormendy & Kennicutt 2004), changing $\sigma_e$. Lastly, by transferring angular momentum outwards (Lynden-Bell & Kalnajs 1972; Tremaine & Weinberg 1984; Debattista & Sellwood 2004; Athanassoula 2005; Sellwood 2006; Bekenstein et al. 2007), bars increase the central density of the disc, raising the velocity dispersion of the bulge (Debattista et al. 2005; Debattista, Kaatz and van den Bosch 2013).

This paper explores the effect of bar evolution on the $M_\bullet - \sigma_e$ relation of classical bulges, assuming that they form with a SMBH satisfying the $M_\bullet - \sigma_e$ relation and later the disc develops a bar. We show, using collisionless simulations, that as a result of angular momentum redistribution, such a SMBH ends up offset from the $M_\bullet - \sigma_e$ relation. In a companion paper (Brown et al. 2013) examine the effect of the growth of a SMBH on the nuclear stellar kinematics in both pure disc systems, and in systems composed of a disc and spheroidal bulge. They show that the presence of a bar enhances the effect that the height of an SMBH has on the stell lar $\sigma_e$. Their simulations show that the growth of a SMBH after the formation of a bar also causes an offset in $\sigma_e$, but one that is smaller than that resulting from the formation and evolution of a bar. Thus the current paper and the Brown et al. (2013) paper show that regardless of whether the SMBH exists prior to bar formation or whether it grows after bar formation (with reality being somewhere in between these two extremes), barred galaxies will have larger values of $\sigma_e$ than unbarred galaxies with the same $M_\bullet$.
for the $M_\bullet - \sigma_e$ relation in Section 4 and compare our results with the observed $M_\bullet - \sigma_e$ relations of classical bulges in unbarred and barred galaxies. Section 5 sums up our findings.
Table 2. The sample of disc galaxy simulations used in this study. In the left column we list the run number and some of the initial parameters of each simulation: the minimum of the Toomre $Q$, the minimum of the swing amplification parameter $X$, the disc-to-bulge ratio $D/B$, and the halo-to-bulge ratio $H/B$, within $R_{\text{eff}}$ (obtained by calculating the projected radius containing half the mass of the bulge), and the Sérsic index $n$ of the bulge. In the right part of the table we show the parameters of the evolved system: the bar amplitude $A_{\text{bar}}$ at $t_1$ and $t_2$; $R_{\text{eff}}$ at $t_1 = 0$, $t_1$, and $t_2$, the fractional change in mass $\Delta M(B + D)/M(B + D)_{\text{init}}$ within $R_{\text{eff}}$ at $t_1$ and $t_2$, the aperture velocity dispersion $\sigma_e$ of bulge+disc particles measured within a circular aperture at $t_1$ and $t_2$ and the dispersion scatter $\Delta \sigma_e$ of bulge+disc particles at $t_2$. Simulations 16 and 21 are very similar in their setup; coincidentally, the effects of stochastically (Sellwood & Debattista 2009; Roskar et al. 2012) are weak in these two baryon-dominated simulations.

