It was argued in a number of papers that the gravitational potential calculated by using the modified QFT that follows from the Planck-length deformed uncertainty relation implies the existence of black-hole remnants of the order of the Planck-mass. Usually this sort of QFTs are endowed with two specific features, the modified dispersion relation, which is universal, and the concept of minimum length, which, however, is not universal. While the emergence of the minimum-length most readily leads to the idea of the black hole remnants, here we examine the behaviour of the potential that follows from the Planck-length deformed QFT in absence of the minimum length and show that it might also lead to the formation of the Planck mass black holes in some particular cases. The calculations are made for higher-dimensional case as well. Such black hole remnants might be considered as a possible candidates for the dark-matter.

Keywords: Quantum gravity; Evaporation of black holes; Higher-dimensional black holes.
usually expects that the formalism used for describing the creation of particles by a gravitational field of the black hole breaks down whereas the size of the evaporating black hole becomes sufficiently small. The two well-known arguments are as follows: 1) in the vicinity of the singularity at the black hole center general relativity becomes invalid and 2) at the Planck scale $l_P \approx 10^{-33} \text{cm}$, quantum fluctuations of the metric become of the order of unity and therefore the general relativistic description of the gravitational field no longer holds. Quantum-gravitational corrections are very plausibly of a size to essentially alter the Planck-length-size black hole’s radiation. This point was recognized almost immediately on the publication of Hawking’s work. Apart from particular theories of quantum gravity, there is a simple phenomenological approach to "understanding" of quantum-gravitational effects based on the modified uncertainty relation. The modification is understood to be due to quantum-gravitational fluctuations of the background metric. On the quite general grounds, the quantum fluctuations in the geometry of space can be parametrized as $\delta l \approx l_P l^{1-\alpha}$ on account of the mutual relation between the metric and the distance. This additional inaccuracy cannot be wiped out by the quantum mechanics; it can only increase the position uncertainty of the particle, not diminish it. It is straightforward to write down the modified uncertainty relation taking into account this additional inaccuracy due to quantum fluctuations of the background metric:

$$\delta X \delta P \geq \frac{1}{2} + \beta l_P^\alpha \delta P^\alpha,$$

where β stands for a numerical factor of order unity. The deformed quantum mechanics used throughout the discussion is motivated by this sort of uncertainty relation. According to this modified uncertainty relation, if $\alpha > 1$ the position uncertainty has its least value of the order of the Planck length. On the other hand, if one asks for the minimum position uncertainty in the case $0 < \alpha < 1$, one finds no nonzero lower bound on it. Accordingly, we distinguish those two cases by saying that in the first case there is a minimum length although in both cases the deformed quantum mechanics depends upon the Planck length. An interested reader is referred to the last section of paper for further details about the distinguishing between the minimum length and the deformation of theory. The following historical comment regarding the modified uncertainty relation may be helpful to orient the reader. The modified uncertainty relation was originally proposed purely in the context of high energy physics, but it became popular after its "derivation" in the context of string theory as a simple tool for "understanding" quantum gravitational effects.

As it is stated in the abstract, the specific goal of the present paper is to demonstrate that the existence of black hole remnants in the framework of the discussion does not necessarily require the presence of the minimum length (see the above definition of the minimum length). Before proceeding to our analysis, let us briefly discuss the relationship between the behaviour of the gravitational potential
Black hole remnants due to Planck-length deformed QFT

Black hole remnants due to Planck-length deformed QFT

and the black hole remnants. In what follows we will adopt the natural system of units \(c = \hbar = 1 \). The starting point is the modified Schwarzschild (-Tangherlini) space-time \(^{26,27}\)

\[
\mathbf{ds}^2 = \left[1 - R_{g}^{n+1}V(r) \right] dt^2 - \left[1 - R_{g}^{n+1}V(r) \right]^{-1} dr^2 - r^2 d\Omega_{n+2}^2 , \tag{2}
\]

where \(d\Omega_{n+2} \) is a line element of a \(2 + n \) dimensional unit sphere,