<table>
<thead>
<tr>
<th>Run</th>
<th>$Q$</th>
<th>$X$</th>
<th>$D/B$</th>
<th>$H/B$</th>
<th>$n$</th>
<th>$A_{\text{bar}}$</th>
<th>$A_{\text{bar}}$</th>
<th>$R_{\text{eff}}(t_1)$</th>
<th>$R_{\text{eff}}(t_2)$</th>
<th>$\Delta M(B + D)/M(B + D)_{\text{init}}$</th>
<th>$\sigma_e(t_1)$</th>
<th>$\sigma_e(t_2)$</th>
<th>$\Delta \sigma_e(t_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.02</td>
<td>2.58</td>
<td>5.8</td>
<td>0.02</td>
<td>1.0</td>
<td>0.140</td>
<td>0.134</td>
<td>593</td>
<td>489</td>
<td>0.31</td>
<td>0.34</td>
<td>102.0</td>
<td>144.4</td>
</tr>
<tr>
<td>2</td>
<td>1.01</td>
<td>2.98</td>
<td>4.8</td>
<td>0.05</td>
<td>1.3</td>
<td>0.176</td>
<td>0.180</td>
<td>659</td>
<td>570</td>
<td>0.24</td>
<td>0.29</td>
<td>102.5</td>
<td>142.0</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>3.41</td>
<td>4.5</td>
<td>0.04</td>
<td>1.7</td>
<td>0.177</td>
<td>0.167</td>
<td>649</td>
<td>599</td>
<td>0.21</td>
<td>0.28</td>
<td>108.9</td>
<td>144.8</td>
</tr>
<tr>
<td>4</td>
<td>1.04</td>
<td>3.71</td>
<td>3.8</td>
<td>0.06</td>
<td>1.5</td>
<td>0.177</td>
<td>0.247</td>
<td>751</td>
<td>682</td>
<td>0.19</td>
<td>0.27</td>
<td>103.7</td>
<td>140.8</td>
</tr>
<tr>
<td>5</td>
<td>1.13</td>
<td>4.41</td>
<td>3.6</td>
<td>0.11</td>
<td>1.7</td>
<td>0.116</td>
<td>0.219</td>
<td>780</td>
<td>748</td>
<td>0.12</td>
<td>0.21</td>
<td>105.9</td>
<td>133.0</td>
</tr>
<tr>
<td>6</td>
<td>1.27</td>
<td>2.61</td>
<td>5.9</td>
<td>0.02</td>
<td>1.2</td>
<td>0.222</td>
<td>0.270</td>
<td>649</td>
<td>561</td>
<td>0.25</td>
<td>0.34</td>
<td>103.7</td>
<td>145.3</td>
</tr>
<tr>
<td>7</td>
<td>1.25</td>
<td>2.99</td>
<td>5.0</td>
<td>0.03</td>
<td>1.6</td>
<td>0.138</td>
<td>0.212</td>
<td>610</td>
<td>542</td>
<td>0.24</td>
<td>0.30</td>
<td>105.3</td>
<td>140.9</td>
</tr>
<tr>
<td>8</td>
<td>1.25</td>
<td>3.51</td>
<td>4.8</td>
<td>0.15</td>
<td>1.3</td>
<td>0.149</td>
<td>0.220</td>
<td>596</td>
<td>537</td>
<td>0.18</td>
<td>0.26</td>
<td>107.4</td>
<td>140.9</td>
</tr>
<tr>
<td>9</td>
<td>1.24</td>
<td>3.95</td>
<td>3.6</td>
<td>0.08</td>
<td>1.7</td>
<td>0.111</td>
<td>0.178</td>
<td>738</td>
<td>726</td>
<td>0.21</td>
<td>0.21</td>
<td>107.2</td>
<td>131.1</td>
</tr>
<tr>
<td>10</td>
<td>1.26</td>
<td>4.46</td>
<td>3.7</td>
<td>0.18</td>
<td>1.8</td>
<td>0.006</td>
<td>0.139</td>
<td>752</td>
<td>774</td>
<td>0.02</td>
<td>0.12</td>
<td>108.9</td>
<td>129.9</td>
</tr>
<tr>
<td>11</td>
<td>1.41</td>
<td>2.51</td>
<td>6.3</td>
<td>0.02</td>
<td>1.4</td>
<td>0.121</td>
<td>0.137</td>
<td>456</td>
<td>440</td>
<td>0.17</td>
<td>0.25</td>
<td>115.2</td>
<td>142.7</td>
</tr>
<tr>
<td>12</td>
<td>1.50</td>
<td>3.03</td>
<td>4.8</td>
<td>0.03</td>
<td>1.3</td>
<td>0.164</td>
<td>0.134</td>
<td>531</td>
<td>495</td>
<td>0.14</td>
<td>0.18</td>
<td>109.4</td>
<td>131.9</td>
</tr>
<tr>
<td>13</td>
<td>1.50</td>
<td>3.51</td>
<td>6.4</td>
<td>0.20</td>
<td>1.6</td>
<td>0.260</td>
<td>0.265</td>
<td>727</td>
<td>656</td>
<td>0.21</td>
<td>0.29</td>
<td>104.6</td>
<td>126.4</td>
</tr>
<tr>
<td>14</td>
<td>1.50</td>
<td>4.00</td>
<td>5.5</td>
<td>0.26</td>
<td>1.0</td>
<td>0.176</td>
<td>0.267</td>
<td>841</td>
<td>732</td>
<td>0.25</td>
<td>0.31</td>
<td>95.9</td>
<td>129.0</td>
</tr>
<tr>
<td>15</td>
<td>1.49</td>
<td>4.49</td>
<td>5.4</td>
<td>0.33</td>
<td>1.1</td>
<td>0.246</td>
<td>0.308</td>
<td>841</td>
<td>783</td>
<td>0.16</td>
<td>0.27</td>
<td>97.6</td>
<td>130.2</td>
</tr>
<tr>
<td>16</td>
<td>1.55</td>
<td>2.77</td>
<td>5.6</td>
<td>0.02</td>
<td>1.4</td>
<td>0.138</td>
<td>0.137</td>
<td>600</td>
<td>551</td>
<td>0.18</td>
<td>0.22</td>
<td>106.3</td>
<td>128.9</td>
</tr>
<tr>
<td>17</td>
<td>1.70</td>
<td>3.06</td>
<td>5.0</td>
<td>0.03</td>
<td>1.3</td>
<td>0.175</td>
<td>0.213</td>
<td>646</td>
<td>591</td>
<td>0.16</td>
<td>0.22</td>
<td>104.4</td>
<td>129.4</td>
</tr>
<tr>
<td>18</td>
<td>1.76</td>
<td>3.49</td>
<td>5.3</td>
<td>0.13</td>
<td>1.2</td>
<td>0.233</td>
<td>0.303</td>
<td>744</td>
<td>685</td>
<td>0.18</td>
<td>0.29</td>
<td>100.2</td>
<td>131.5</td>
</tr>
<tr>
<td>19</td>
<td>1.75</td>
<td>4.00</td>
<td>3.6</td>
<td>0.09</td>
<td>1.6</td>
<td>0.060</td>
<td>0.165</td>
<td>700</td>
<td>715</td>
<td>0.05</td>
<td>0.15</td>
<td>109.0</td>
<td>125.1</td>
</tr>
<tr>
<td>20</td>
<td>1.76</td>
<td>4.50</td>
<td>4.2</td>
<td>0.14</td>
<td>1.2</td>
<td>0.109</td>
<td>0.290</td>
<td>690</td>
<td>685</td>
<td>0.06</td>
<td>0.19</td>
<td>104.9</td>
<td>129.9</td>
</tr>
<tr>
<td>21</td>
<td>1.55</td>
<td>2.77</td>
<td>5.6</td>
<td>0.02</td>
<td>1.4</td>
<td>0.138</td>
<td>0.137</td>
<td>600</td>
<td>551</td>
<td>0.18</td>
<td>0.22</td>
<td>106.3</td>
<td>128.9</td>
</tr>
<tr>
<td>22</td>
<td>1.76</td>
<td>3.18</td>
<td>5.1</td>
<td>0.05</td>
<td>1.4</td>
<td>0.184</td>
<td>0.274</td>
<td>686</td>
<td>623</td>
<td>0.19</td>
<td>0.28</td>
<td>103.9</td>
<td>133.2</td>
</tr>
<tr>
<td>23</td>
<td>1.95</td>
<td>3.59</td>
<td>4.6</td>
<td>0.06</td>
<td>1.5</td>
<td>0.138</td>
<td>0.239</td>
<td>644</td>
<td>620</td>
<td>0.11</td>
<td>0.21</td>
<td>105.3</td>
<td>128.9</td>
</tr>
<tr>
<td>24</td>
<td>2.01</td>
<td>4.01</td>
<td>3.6</td>
<td>0.07</td>
<td>1.5</td>
<td>0.135</td>
<td>0.224</td>
<td>645</td>
<td>627</td>
<td>0.10</td>
<td>0.17</td>
<td>108.2</td>
<td>129.7</td>
</tr>
<tr>
<td>25</td>
<td>1.99</td>
<td>4.52</td>
<td>3.8</td>
<td>0.15</td>
<td>1.4</td>
<td>0.006</td>
<td>0.051</td>
<td>589</td>
<td>615</td>
<td>0.03</td>
<td>0.05</td>
<td>111.2</td>
<td>112.5</td>
</tr>
</tbody>
</table>
2 SIMULATIONS

We use the set of 25 simulations from Widrow, Pym & Dubinski (2008, hereafter W08), which represents the evolution of a Milky Way-like galaxy from idealized initial conditions. The advantage of using these simulations (aside from their high quality setup) is that they provide a range of possible evolutionary paths for at least one galaxy. By restricting ourselves to models for a single galaxy we may underestimate the expected scatter in the evolution. Note that since collisionless simulations can be rescaled in mass, size, and velocity subject to the condition $G = 1$, where $G$ is the gravitational constant, our results can be applied to a fairly broad set of galaxy mass. Below we describe in brief the setup of the simulations and refer the reader to W08 for a more detailed discussion.

2.1 Galaxy models

The initial conditions for the simulations are N-body realisations of axisymmetric galaxy models that consist of a disc, a bulge and a dark matter halo. The distribution function for the composite system is

$$f(E, L_z, E_z) = f_d(E, L_z, E_z) + f_b(E) + f_h(E),$$

where the energy $E$ and the angular momentum about the symmetry axis $L_z$ are exact integrals of motion and $E_z$ is an approximate third integral corresponding to the vertical energy of stars in the disc (Kuijken & Dubinski 1995, Widrow & Dubinski 2005). Since $E_z$ is very nearly conserved for orbits that are not far from circular, the initial system will be close to equilibrium so long as the disc is axisymmetric in slab. The models are summarized in Table 2 while the symbols used to denote axisymmetry and Legendre polynomial expansion (Kuijken & Dubinski 1995; Widrow & Dubinski 2005). Note that the bulge and halo are flattened slightly due to the influence of the disc potential.

The bulge and halo distribution functions are designed so that their respective density profiles approximate the user-specified functions $\rho_b$ and $\rho_h$. For the bulge, we assume a "target" density profile

$$\rho_b(r) = \rho_b \left( \frac{r}{R_{\text{e}}} \right)^{-p} e^{-b(r/R_{\text{e}})^{1/n}},$$

(3)

which yields, on projection, the Sérsic law with $p = 1 - 0.6097/n + 0.05563/n^2$ (Prugniel & Simien 1997; Terzić & Graham 2009) where $n$ is the Sérsic index and $\rho_b$ is the central surface density. The constant $b$ is adjusted so that $R_{\text{e}}$ contains half of the total projected mass of the bulge. These models use

$$\sigma_b \equiv \left( 4\pi n b^{(p-2)} \Gamma \left[ n \left( 2 - p \right) \right] R_{\text{e}}^2 \rho_b \right)^{1/2},$$

(4)

rather than $\rho_b$ to parametrise the overall density scale of the bulge models, where $\Gamma$ is the gamma function.

The target halo density profile is

$$\rho_h(r) = \frac{2^γ \sigma_h^2}{4\pi a_h^2} \left( \frac{r/a_h}{1 + r/a_h} \right)^{γ - 1} C \left( r/r_h, δ_r h \right),$$

(5)

where $γ = 1$ is the central cusp strength, $a_h$ is the scale-length and $C(r/r_h, δ_r h)$ is a truncation function that decreases smoothly from unity to zero at $r \approx r_h$ within a radial range $δ_r h$. The models considered here assume $r_h = 100$ kpc and $δ_r h = 5$ kpc and use the function $C(r/r_h, δ_r h) = \tfrac{1}{2} e^{-r_h}(e^{-r_h} - 1)/\sqrt{2r_h}$. The bulge and halo distribution functions, which, by assumption, depend only on the energy, are found via an inverse Abel transform (Binney & Tremaine 2008). Since this method assumes spherical symmetry we first calculate an approximate spherically-averaged total potential

$$f_{\text{tot}} = \Psi_d + \Psi_b + \Psi_h$$

(6)

where $\Psi_d$ is the monopole term of a spherical harmonic expansion for the disc and $\Psi_{b,h}$ are calculated from $\rho_{b,h}$. We then evaluate

$$f_{b,h} (E) = \frac{1}{\sqrt{8\pi}^2} \int E \rho_{b,h} d\Psi_{\text{tot}} \sqrt{\Psi_{\text{tot}} - E}$$

(7)

Armed with the distribution functions for the three components we solve Poisson’s equation in axisymmetry using an iterative scheme and Legendre polynomial expansion (Kuijken & Dubinski 1995; Widrow & Dubinski 2005). Note that the bulge and halo are flattened slightly due to the influence of the disc potential.

2.2 Model parameters

The models described above were tailored to satisfy observational constraints for the Milky Way such as the inner and outer rotation curve, the local vertical force, the line-of-sight velocity dispersion toward Baade’s window, and the circular speed at the position of the Sun. A Bayesian/MCMC algorithm provided the probability distribution function (PDF) of Milky Way models over the model parameter space. Models from the PDF span a wide range of structural properties. For example, $M_d$ varies in the range $2 - 7 \times 10^{10} M_\odot$, while $R_d$ varies between 2.0 kpc and 3.5 kpc.

The stability of a stellar disc is determined by two parameters:

$$Q = \frac{\sigma_R \sigma_{\text{c}}}{3.36 \Omega^2 \Sigma} \quad \text{and} \quad X = \frac{k^2 R}{2\pi G \Sigma m},$$

(8)

where $k$ is the epicyclic radial frequency, $G$ is the gravitational constant, $\Sigma$ is the surface density, $R$ is the radius and $m$ is the azimuthal mode number of the perturbation (Toomre 1964; Goldreich & Tremaine 1978, 1979). Here we take $m = 2$ since we are interested in bars. We select 25 models that span the region of the $Q - X$ plane where the PDF is non-negligible ($1.0 \leq Q \leq 2.0$ and $2.5 \leq X \leq 4.0$ (see Section 7 of W08). The properties of the models are summarized in Table 2 where the symbols used to represent each model are shown in Fig.1. For instance, a plus ('+') symbol is used to represent model 1 throughout the paper.

The models do not contain a SMBH since an initial SMBH satisfying the $M_\bullet - \sigma$ relation would have a mass of only $\sim 10^5 M_\odot$. The influence radius of this SMBH would be $G M_\bullet/\sigma^2 \approx 10$ pc, which is smaller than the softening length used.

2.3 Numerical parameters

The bulge, disc and halo consist of $2 \times 10^5$, $6 \times 10^5$ and $1 \times 10^6$ particles respectively. The particle softening $\epsilon = 25$ pc for all particles and the models were evolved for $10^9$ equal time steps of length $\Delta t = 0.5$ Myr. The 25 models were evolved for 5 Gyr using the parallel N-body tree code described in Dubinski (1996).
the formation and growth of a bar leads to the outward transport of angular momentum increasing by a factor of $\Delta M/M_{\text{init}}$. The fractional change in mass in the central region by defining $\Delta M/M_{\text{init}} = (M_1 - M_{\text{init}})/M_{\text{init}}$, where $M_1$ is the mass within $R_{\text{eff}}$ at either $t_1$ or $t_2$, and $M_{\text{init}}$ is the mass within $R_{\text{eff}}$ at $t_0$. The contribution of the halo mass within $r < R_{\text{eff}}$ is less than 25% of the total mass; we therefore neglect the dark matter particles in our analysis. We measure the change in angular momentum by defining $\Delta J_z(D)/J_{z,\text{init}}(D) = (J_{z,1}(D) - J_{z,\text{init}}(D))/J_{z,\text{init}}(D)$, where $J_{z,1}(D)$ is the angular momentum at $t_1$ or $t_2$ of disc particles within $R_{\text{eff}}$ and $J_{z,\text{init}}(D)$ is the angular momentum at $t_0$ of all disc particles within $R_{\text{eff}}$. We use $R_{\text{eff}}$ for bulge particles measured at $t_2$ in order that the changes plotted are due to a difference in angular momentum, rather than different radial range. In Fig. 2 we show that the fractional change in the total angular momentum leads to an increase in the central mass of the disc and that the change in angular momentum reaches $\sim -90\%$ by $t_2$.

In Fig. 3 we plot the fractional change in mass, $\Delta M/M_{\text{init}}$, versus the bar strength $\lambda_{\text{bar}}$. The increase in mass of the disc particles (Fig. 3 top-left) shows a large scatter, with many models increasing by a factor of 1.5 to 2 by $t_2$. The top-right panel shows that the fractional mass increase for disc+bulge particles instead correlates with bar strength. The bulge-to-disc mass ratio within $R_{\text{eff}}$ is $2.8 \lesssim B/D (R < R_{\text{eff}}) \lesssim 8.8$ initially, decreasing to $1.2 \lesssim B/D (R < R_{\text{eff}}) \lesssim 7.7$ by $t_2$.

### 3.1 Measuring velocity dispersions

The increase in the central density deepens the potential and raises the velocity dispersion $\sigma_e$ ([Debattista, Kazantzidis & van den Bosch 2013]). We define $\sigma_e$ as the mass-weighted aperture velocity dispersion within a circular aperture of radius $R_{\text{eff}}$:

$$\sigma_e^2 = \frac{\int_{R_{\text{eff}}}^{R_{\text{e}}(R)} I(R) \left(\sigma_{v_{\text{los}}}(R) + \bar{v}_{\text{los}}(R)\right) dR}{\int_{R_{\text{e}}}^{R_{\text{e}}(R)} I(R) dR}$$

(10)

where $I(R)$ is the mass density, $\sigma_{v_{\text{los}}}$ is the standard deviation and $\bar{v}_{\text{los}}$ is the mean line-of-sight velocity of particles within $R_{\text{eff}}$. For a particle distribution this becomes:

$$\sigma_e^2 = \frac{\sum_{r_i \leq R_{\text{e}}(r_i)} m_{r_i} v_{r_i,\text{los}}^2}{\sum_{r_i \leq R_{\text{e}}(r_i)} m_{r_i}}$$

(11)

where $r_i$ is the radius, $m_{r_i}$ is the mass and $v_{r_i,\text{los}}$ is the line-of-sight velocity of the $i$th particle and the sum is over all particles within the circular aperture.