\[
R_{g} (M) = \left(\frac{\alpha}{2} \right)^{\frac{1}{n+2}} \left[\frac{16\pi}{(n+2)\text{Vol}(S^{n+2})} \right]^{\frac{1}{n+2}} , \tag{3}
\]

and the potential \(V(r) \) is calculated by using the modified propagator that follows from the Planck-length deformed QFT. Essentially, the existence of the zero-temperature black hole remnants in the framework of this discussion is based on the following facts. The potential appears to be a monotonically decreasing function, finite at the origin with vanishing derivative at this point, that is: \(V'(r) < 0 \) for \(r > 0 \); \(V(0) < \infty \), \(V'(0) = 0 \). To see how these conditions provide the black hole remnant, let us notice that, in view of the Eq.(2), the gravitational radius \(r_g \) turns out to be the solution of the equation:

\[
V(r_g) = \frac{1}{R_{g}^{n+1}} = \frac{(n+2)\text{Vol}(S^{n+2})}{16\pi G_N M} . \tag{4}
\]

However, if the potential is a monotonically decreasing function having its maximum at the origin, this equation does not have a solution for

\[
M < \frac{(n+2)\text{Vol}(S^{n+2})}{16\pi G_N V(0)} .
\]

Thus, one infers that as soon as a black hole mass drops to

\[
M_{\text{remnant}} = \frac{(n+2)\text{Vol}(S^{n+2})}{16\pi G_N V(0)} ,
\]

the black hole horizon disappears and, on the other hand, its temperature, for it is proportional to the surface gravity: \(V'(0) \), vanishes. It is worth noticing that typically, the mass of such remnants are of the order of the quantum gravity scale.

Even in presence of the minimum length it is not self-evident why the potential estimated through the modified propagator should behave this way but, in this case, it completes well the intuitive picture that follows simply from the Poisson’s equation: \(\Delta \Phi = 4\pi G_N \rho \). The presence of the non-zero minimum position uncertainty in QM engenders the smearing of the delta function \(\rho = M\delta(r) \) thus replacing the point-like source with a regular distribution. So, in presence of the minimum length, the result can be recognized as an over-all picture that follows from the implementation of the minimum length into quantum theory\(^{28,32}\).

In what follows we will use the Hilbert space representation for a Planck-length deformed QM that explicitly depends upon the parameter \(\alpha \) yielding the minimum length for \(\alpha > 1 \) and leading just to the modified dispersion relation whereas \(0 < \alpha < 1 \) leads to the condition of an effective zero-length deformed QM that simply follows the classical theory of gravity.
$\alpha < 1$ - as it follows from Eq.(1); for technicalities see\(^5\) This sort of QM is based on the generalized position and momentum operators that have the following form

$$\hat{X}_i = \tilde{x}_i, \quad \hat{P}_j = \tilde{p}_j \left(1 - \frac{2\beta(\alpha - 1)}{\alpha} l_P^\alpha P^\alpha\right)^\frac{1}{1-\alpha}, \quad (5)$$

where \tilde{x}, \tilde{p} stand for the standard position and momentum operators in the p-representation, β is a numerical factor of order unity and l_P denotes the Planck length. In the case $\alpha = 2$, the Eq.(5) reduces to the well-known result found in\(^33\). Let us notice that in view of Eq.(5), there is a cutoff $p^\alpha < \alpha/2\beta(\alpha - 1)l_P^\alpha$ when $\alpha > 1$. This cutoff arises merely from the fact that when small p runs over this region, large P covers the whole region from 0 to ∞ (for more details see\(^8\)). Indeed this cutoff is responsible for the existence of the non-zero minimum position uncertainty. In the case $0 < \alpha < 1$ there is no lower bound on position uncertainty and no cutoff on p, respectively.