For each model we measure $\sigma_e$ for four different bar position angles $PA = 0^\circ$ (bar seen side-on), $30^\circ$, $60^\circ$ and $90^\circ$ at four inclinations $i = 0^\circ$ (face-on), $30^\circ$, $60^\circ$, $90^\circ$ (edge-on). We define $\langle \sigma_e \rangle$ as the average of $\sigma_e$ measured over the various orientations. The standard deviation of $\sigma_e$ over all viewing angles is defined as the scatter $\Delta \sigma_e$. In Fig. 3 (bottom row) we plot the average ratio of final to initial velocity dispersion, $\langle \sigma_e/\sigma_{e,0} \rangle$, versus $\lambda_{\text{bar}}$, where
The effect of bars on the $M_\bullet - \sigma_e$ relation

Figure 3. Top row: The fractional changes in the mass of the disc (left panel) and bulge-disc (right panel) within $R_{\text{eff}}$ of the bulge plotted versus the bar amplitude $A_{\text{bar}}$. Bottom row: The average ratio of final to initial velocity dispersion, $(\sigma_e/\sigma_{e,0})$, for bulge particles (left panel) and for bulge-disc particles (right panel) versus $A_{\text{bar}}$. In all panels values at $t_1$ are shown in red, and at $t_2$ in green.

$\sigma_{e,0}$ is $\sigma_e$ at $t_0$. Generally $\sigma_e$ increases with increasing bar strength, with $\sigma_e(B+D)$ increasing by as much as $\sim 40\%$.

3.2 The effect of disc contamination on velocity dispersions

Assuming that the fundamental parameter which determines $M_\bullet$ is $\sigma_e$ of the bulge only, disc contamination of $\sigma_e$ measurements can lead to offsets in the $M_\bullet - \sigma_e$ relation for any galaxy. Naively, one way of reducing this contamination might seem to be to use a smaller aperture since the ratio of bulge-to-disc mass within a given aperture generally increases as the aperture is made smaller. For instance, within $R_{\text{eff}}/8$, the initial $B/D$ of the models is $3.3 \lesssim B/D(R < R_{\text{eff}}/8) \lesssim 47.9$ becoming $1.4 \lesssim B/D(R < R_{\text{eff}}/8) \lesssim 13.4$ at $t_2$, which can be compared with the smaller values discussed above. We therefore test whether the effect of disc contamination to the dispersion can be reduced by using $\sigma_{e,B}/\sigma_{e,B}$. In Fig. 4 we compare $\sigma_e(B)$ with $\sigma_e(B+D)$ within $R_{\text{eff}}$ (left column) and $\sigma_{e,B}(B)$ with $\sigma_{e,B}(B+D)$ within $R_{\text{eff}}/8$ (right column) for four different inclinations. In all cases the general effect of disc contamination is to increase the dispersion. This is, on average, a $10\%$ effect in face-on galaxies becoming $\sim 25\%$ for edge-on systems, in good agreement with Debattista, Kazantzidis & van den Bosch (2013). This is true for both $\sigma_e$ and for $\sigma_{e,B}$. Surprisingly, the effect of disc contamination on $\sigma_{e,B}$ is about the same as on $\sigma_e$. In Fig. 5 we plot the cumulative distribution of $\sigma_{e,B}(B+D)/\sigma_{e,B}(B)$ and of $\sigma_e(B+D)/\sigma_e(B)$. The two distributions are very similar and the median of both distributions is $\sim 1.13$. A Kolmogorov-Smirnov (K-S) test shows that the probability that the two distributions are identical is $0.88$ showing that the aperture within which the velocity dispersion is measured has little effect on reducing the contamination from the disc. We also plot the distributions of $\Delta \sigma_{e,B}(B+D)/\sigma_{e,B}(B)$ and of $\Delta \sigma_e(B+D)/\sigma_e(B)$, which show that the scatter in $\sigma_{e,B}(B+D)$ is slightly larger than in $\sigma_e(B+D)$: the median of $\Delta \sigma_{e,B}(B+D)/\sigma_{e,B}(B)$ is $0.084$ while for $\Delta \sigma_e(B+D)/\sigma_e(B)$ it is $0.077$. The K-S test now finds that the probability that both distributions are identical is only $0.41$.

We conclude that $\sigma_{e,B}$ does not provide any notable reduction in the amount of contamination by the disc, while increasing slightly the scatter in the measured dispersion. Moreover, smaller
Figure 4. Mean $\sigma_e(B+D)$ versus mean $\sigma_e(B)$ (left panels) and mean $\sigma_e/(B+D)$ versus mean $\sigma_e/B$ (right panels). Black, red and green points represent the models at $t_0$, $t_1$ and $t_2$, respectively. We average over PA = 0°, 30°, 60° and 90° and plot $\sigma$'s for inclinations $i = 0°$, 30°, 60° and 90° from top to bottom. Dotted lines have constant slope, as indicated along each line.
apertures are more likely to be contaminated by other nuclear components (e.g. McConnell & Milosavljević 2013).

3.3 The effect of angular momentum redistribution on velocity dispersions

In Fig. 6 we plot $\langle \sigma_e / \sigma_{e0} \rangle$ versus $\Delta (B + D) / \langle M(B + D) \rangle_{init}$, which now shows a strong correlation. For the correlation using $\sigma_e (B + D)$ we find a positive Spearman’s rank correlation coefficient $r_s = 0.91$ which is statistically significant at more than six sigma while using $\sigma_e (B)$ we find an even stronger correlation with $r_s = 0.95$ corresponding to more than seven sigma. This result is consistent with the findings of Debattista, Kazantzidis & van den Bosch (2013), who showed that an increase in disc mass within the bulge effective radius raises its velocity dispersion. The dotted lines in Fig. 6 indicate different values of $\langle \sigma_e (B) / \sigma_{e0} \rangle$, where $\beta_e = 4.24$ comes from the $M_*$ – $\sigma_e$ relation of Gültekin et al. (2009). These lines indicate the factor by which SMBHs must grow in order to remain on the $M_*$ – $\sigma_e$ relation. The factors get to be as large as 2–3. A steeper $M_*$ – $\sigma_e$ relation (such as those of Graham et al. (2011) and McConnell & Milosavljević (2013)) would require even larger growth factors.

The presence of a bar inherently leads to an anisotropic velocity ellipsoid. We measure the velocity dispersions in cylindrical coordinates $\sigma_x$, $\sigma_y$, $\sigma_z$ and obtain the anisotropies $\beta_x = 1 - \sigma_z^2 / \sigma_x^2$ and $\beta_2 = 1 - \sigma_y^2 / \sigma_x^2$. A positive value of $\beta_x$ or $\beta_2$ implies that the radial velocity dispersion is larger than the tangential or vertical one. The initial bulge in all the models is isotropic by construction (classical bulges being well described by flattened isotropic rotators Kormendy & Illingworth 1982, Davies & Illingworth 1983). Fig. 7 shows that following the formation of the bar, the velocity distributions of both the bulge and the disc particles become anisotropic, with the degree of anisotropy depending very weakly on the bar strength. When only the bulge is considered (left panel) all runs show only a slight tangential anisotropy at $t_2$. However when both the bulge and disc are considered together, we measure a radial anisotropy up to $\beta_x (B + D) \sim 0.1$ and $\beta_2 (B + D)$ reaching to $\sim 0.35$. Fig. 7 also shows that $\beta_x (B + D)$ is uncorrelated with $A_{bar}$, while $\beta_2 (B + D)$ shows a very weak correlation with $A_{bar}$. The lack of dependence of $\beta_x$ and $\beta_2$ on bar strength is probably a result of the buckling instability. As the degree of radial anisotropy increases the bar becomes unstable to the buckling instability, which results in a redistribution of kinetic energy and a decrease in anisotropy (Araki 1987, Raha et al. 1991, Merritt & Sellwood 1994).