In light of the Eq.(5), the dispersion relation for a free massless particle and the correspondingly modified field theory action read

$$\varepsilon = P^2, \quad A[\Phi] = - \int d^4x \frac{1}{2} \left[\Phi \partial_\mu^2 \Phi + \Phi \mathbf{P}^2 \Phi \right]. \quad (6)$$

In what follows, we will use the propagator following from Planck-length deformed field theory\(^1\) to estimate the modified potential, which then will be used in Eq.(2). To be more precise, the field theory model for gravity we are dealing with is obtained by expanding the GR around the Minkowskian metric and then substituting $\partial_i = i\tilde{P}_i$ by the non-local operator $i\tilde{P}_i$, as it is done in Eq(6). So, this theory contains an infinite number of higher derivative terms. What we know for sure about this theory is that one can use the weak field approximation in the large distance limit and in this limit the theory admits a BH-type soliton solution, so to say\(^34\). The new feature that follows from the calculations made here is that for $\alpha > (2 + n)/(4 + n)$ this theory admits the weak field approximation in the short distance limit as well. So, strictly speaking the modified BH solution we are discussing is valid just in these asymptotic regions, however, we hope, the conclusion about the BH remnants is not affected by this fact. Our purpose, as stated in the manuscript, was to complete the discussion of\(^28\)\(^30\) where the effect of minimum length on the BH remnants is discussed in the context of BH physics. But we are discussing somewhat less intuitive case in which there is no minimum length as such, that is, position uncertainty has no non-zero bound from below, or otherwise speaking, there is no cut-off on p, and therefore the arguments of\(^28\)\(^30\) simply do not work.

2. The behaviour of the potential

2.1. No minimum length: $0 < \alpha < 1$

From the above discussion it follows immediately that the modified Poisson equation for the point-like source takes the form
\[\tilde{P}^2 V(r) = 4\pi \delta(r), \]

so that the potential calculated by using the modified propagator that follows from Eqs. (6), which is nothing else but the solution of Eq. (7), takes the form

\[V(r) = \int \frac{d^3k}{(2\pi)^3} \frac{4\pi e^{i\mathbf{k} \cdot \mathbf{r}}}{k^2 (1 + \beta k^\alpha)^{2/(1-\alpha)}}, \tag{8} \]

where

\[\beta = \frac{2\beta(1 - \alpha) l_p^2}{\alpha}. \]

The Fourier integrals in higher-dimensional case are more divergent but the basic structure is essentially the same:

\[V(r) = (1 + n) \text{Vol}(S^{n+2}) \int \frac{d^3+n k}{(2\pi)^{3+n}} e^{i\mathbf{k} \cdot \mathbf{r}} (1 + \beta k^\alpha)^{2/(1-\alpha)}, \tag{9} \]

where \(n \) denotes the number of extra dimensions. From this expression one finds that \(V(0) \) is finite as long as \(\alpha > (1 + n)/(3 + n) \). To work out the behaviour of the potential for \(r \to 0 \), let us write the Eq. (9) in the form

\[V(r) = K \frac{1}{r^{n+\tau}} \int_{-1}^{1} d\tau \left(1 - \tau^2\right)^{1/2} \int_0^\infty dq q^n \frac{\cos(q\tau)}{[1 + \beta(q/r)^\alpha]^{2/(1-\alpha)}}, \tag{10} \]

where

\[K = \frac{(1 + n) \text{Vol}(S^{n+2}) \text{Vol}(S^{n+1})}{(2\pi)^{3+n}}, \]

and \(q \) and \(\tau \) are dimensionless quantities defined through \(q = |\mathbf{k}|r \) and \(k \cdot r = q\tau \).

First of all, let us notice that the integral with respect to \(q \) in Eq. (10) is understood in the sense of the generalized functions (for a detailed account of generalized functions/distributions we refer the reader to the review article \[35\]). It may be divergent for some values of \(\alpha \) (namely, if \(2/(1-\alpha) < n + 1 \)) but nevertheless the second integral with respect to \(\tau \) gives the finite result (see the discussion after Eq. (13)). Keeping this in mind, one can split the integral

\[\frac{1}{-1} d\tau \left(1 - \tau^2\right)^{1/2} \int_0^\infty dq q^n \frac{\cos(q\tau)}{[1 + \beta(q/r)^\alpha]^{2/(1-\alpha)}} = \frac{1}{-1} d\tau \left(1 - \tau^2\right)^{1/2} \]

\[\times \left\{ \int_0^\epsilon dq q^n \frac{\cos(q\tau)}{[1 + \beta(q/r)^\alpha]^{2/(1-\alpha)}}, \right. \]

\[\left. + \int_\epsilon^\infty dq q^n \frac{\cos(q\tau)}{[1 + \beta(q/r)^\alpha]^{2/(1-\alpha)}} \right\}, \]