Fig. 8 plots the orientation-averaged $\langle \sigma_e / \sigma_{e0} \rangle$ versus $\beta_x$ (top panels) and $\beta_2$ (bottom panels). No correlation is present for bulge particles only (left panels). However a very strong correlation is present for bulge+disc particles and is stronger for $\beta_x (B + D)$ than for $\beta_2 (B + D)$. The increase in $\sigma_e$ is largest when $\beta_x (B + D)$ is largest, implying that the orbits contributing to the increased velocity dispersion are more radially biased. Since the correlation is absent when only bulge particles are considered the disc particles must be primarily responsible for the increased anisotropy (e.g. Saha, Martínez-Valpuesta & Gerhard 2012). Fig. 8 also shows a temporal evolution, with the central regions becoming more anisotropic and $\sigma_e$ increasing with time.
Figure 7. The anisotropies $\beta_\phi$ (top panels) and $\beta_z$ (bottom panels) at $t_0$ (black) and $t_2$ (green) for bulge particles only (left panels) and for the bulge+disc particles (right panels) versus $A_{\text{bar}}(t_2)$. Note that the initial disc has no bar, so $A_{\text{bar}}$ is zero; in order to show the evolution of the anisotropy we plot the initial anisotropies versus $A_{\text{bar}}(t_2)$.

Figure 8. The ratio of final to initial velocity dispersion, $\langle \sigma_e / \sigma_{e0} \rangle$, versus anisotropy $\beta_\phi$ (top panels) and $\beta_z$ (bottom panels) for the bulge particles only (left panels) and for the bulge+disc particles (right panels). In all panels values at $t_1$ are red and at $t_2$ are green.
3.4 Effect of viewing orientation

Anisotropy increases the scatter in $\sigma_e$, $\Delta \sigma_e$ (Graham et al. 2011). In Fig. 10 we show the scatter in $\sigma_e$ by averaging it over position angles at fixed inclinations, $\langle \Delta \sigma_e \rangle_{PA}$. We present results at $t_1$ which produces more fractional scatter than at $t_2$ in most cases (the exception being in model 25 in which the bar is still very weak at $t_1$). For bulge particles $\Delta \sigma_e$ is $\sim 6\%$ but can be as large as $\sim 13\%$ for bulge-disc particles. The scatter increases with inclination and, at fixed inclination, with bar strength. In the face-on case, since we are measuring $\sigma_e$ within circular apertures, $\Delta \sigma_e = 0$. 

4 PREDICTED EVOLUTION OF THE $M_\bullet - \sigma_e$ RELATION

We have shown that the angular momentum redistribution of Fig. 2 is a driver of major change in $\sigma_e$. Changes in $\sigma_e$ can lead to displacements of a SMBH in the $M_\bullet - \sigma_e$ relation. In this Section we estimate the effects of this $\sigma_e$ evolution on the $M_\bullet - \sigma_e$ relation of barred galaxies. Since the models we use do not contain a SMBH we simply assume that $M_\bullet$ before the bar forms satisfies the $M_\bullet - \sigma_e$ relation and explore what happens if $M_\bullet$ does not change after the bar forms.

An increased $\sigma_e$ moves a SMBH to the right of the $M_\bullet - \sigma_e$ relation. If the average fractional change in $\sigma_e$ is $\langle \sigma_e / \sigma_e \rangle_0$, then we can write the $M_\bullet - \sigma_e$ relation, assuming no $M_\bullet$ growth and that $\langle \sigma_e / \sigma_e \rangle_0$ is independent of $\sigma_e$, as $\log M_\bullet = \alpha + \beta \log \sigma_e - \beta \log \langle \sigma_e / \sigma_e \rangle_0$. Thus the slope of the $M_\bullet - \sigma_e$ relation remains $\beta$, but the zero-point changes by $\delta \alpha = -\beta \log \langle \sigma_e / \sigma_e \rangle_0$ (12). 

(see also Debattista, Kazantzidis & van den Bosch 2013). Since $\langle \sigma_e / \sigma_e \rangle_0 > 1$, the resulting $\delta \alpha < 0$, i.e. the new $M_\bullet - \sigma_e$ relation will be offset below the $M_\bullet - \sigma_e$ relation of unbarred galaxies. We measure $\langle \sigma_e / \sigma_e \rangle = 1.12 \pm 0.05$ for bulge particles only ($(\sigma_e / \sigma_e) = 1.27 \pm 0.12$ for bulge-disc particles). This value of $(\sigma_e / \sigma_e)$ would result in offsets in the range $-\delta \alpha = 0.17$ to $0.27$ (bulge particles only) or $0.36$ to $0.57$ (bulge-disc particles) for $\beta = 3.5 - 5.5$ if SMBHs do not grow further.

In Fig. 11 we plot the models in the $M_\bullet - \sigma_e$ plane, adopting $\beta = 4.24$ from Gültekin et al. (2009), at $t_0$ (before the bars form) as black symbols and at $t_2$ (at the end of the simulation) as red points. We obtain $M_\bullet$ using $\sigma_e(B)$ at $t_0$. As expected, bar evolution without $M_\bullet$ growth shifts the models to the right. We measure the bar-induced offset by fitting the $M_\bullet - \sigma_e$ relation using MPFITEXY, which implements the algorithm MPFIT (Markwardt 2009), to obtain a linear regression by minimising

$$
\chi^2 = \sum_{i=1}^{N} \frac{(y_i - \alpha - \beta x_i)^2}{\epsilon_i^2 + (\epsilon_{\sigma_i}^2 + \epsilon_{\sigma_e}^2)}
$$

(13)

where $\epsilon_0$ is the intrinsic scatter, which is determined such that the $\chi^2 \leq 1$ (Tremaine et al. 2002). We fit the $M_\bullet - \sigma_e$ relation for $\sigma_e$ at $t_2$ assuming that $M_\bullet$ remains unchanged from $t_0$. For the errors in $\sigma_e$, we use $\Delta \sigma_e$. The errors in $M_\bullet$ are obtained from $\Delta M_\bullet$ at $t_0$. We assume in these fits that the $M_\bullet - \sigma_e$ relation of barred galaxies has the same $\beta = 4.24$ as do the unbarred galaxies, and therefore hold $\beta$ fixed. A significant offset develops regardless of whether we measure $\sigma_e(B)$ or $\sigma_e(B + D)$. We find an offset $\delta \sigma_e \approx -0.20$ (see Table 3). Since the scatter in the observed $M_\bullet - \sigma_e$ relation is generally estimated at $\epsilon_0 = 0.3$ -- 0.45 (see Table 3), an offset of this magnitude is likely to be hard to measure.

We find a scatter of $\epsilon_0 \approx 0.1$ in the simulations due to the different relative increases in central mass in the different models. The full scatter predicted by the models includes that from viewing orientation, which from the top-right panel of Fig. 10 we estimate at 0.05-0.09. Thus the predicted total increase in scatter relative to

![Figure 11](image_url)

**Figure 11.** Using the $M_\bullet - \sigma_e$ relation of Gültekin et al. (2009) (solid black line, with dashed lines indicating the one $\sigma$ uncertainty) we show the initial $\sigma_e$ and the corresponding $M_\bullet$ (black symbols) for the simulations. Then assuming that $M_\bullet$ does not change, we plot $\sigma_e$ at $t_2$ (red symbols). The red solid line shows a fit to the red points using MPFITEXY with slope fixed to $\beta = 4.24$ to match the solid black line (Gültekin et al. 2009). The top panel uses $\sigma_e(B)$ while the bottom panel uses $\sigma_e(B + D)$. Note the different scale of the abscissa. In both cases we find a substantial offset from the $M_\bullet - \sigma_e$ relation.

THE MAIN LIMITATION OF USING $\beta = 4.24$ TO EXPRESS THE RELATION BETWEEN $M(B)$ AND $M(D)$ IS THAT IT TENDS TO SATURATE, AT LEAST IN THOSE COLLISIONLESS SIMULATIONS. IN ADDITION, IN A COMPARISON PAPER, Brown et al. (2004) SHOW THAT THE GROWTH OF A CENTRAL MASSIVE OBJECT INSIDE A BARRLED GALAXY WOULD TEND TO ISOTROPIZE THE VELOCITY DISTRIBUTION. NONETHLESS,
we propose that modelling the velocity anisotropy is worthwhile in order to understand the offsets of barred galaxies from the $M_\star - \sigma_e$ relation.

5 COMPARISON WITH OBSERVATIONS

Evidence for an offset in the $M_\star - \sigma_e$ relation of barred galaxies has been presented by a number of authors (Hu 2008; Graham 2008b; Graham et al. 2011). Guided by the results above, here we retest for an offset by fixing the slope of the barred $M_\star - \sigma_e$ relation to that of unbarred galaxies and measuring the zero-point.

5.1 Sample selection

We have assumed that SMBHs are present in bulges and satisfy the $M_\star - \sigma_e$ relation before the bar forms, and that the bulges do not grow any further once the bar forms. Both these assumptions imply that classical bulges are more suited to compare with the simulations. Classical bulges share structural and kinematical properties with elliptical galaxies (e.g. Wyse, Gilmore & Frans 1997, Kormendy & Kennicutt 2004, Gadotti 2009), with both types of spheroids appearing in similar positions on the fundamental plane defined by the central velocity dispersion, the central surface brightness, and the effective radius (Bender, Burstein & Faber 1992). Pseudo bulges instead are more closely related to the discs of their host galaxy (see Kormendy & Kennicutt 2004, for a review). While elliptical galaxies and classical bulges are believed to form via mergers of galaxies and accretion (Eisen & Sandage 1962; Tremaine, Ostriker & Spitzen 1974; Searle & Zinn 1978; Kauffmann, White & Guiderdoni 1993; Baugh, Cole & Frenk 1996; van den Bosch 1998; Naab et al. 2003), pseudo bulges are thought to form via secular processes in the disc which are driven by non-axisymmetric structures such as bars and spirals (Combes & Sanders 1981; Combes et al. 1990; Raha et al. 1991; Norman, Sellwood & Hasan 1996; Courteau, de Jong & Broeils 1996; Bureau & Athanassoula 1999; Debattista et al. 2004; Athanassoula 2004; D'Rosso & Fisher 2007). The difference between classical and pseudo bulges is reflected also in their SMBH scaling relations. Hu (2008) and Debattista, Kazantzidis & van den Bosch (2013) found that SMBHs in elliptical galaxies and in classical bulges follow a similar $M_\star - \sigma_e$ relation. Pseudo bulges instead either have a significant offset from this $M_\star - \sigma_e$ relation (Hu 2008) or no $M_\star - \sigma_e$ relation at all (Kormendy, Bender & Cornell 2011).

In this work we therefore distinguish observed galaxies by whether they contain a classical or a pseudo bulge. We use data from the literature to compile samples of unbarred classical bulges and barred classical bulges with $M_\star$ measurements. Purely for the sake of comparison we also compile a sample of barred pseudo bulges. The final sample of galaxies is listed in Table 4. Our sample of $M_\star$ and $\sigma_e$ measurements is primarily drawn from the compilation of McConnell & Ma (2013), with one galaxy (NGC 7457) from Gültekin et al. (2009) and another (NGC 3414) from Graham & Scott (2013). We largely rely on the morphological classification of Fisher & Drory (2008, 2010, 2011). For some bulges our classification is based solely on Sérsic index $n > 2$ of a bulge+disc decomposition. For these cases we use unpublished fits provided to us by David Fisher supplemented by fits by Beletsky et al. (2011), Rusli et al. (2011), Fabricius et al. (2012) and Krajnović et al. (2013). We classify the Milky Way as having a pseudo bulge although this is controversial; the bulge+disc decomposition is based on the model of Bissantz & Gerhard (2002). From the sample of disc galaxies in McConnell & Ma (2013), we exclude those where the bulge classification is unknown or where the galaxy is unbarred and hosts a pseudo bulge. We exclude NGC 4826 from our sample because of confusion over its bulge type (Fabricius et al. 2012), and NGC 2549 because the only available profile fit uses only a single Sérsic (Krajnović et al. 2013). We exclude the remaining ten barred galaxies because no bulge+disc fits are available but include them in a separate unclassified bulge barred galaxy sample. Table 4 presents our samples of galaxies, consisting of twelve unbarred galaxies with classical bulges, five barred galaxies with classical bulges and nine barred galaxies with pseudo bulges.

5.2 The $M_\star - \sigma_e$ relation of unbarred classical bulges

Using MPFITEXY, we first fit the $M_\star - \sigma_e$ relation for the unbarred classical bulges. The full parameters of the fit are listed in Table 5; we obtain a slope $\beta = 3.82 \pm 0.28$. Remarkably this sample of twelve galaxies chosen purely by their morphology have a quite small scatter of only 0.14 dex. While this can merely be due to small number statistics, the wide range of $\sigma_e$ considered,
1. Black hole masses and velocity dispersion data from Graham 
8. SFR indices found by Krajnović et al. (2013) are < 2. Those from Fisher & Drory (2010) are preferred because their data is based on HST observations which are of higher resolution than those of Krajnović et al. (2013) which are based on SDSS data and from imaging with the Wide Field Camera (WFC) mounted on the 2.5-m Isaac Newton Telescope. Bulge/disc decompositions based on lower resolution observations tend to give lower values of N therefore the value of N given for NGC 5414 may be trusted to classify its bulge as any error will tend to lower the value of N but it is still N.
9. SFR index found by Krajnović et al. (2013) is 3.26 ± 0.77 but morphologically classified as pseudo bulge.
10. Source data from HyperLeda (Paturel et al. 2003).
13. Classified only on basis of Sérsic index, n > 2 implies a classical bulge, n < 2 implies a pseudo bulge.
14. Velocity dispersion from Ciardel et al. (2004); for fitting purposes we assume an uncertainty of ±20 km s⁻¹. The values for NGC 1068 are from Kormendy, Bender & Cornell (2011).
The solid black line shows the linear regression of the unbarred classical bulges, while the shaded region bounded by the dashed black lines shows the one σ uncertainty. The solid red and blue lines show fits for the classical and pseudo bulges in barred galaxies with slope fixed to that for unbarred classical bulges.

Table 5. Fit results: Using the data of Table 4 to fit the \( M_\ast - \sigma_e \) relation of only classical bulges in unbarred galaxies. We then fix the resulting slope and fit only the zero-point to obtain the offset of classical bulges and pseudo bulges in barred galaxies. \( N \) is the number of galaxies in each sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>( N )</th>
<th>( \beta )</th>
<th>( \alpha )</th>
<th>( \epsilon_0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbarred classical bulges</td>
<td>12</td>
<td>3.82 ± 0.28</td>
<td>8.41 ± 0.05</td>
<td>0.14</td>
</tr>
<tr>
<td>Barred classical bulges</td>
<td>5</td>
<td>3.82</td>
<td>8.22 ± 0.19</td>
<td>0.42</td>
</tr>
<tr>
<td>Barred pseudo bulges</td>
<td>9</td>
<td>3.82</td>
<td>7.68 ± 0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>Unclassifieds</td>
<td>15</td>
<td>3.82</td>
<td>7.88 ± 0.14</td>
<td>0.49</td>
</tr>
</tbody>
</table>

67 ≤ \( \sigma_e \) ≤ 328 km s\(^{-1}\), hints that our approach of selecting sub-samples based on bulge type is reasonable.