\((\epsilon \ll 1) \) and omit the second term as it goes to zero when \(r \to 0 \). Thus, one infers that the short distance behaviour \((r \ll \epsilon l_p^{1/\alpha}) \) of the potential is essentially
determined by the integral

\[V \left(r \ll \epsilon \beta^{1/\alpha} \right) \simeq \frac{(1 + n) \text{Vol} \left(S^{n+2} \right)}{(2\pi)^{\frac{n-3}{2}} 2^{\frac{n+1}{2}} \Gamma \left(\frac{n+3}{2} \right)} \int_0^{\epsilon/r} dk \frac{k^n}{\left[1 + \frac{\beta k^\alpha}{r} \right]^{2/(1-\alpha)}}, \]

(11)

where we have used

\[\int_{-1}^1 d\tau \left(1 - \tau^2 \right)^{\frac{n}{2}} = \frac{\Gamma \left(\frac{1}{2} \right) \Gamma \left(1 + \frac{n}{2} \right)}{\Gamma \left(\frac{3+n}{2} \right)}. \]

Correspondingly, one finds

\[V' \left(r \ll \epsilon \beta^{1/\alpha} \right) \propto -r \frac{4 + n}{\alpha - n - 2}, \]

(12)

that is, \(V'(0) = 0 \) when \(\alpha > (2 + n)/(4 + n) \). This result can be seen immediately from the Eq. 11.

One can show that in general \(V'(r) < 0 \) for \(r > 0 \), that is, \(V(r) \) is a monotonically decreasing function for \(r > 0 \). Namely, the derivative of the potential reads

\[V'(r) = \nabla V(r) \cdot \frac{\textbf{r}}{r} = -r \frac{K}{r^{n+2}} \int_{-1}^1 d\tau \left(1 - \tau^2 \right)^{\frac{n}{2}} \tau \]

\[\times \int_0^\infty dq \frac{q^{n+1} \sin(q\tau)}{[1 + \beta(q/r)^\alpha]^{2/(1-\alpha)}}. \]

(13)

As in the previous case, it can be seen that the integral

\[\int_0^\infty dq \frac{q^{n+1} \sin(q\tau)}{[1 + \beta(q/r)^\alpha]^{2/(1-\alpha)}} \equiv \int_0^\infty dq \frac{q^{n+1} e^{iq\tau}}{[1 + \beta(q/r)^\alpha]^{2/(1-\alpha)}}. \]

that enters the Eq.13 may be divergent for certain values of \(\alpha \) (for a given \(n \)) but still integrable with respect to \(\tau \). Again, this integral should be understood by introducing the factor \(e^{-\epsilon q} \) in the integral and taking the limit \(\epsilon \to 0 \) afterwards. So, one can use the following relation \(\mathcal{P} \) (\(\mathcal{P} \) stands for the principal value)

\[\int_0^\infty dq e^{iq(\tau + i\epsilon)} \to \pi \delta(\tau) + \mathcal{P} \int_0^{\tau} \frac{d\tau}{\tau}. \]

(14)

Since in the standard case, \(\beta = 0 \), the double integral entering the Eq.13 is positive, then by taking into account that the integrand is now divided by the monotonically increasing function, one concludes that its positiveness is guaranteed. The argument is that one can write the integral with respect to \(\tau \) over the region \((0,1)\), that is, with the integration starting from zero. The extra factor on which the sine-function is multiplied is monotonically decreasing in this case, so the negative contribution
coming from this function in the integral is now more suppressed as compared to its positive contribution. Considering the worse case, \(\beta = 0 \), one can calculate the straightforwardly with the use of equation

\[
\int_0^\infty dq q^{n+1} e^{iq\tau} = (-i)^{n+1} \frac{\partial^{n+1}}{\partial \tau^{n+1}} \int_0^\infty e^{iq\tau} =
\]

\[
(-i)^{n+1} \pi \delta^{(n+1)}(\tau) - (-1)^n (-i)^n (n+1)! \mathcal{P} \frac{1}{\tau^{n+2}} ,
\]

(15)

where the principal value \(\mathcal{P} \) is understood in the sense of Hadamard.

Instead of using Eqs. (15, 16) straightforwardly, one could calculate this type of integrals by using the \(\epsilon \) prescription but this approach is somewhat more cumbersome — see the Appendix. Using the Eqs. (15, 16), one finds that in the case \(\beta = 0 \) the derivative of the potential (13) takes the form

\[
V'(r) = -\frac{K \pi (n+1)!}{r^{n+2}}.
\]

(17)

The typical behaviours of the potential in three-dimensional case are shown in Fig.1 for \(1/3 < \alpha < 1/2 \) and in Fig.2 for \(1/3 < \alpha < 1/2 \).

2.2. Minimum length: \(\alpha > 1 \)

Because of the presence of cut-off \(k < \beta^{-1/\alpha} \) in the case of minimum length, one can readily show all of the features required for the potential for the existence of the zero-temperature BH remnants. The potential looks like

\[
V(r) = K \int_0^{\beta^{-1/\alpha}} dk k^n (1 - \beta k^n)^{2/(\alpha-1)}
\]

\[
\times \int_{-1}^1 d\tau \left(1 - \tau^2\right)^{\frac{2}{n-2}} \cos(kr\tau).
\]

(18)

It is evident from this expression that \(V(0) \) is finite, \(V'(0) = 0 \) and \(V'(r) < 0 \). The last statement can be proved much in the same way as it was done in the case \(0 < \alpha < 1 \). As we see, the potential has the same typical behaviour as shown in Fig.2. The asymptotic behaviour of \(V(r) \) for \(r \to 0 \) can easily be found as well by expanding the \(\cos(kr\tau) \) into the Taylor series. One finds

\[
V(r) = A - Br^2 + O(r^4),
\]

(19)
Fig. 1. The typical behaviour of the potential for $1/3 < \alpha < 1/2$. The essential properties are: $V(0) < \infty$, $V'(r) < 0$ for $r > 0$ and $V'(r) \to -\infty$ as $r \to 0$. (The plot is made in particular for the case $\alpha = 5/12$).

Fig. 2. The typical behaviour of the potential for $1/2 < \alpha < 1$. The essential characteristics are: $V(0) < \infty$, $V'(r) < 0$ for $r > 0$ and $V'(r) \to 0$ as $r \to 0$. (The plot is made in particular for the case $\alpha = 3/4$).

where A and B are positive quantities.
3. Summary and discussion

Main goal of this paper was to present more or less systematic account of how modified uncertainty relations of the sort given by Eq.(1) might affect the black hole physics. Two kind of modifications suggested by the deformed uncertainty relations that should be distinguished are as follows. The primary and unique feature of it is that it implies modified dispersion relation and the second, non-universal feature, is the appearance of the lower non-zero bound on the position uncertainty (for which we saved the term - minimum length). The latter feature most readily leads to the idea of the BH remnants as it implies the smearing of the matter fields over the region of size l_P - ruling out the point-like sources. To quantify, this feature is mathematically expressed in emergence of the cutoff on the standard momentum variable (which is canonically conjugate to the coordinate). But one should take into account that this cutoff affects not only matter fields but the gravitational field as well. Interestingly enough, by taking account this cutoff just for the gravitational field, one arrives at the same qualitative results that follow from the theory augmented by the smearing out of the matter fields. However, putting aside the latter feature of modified uncertainty relation, merely the deformation of the dispersion relation can also lead to the halt of the BH emission much in the same way as it is achieved by exploiting the concept of the minimum length. That is what we have shown throughout this paper in the framework of a somewhat generic setup. An appropriate question that naturally arises in absence of the minimum length, is the remnant’s size. We have seen that the horizon goes to zero when mass approaches the Planck scale but BH implies the size of the object should be smaller than its gravitational radius. Does it mean that it’s a point-like object? The answer is yes, because the very approach we are pursuing starts merely from the Poisson equation with the point-like source.