The fit we obtain for unbarred classical bulges is in fairly good agreement with the fit to elliptical galaxies (excluding brightest cluster galaxies) of Debattista, Kazantzidis & van den Bosch (2013): \( (\alpha, \beta) = (8.21 ± 0.07, 4.06 ± 0.40) \). If we fix \( \beta = 4.06 \) and refit these 12 unbarred galaxies with classical bulges, we obtain \( \alpha = 8.41 ± 0.05 \), which confirms the lack of an offset between ellipticals and unbarred classical bulges. Debattista, Kazantzidis & van den Bosch (2013) used this result to argue for the need of SMBHs in classical bulges to grow along with the discs.

5.3 The \( M_\ast - \sigma_e \) relations of barred galaxies

We then fix \( \beta = 3.82 \) and fit the \( M_\ast - \sigma_e \) relation of barred galaxies with classical bulges. We obtain \( (\alpha, \epsilon_0) = (8.22 ± 0.19, 0.42) \), or \( \delta \alpha = −0.19 ± 0.20 \) dex. This offset is smaller than the \( \delta \alpha = −0.5 \) dex found by Graham et al. (2011) (who however considered all barred galaxies, not just those with classical bulges). The offset we find is consistent with the one predicted by the models (see Table 3). However with this small sample it is also consistent with no offset. The offset is largely driven by NGC 1023, while NGC 1316 also falls below the unbarred \( M_\ast - \sigma_e \) relation. The scatter is more than twice as large as predicted by the models \( \sqrt{0.14^2 + 0.11^2} = 0.18 \) dex. The main reason for this discrepancy is very likely the narrow range of models we have considered, which reduces the predicted scatter. Moreover, if some SMBHs in barred galaxies are able to grow again, returning to the fiducial \( M_\ast - \sigma_e \) relation, then this would further increase the scatter (relative to the offset relation). Indeed M31, NGC 4258 and NGC 4596 are all close to the \( M_\ast - \sigma_e \) relation of unbarred classical bulges. Of these, M31 and NGC 4258 both have gas. NGC 4258 is also the only galaxy in this sample with a weak bar. Finally, the observed scatter for barred galaxies may be enhanced by modelling uncertainties. For instance, in the presence of a bar, the growth of a SMBH results in a larger increase in \( \sigma_e \) than it would in an axisymmetric galaxy. However the kinematics of stars associated with the bar results in a smaller and frequently negative Gauss-Hermite coefficient \( h_k \) Brown et al. (2013) argue that using an axisymmetric stellar dynamical model to measure SMBH masses in barred galaxies could result in an overestimate of the derived \( M_\ast \) since low/negative \( h_k \) values primarily result from a large fraction on stars on tangential orbits, which in turn requires a larger enclosed mass to fit the large velocity dispersion.

The fit for the pseudo bulge barred sample gives \( (\alpha, \epsilon_0) = (7.68 ± 0.07, 0.14) \). The offset is \( \delta \alpha = −0.73 ± 0.09 \) dex, which is considerably larger than in the simulations. It is unclear whether compression of the bulge by bar evolution is the main cause for the offset in the case of pseudo bulges. The Milky Way, which has a bar and which we have classified as having a pseudo bulge, is right in the middle of the \( M_\ast - \sigma_e \) relation of pseudo bulged barred galaxies.

6 DISCUSSION & CONCLUSIONS

6.1 Offset and scatter in the \( M_\ast - \sigma_e \) relation

We have studied the consequences of angular momentum redistribution driven by bars on the evolution of the velocity dispersion, \( \sigma_e \), of the bulge and the implications for the \( M_\ast - \sigma_e \) relation. We showed that if \( M_\ast \) does not grow during the formation and evolution of bars, then the increase in \( \sigma_e \) results in an offset below the \( M_\ast - \sigma_e \) relation. The simulations predict an offset \( \delta \alpha \sim −0.2 \).

Defining a sample of observed classical bulges from the literature, we fit the \( M_\ast - \sigma_e \) relation of unbarred galaxies. Then fixing the slope of the relation, we fit the relation for the classical bulges in barred galaxies, and find an offset from the unbarred galaxies of \( \delta \alpha = −0.19 ± 0.20 \), consistent with the prediction but also consistent with no offset.

Contamination of the bulge velocity dispersion by the kinematics of the disc can lead to changes in \( \sigma_e \) by as much as 25%, equivalent to an offset in the \( M_\ast - \sigma_e \) relation as large as \( \delta \alpha \sim −0.4 \) (for \( \beta = 4 \)). However this contamination should also be present in the sample of unbarred galaxies relative to which we
measure the offset for the barred galaxies. Thus contamination by the disc is very unlikely to cause an offset.

The models imply that the scatter should increase (in quadrature) by $\sim 0.11$; we measure a scatter for unbarred galaxies of 0.14 and for barred classical bulges of 0.42. This is larger than the predicted scatter, but our prediction is based on a narrow range of models and does not take into account the possibility that SMBHs can grow back onto the $M_* - \sigma_e$ relation, both of which would increase the scatter, and considers a narrow range of bulge-to-disc ratios. Moreover, the observational scatter probably includes a significant component from modelling uncertainties (Brown et al. 2013).

6.2 The black hole fundamental plane

Several studies have suggested that departures from the $M_* - \sigma_e$ relation correlate with a third, structural, parameter, such as $R_{\text{eff}}$ or the stellar mass of the bulge $M_{\text{bul}}$ (Marconi & Hunt 2003; de Francesco, Capetti & Marconi 2006; Alver & Richstone 2007; Barway & Kemball 2007; Hopkins et al. 2007d). This has become known as the black hole fundamental plane (BHPF) and both its existence and origin have been subject of uncertainty. This is because the BHPF, if it exists, is strongly dominated by $\sigma_e$, e.g. (Beifiori et al. 2012; Hopkins et al. 2007b) proposed that the BHPF may arise from the higher gas mass fraction of merger progenitors at high redshift, and instead argued that barred galaxies wholly accounted for the BHPF. We have shown that the residuals in the $M_* - \sigma_e$ relation caused by bar evolution correlate with structural and kinematic properties of the system. In the former case this can account for the weak BHPF measured thus far. For the models, we find a strong correlation between $\delta \log M_*$ and $M(B)/M(B + D)$; observationally however the BHPF is much weaker and this perhaps reflects the fact that the models have a relatively narrow range of $B/D$ initially, leading to a strong correlation between $M(B)/M(B + D)$ and $\Delta M(B + D)/M(B + D)$. A wider range of initial bulge-to-disc ratios is likely to blur the correlation between $M(B)/M(B + D)$ and $\Delta M(B + D)/M(B + D)$, making for a weaker structural BHPF. In addition, we are able to fully disentangle bulge and disc in the simulations, allowing us to compute $M(B)/M(B + D)$. Observationally disentangling the bulge mass at small radii, where the disc profile may no longer follow an inward extrapolation of an exponential profile, may present difficulties.

We have also shown that $\delta \log M_*$ strongly correlates with $\beta_\text{g}(B + D)$ and $\beta_\text{d}(B + D)$, which potentially present new versions of the BHPF where the third parameter is a kinematic one. This correlation is unlikely to be as sensitive to a wider range of initial conditions, but this still needs to be tested further.