Now let us summarize the results in some detail (we will restrict ourselves just to the 3D case). The parameter range $0 < \alpha < 1$ implies the absence of the minimum length. The Planck-length deformed propagator for $\alpha > 1/3$ results in the potential, which after being used in the Schwarzschild metric shows up the existence of the black hole remnants (disappearance of horizon), however, for values $1/3 < \alpha < 1/2$ the temperature of the black hole remnant goes to infinity. In contrast, for $\alpha > 1/2$ the black hole remnants are characterized with the zero temperature (The typical behaviour of the radiation temperature as a function of the BH mass is shown in Fig.1). Moreover, that modified Schwarzschild space-time is free of the curvature singularity at the origin when $\alpha > 3/5$. That is easy to see for in this case the metric as well as its first and second derivatives do not diverge when $r \to 0$ (see Eqs.(11, 12, 13)). Let us emphasize once again that the key observation made throughout this paper is the existence of the black hole remnants when there is no minimum length: $\alpha < 1$.

Special attention has to be paid on the validity conditions of approximation assumed tacitly throughout the above discussion. We have taken gravitational field
Fig. 3. Typical behaviour of the emission temperature as a function of the BH mass for $\alpha > (2 + n)/(4 + n)$. The emission temperature reaches its maximum -- of the order of Planck energy, when BH evaporates down to the Planck mass, then it swiftly drops to zero at M_{remnant}, which also is of the order of Planck mass.

on the equal footing with the matter fields, that is, QFT picture for gravity is taken as a starting point. This means that the graviton field is defined as the difference between the full metric and its Minkowski background value and a field theory on flat Minkowski spacetime is assumed to hold for this graviton field. Such QFT approach to gravity, pioneered by Kraichnan (the only post-doctoral student that Einstein ever had) and Gupta, is reviewed in. However, we have used this QFT approach to gravity, suitably modified, only to get the generalization of the Newton potential and then embarked on more traditional geometric approach by substituting this generalized potential into the Schwarzschild-Tangherlini metric. Although quite reasonable in a weak-field limit, it seems completely impossible to justify the use of this substitution up to the Planck scale. Nevertheless, the following rather ingenious, though somewhat heuristic, argument can be envisaged to justify such kind of business. We will assume $n = 0$ (that is 3D case) in the following.

It is relatively little known that the complete content of Einstein’s general relativity is encoded in the following single equation (c = 1 is assumed as earlier):

$$\mathcal{K}(12) + \mathcal{K}(23) + \mathcal{K}(31) = 8\pi G_N W^0, \quad (20)$$

valid irrespective of the state of motion of the observer. Here W^0 is the proper energy density at the considered space-time point measured in the proper comoving frame and $\mathcal{K}(ij)$ are sectional curvatures in the proper three space. Of course, this single equation valid for any observer implies a set of equations which should hold true for each observer and this set of equations are equivalent to usual tensorial form of Einstein’s equations. In the Newtonian limit $c \to \infty$, one of these equations
reduces to \(\mathcal{K}(01) + \mathcal{K}(02) + \mathcal{K}(03) = 4\pi G_N \rho, \)

which is exactly the Poisson equation for the Newtonian gravitational potential \(V \) because in this limit

\[\mathcal{K}(01) = \frac{\partial^2 V}{\partial x^2}, \quad \mathcal{K}(02) = \frac{\partial^2 V}{\partial y^2}, \quad \mathcal{K}(03) = \frac{\partial^2 V}{\partial z^2}. \]

This fact explains why we have chosen a modification of the Poisson equation, inspired by Planck-length deformed QFT, as our starting point. Of course it is assumed that this modification of the Poisson equation is just a limiting case of suitably modified gravitational field equations. In the following we conjecture one such modification.

Namely, let us consider the following non-local modification of the equation (20) (and similar modifications of its accompanying equations), inspired by the Planck-length deformed QM as given by relations (5),

\[\hat{L} (\mathcal{K}(12) + \mathcal{K}(23) + \mathcal{K}(31)) = 8\pi G_N W^0, \quad (21) \]

where

\[\hat{L} = \left(1 - \hat{p}^\alpha \right) \frac{1}{\hat{r}^2}, \quad (22) \]

and \(\hat{p} = \sqrt{-\Delta}. \)

In the spherically symmetric three space around a point-like mass distribution \(W^0 = M\delta(r) \) we have \(\mathcal{K}(\theta r) = \mathcal{K}(\phi r) = D(r) \) and \(\mathcal{K}(\phi \theta) = T(r) \) with two unknown functions \(D \) and \(T \). Therefore, according to (21), in the empty space, beyond the origin, we should have

\[\hat{L}(2D + T) = 0. \quad (23) \]

On the other hand, in general relativity the functions \(D \) and \(T \) are related due to Bianci identities in the following way:\(^{14} \)

\[r \frac{dT}{dr} = 2(D - T). \quad (24) \]

It turns out that self-consistency of our deformation of Schwarzschild solution requires the following modification of (24):

\[\hat{L}_1 \left(r \frac{dT}{dr} + 3T \right) = \hat{L}(2D + T), \quad (25) \]

where \(L_1 = (1 + r \cdot \nabla) \hat{L}(1 + r \cdot \nabla)^{-1}. \)

Combining equations (23) and (25), we get

\[\hat{L}_1 \left(r \frac{dT}{dr} + 3T \right) = \hat{L}_1 \left(\frac{1}{r^2} \frac{d}{dr} (r^3 T) \right) = 0, \quad (26) \]
Noticing that $1 + r \cdot \nabla$, and hence $(1 + r \cdot \nabla)^{-1}$, commutes with $3 + r \cdot \nabla$, we can rewrite (26) in the form

$$(1 + r \cdot \nabla) (1 - \beta \hat{p}^\alpha) \frac{2}{r^2} \left[\frac{1}{r^2} \frac{d}{dr} (r^3 F) \right] = 0,$$

where $F = (1 + r \cdot \nabla)^{-1} T$.

On the other hand, in the same empty space-region our potential $V(r)$ satisfies the modified Poisson equation

$$\hat{P}^2 V(r) = - (1 - \beta \hat{p}^\alpha) \frac{2}{r^2} \Delta V = 0.$$

Therefore, we get a solution of (27) if we take

$$\frac{1}{r^2} \frac{d}{dr} (r^3 F) = k \Delta V = k \frac{d}{dr} \left(\frac{r^2}{dr} \frac{dV}{dr} \right),$$

with some constant k, which implies

$$(1 + r \cdot \nabla)^{-1} T = \frac{k}{r} \frac{dV}{dr},$$

and

$$T(r) = (1 + r \cdot \nabla) \left(\frac{k}{r} \frac{dV}{dr} \right) = k \frac{d^2 V}{dr^2}.$$ \hspace{1cm} (28)

It is well known that in the case of static, spherically symmetric distribution of matter, without loss of generality, we can assume the Schwarzschild-like form for metric in the outside region with two unknown functions

$$ds^2 = f(r) dt^2 - g(r) dr^2 - r^2 d\Omega^2.$$ \hspace{1cm} (29)