6.3 The role of gas

Using Hubble Space Telescope STIS spectra to measure upper limits on $M_*$ in 105 low-luminosity AGN, Beifiori et al. (2009) found no offset between the $M_* - \sigma_e$ relations of barred and unbarred galaxies. Likewise in a study of 76 active galaxies Xiao et al. (2011) also found no difference between barred and unbarred galaxies. The main difference between these observations and our results is the presence of gas. The simulations presented here are all collisionless. As the bar grows, $\sigma_e$ increases and SMBHs fall below the $M_* - \sigma_e$ relation. This offset can be reversed if the SMBH can grow, which they can best do by accreting gas. It is now clear that low to medium luminosity AGN are overwhelmingly resident in disc galaxies. Thus secular processes in disc galaxies must play an important role in the growth of SMBHs (Schawinski et al. 2011; Cisternas et al. 2011; Schawinski et al. 2012; Treister et al. 2012; Kocevski et al. 2012; Simmons et al. 2012; Araya Salvo et al. 2012; Debattista, Kazantzidis & van den Bosch 2013). It seems likely that, after a bar forms, a SMBH will drop below the $M_* - \sigma_e$ relation, but, once gas is driven to the centre, the SMBH can grow again. If SMBH growth is governed by AGN feedback, then it would be able to return to the $M_* - \sigma_e$ relation. This path to returning to the $M_* - \sigma_e$ relation is however not available to galaxies without gas to trickle down to the SMBH. The fact that samples with ongoing AGN activity, such as in Beifiori et al. (2009) and Xiao et al. (2011), do not show an offset suggests that bars are efficient at feeding SMBHs.

6.4 Future observational prospects

The sample of observed barred galaxies with classical bulges we have used here includes just five galaxies. The most immediate way of extending our results will come from careful classification of the barred sample of galaxies without bulge classifications. We explored what would happen if the sample of unclassified bulge barred galaxies in Table 4 had hosted classical bulges, which is very unlikely but gives us an indication of how the offset is likely to vary. Fitting the $M_* - \sigma_e$ relation with $\beta = 3.82$ gives a larger offset $\delta \alpha = -0.53 \pm 0.15$ (see Table 5 for full fit). Curiously, other than NGC 4151, all the rest of these galaxies are offset below the $M_* - \sigma_e$ relation, suggesting that a large offset is likely. Thus the presence of an offset between unbarred and barred galaxies with classical bulges may get stronger.

6.5 Caveats

Two important caveats need to be borne in mind about our results. First of all the models considered in this paper have been drawn from a probability distribution appropriate for properties of the Milky Way. At best only one of these models is an accurate representation of the Milky Way. It is unlikely that a distribution of models of a single galaxy is a reasonable representation of the intrinsic variety of galaxies in general, even at fixed galaxy mass. For example the bulge-to-disc ratio in the models takes on a narrow range of values $0.15 \leq B/D \leq 0.28$, whereas the barred sample in Table 4 has an order of magnitude larger variation in $B/D$. This may bias the values of the offset in the $M_* - \sigma_e$ relation to larger values while decreasing the scatter of the models.

In addition all the models as constructed are already bar unstable from the start. We note in particular that about half the models have a minimum Toomre-$Q$ slightly lower than 2. Indeed the values in Table 2 show that smaller $\delta \alpha = 3.82$ gives a larger offset $\delta \alpha = -0.53 \pm 0.15$ (see Table 5 for full fit). Curiously, other than NGC 4151, all the rest of these galaxies are offset below the $M_* - \sigma_e$ relation, suggesting that a large offset is likely. Thus the presence of an offset between unbarred and barred galaxies with classical bulges may get stronger.
6.6 Summary

We have studied the consequences of bar formation and evolution on the $M_\bullet - \sigma_e$ relation of SMBHs. Our main results can be summarised as follows:

- Bars cause an increase in the central mass density of a galaxy, altering the kinematics of the bulge and of the disc. Of particular importance for the $M_\bullet - \sigma_e$ relation is the increase in $\sigma_e$. We find a strong correlation between the ratio of final to initial dispersion, $(\sigma_e/\sigma_0)$, and the fractional change in mass of the bulge+disc within $R_{200}$ of the bulge, in good agreement with the simulations (Debattista, Kazantzidis & van den Bosch [2013]). The simulations show that $\sigma_e(B)$ can increase by as much as $\sim 20\%$. A SMBH in such a galaxy would need to grow by a factor of $\sim 2$ to remain on the $M_\bullet - \sigma_e$ relation. The average fractional increase of $\sigma_e(B)$ in the simulations is $(\sigma_e/\sigma_0) = 1.12 \pm 0.05$.

- While $\sigma(B+D)$ correlates with $\sigma(B)$, the two are not equal; thus the disc contaminates the measurement of the bulge velocity dispersion. In the edge-on view, $\sigma_e(B + D)$ and $\sigma_{e/B}(B + D)$ are up to $25\%$ larger than $\sigma_e(B)$ and $\sigma_{e/B}(B)$, $\sigma_{e/B}(B + D)/\sigma_{e/B}(B)$ and $\sigma_e(B + D)/\sigma_e(B)$ follow the same distribution, but the scatter in $\sigma_{e/B}(B + D)$ is slightly larger than the scatter in $\sigma_e(B + D)$. Thus $\sigma_e$ is a better quantity for studying SMBH scaling relations.

- We use the $M_\bullet - \sigma_e$ relation of Gültekin et al. [2009] and the models to estimate the offset of barred galaxies in the absence of SMBH growth. We predict an offset $\delta \alpha \sim -0.2$ and an increase in scatter by $\delta \sigma_e \sim 0.1$ (in quadrature).

- We showed that the tangential anisotropy, $\beta_0(B + D)$, correlates very strongly with the change in mass within $R_{200}$. Since these parameters change with the change in $\sigma_e$, this suggests that residuals of galaxies from the $M_\bullet - \sigma_e$ relation may also correlate very strongly with $\beta_0(B + D)$, which is the case for the simulations. This may provide a new version of the black hole fundamental plane, where the third parameter is a kinematic one.

- We use a sample of twelve galaxies to measure the $M_\bullet - \sigma_e$ relation of unbarred disc galaxies with classical bulges. We find $(\alpha, \beta) = (8.41 \pm 0.05, 3.82 \pm 0.28)$. Then fixing the slope $\beta$, we fit the $M_\bullet - \sigma_e$ relation for five barred galaxies with classical bulges. We find $\delta \alpha = -0.19 \pm 0.20$, comparable to the prediction from the models but also consistent with no offset. The same exercise for nine pseudo bulges in barred galaxies yields offsets $(\delta \alpha) = -0.73 \pm 0.09$. The scatter in the $M_\bullet - \sigma_e$ relation of the barred classical bulges is larger than the one for unbarred classical bulged galaxies by a amount larger than predicted. This may be because the scatter in the models underestimates the real scatter and because SMBHs in barred galaxies are able to grow again, returning to the fiducial $M_\bullet - \sigma_e$ relation. SMBH mass measurements in barred galaxies may also be more uncertain than in unbarred galaxies (Brown et al. [2013]).

7 ACKNOWLEDGEMENTS

We thank Helen Cammack, Samuel Heald and especially Lindsey Tate, who worked on parts of the analysis of these simulations during summer internships. We thank the Nuffield Foundation for supporting Samuel Heald via a Nuffield Internship during the summer of 2010. Markus Hartmann thanks Kayan Gültekin and Alessandra Beifiori for helpful discussion. We thank John Dubinski for sharing with us the carefully constructed simulations used in this paper. VPD and DRC are supported by STFC Consolidated grant ST/J001341/1. MV is supported by U.S. National Science Foundation grant AST-0908346. LMW was supported by a Discovery Grant with the Natural Sciences and Engineering Research Council of Canada. The final stages of this work were supported by the National Science Foundation under Grant No. PHY-1066293 and the hospitality of the Aspen Center for Physics.

REFERENCES


© 0000 RAS. MNRAS 000, 000–000
The effect of bars on the $M_\bullet - \sigma_e$ relation