The radial geodesic equation which follows from this metric has the form

$$\frac{d^2 r}{ds^2} = \frac{1}{2 dr} \left(\frac{k_0^2}{f g} - \frac{1}{g} \right),$$ \hspace{1cm} (30)

where k_0 is the energy (per unit mass) of the test particle. In Newtonian gravity the radial acceleration depends merely on the gradient of the the gravitational potential at the location of the particle. The generalization of this characteristic property of the Newtonian gravity, which Tangherlini calls strong principle of equivalence, implies that $f(r)g(r)$ is constant to eliminate the k_0-dependent term in (30). When, as the space-time is assumed to be asymptotically Minkowskian, we get $g(r) = 1/f(r)$. In this case the metric (29) implies the following sectional curvature

$$\mathcal{K}(tr) = \frac{1}{4 fg} \left[2 \frac{d^2 f}{dr^2} - \frac{1}{f} \frac{df}{dr} \left(\frac{df}{dr} \right) \left(\frac{dg}{dr} \right) \right] = \frac{1}{2 dr^2}.$$ \hspace{1cm} (31)

On the other hand one of accompanying equations of (20) implies that in the standard case $\mathcal{K}(tr) = -\mathcal{K}(\theta \phi) = -T(r)$ This remains a possible solution in the
modified case also when the operator \(\hat{L} \) is assumed to act only on sectional curvatures and not on matter source terms. Therefore,

\[
\frac{1}{2} \frac{d^2 f}{dr^2} = -k \frac{d^2 V}{dr^2},
\]

whose solution, with the proper asymptotic, is

\[
f(r) = 1 - 2kV(r) = 1 - R_g V(r),
\]

where the constant \(k \) was fixed by requiring the proper (that is Schwarzschild) limit in the case \(\beta \to 0 \).

The aim of this long argument was to demonstrate that we can anticipate such Planck-length deformation of Einstein’s equations for which (2), with \(V(r) \) given by (9), is an exact and not merely an approximate solution, much like the standard Schwarzschild case.

We do not know a geometric meaning of the modification of Bianci identities (25). The necessity of this modification is caused by the fact that without it we get a contradiction if in the sectional curvature

\[
K(\phi r) = \frac{1}{2r} \frac{d}{dr} \left(\frac{1}{g} \right) = D(r)
\]

we substitute

\[
\frac{1}{g} = 1 - 2kV(r), \quad \text{and} \quad D = T + \frac{1}{2} \frac{dT}{dr},
\]

with \(T \) from (28). If instead we take the modified case of equations (23) and (25), the contradiction disappears. Indeed, (33) and (23) imply

\[
\hat{L} \left(D + \frac{1}{2r} \frac{d}{dr} \left(\frac{1}{g} \right) \right) = -\frac{1}{2} \hat{L} \left(T - \frac{1}{r} \frac{d}{dr} \left(\frac{1}{g} \right) \right) = 0,
\]

which is valid for \(1/g = 1 - 2kV \) and \(T = k \frac{d^2 V}{dr^2} \) because

\[
-\hat{L} \left(\frac{d^2 V}{dr^2} + \frac{2}{r} \frac{dV}{dr} \right) = -\hat{L} \Delta V = \hat{P}^2 V = 0.
\]

The above discussed modification of the Schwarzschild metric was inspired by papers [44] and [47]. However our approach is quite different from the one advocated in [47].

We have assumed, and our calculations of the potential are consistent with this assumption, that as long as \(\alpha > (2 + n)/(4 + n) \) the gravity behaves as an asymptotically free interaction and, correspondingly, the radiative corrections close to the Planck scale can be safely ignored in this case. In contrast, when \(\alpha < (2 + n)/(4 + n) \) the gravitational force does not go to zero when \(r \to 0 \) and one cannot justify the ignorance of the radiative corrections near the Planck scale.

As a further remark, let us notice that we do not know what the full implementation of minimum-length deformed quantum mechanics in GR might look like. If one truncates the modified field theory given by Eqs. (5, 6) to some power of \(\beta \), then
it will result in a so-called Lifshitz-like theory and therefore one might expect the corresponding gravity theory to look something like the Horava-Lifshitz gravity.13

Another way of modifying the GR with respect to the minimum-length concept might be a non-local theory of GR;49–52 the question of black hole remnants in this sort of theory was addressed in.53

Let us also mention some papers known to us addressing the question of modified potential due to deformed propagator54–58 and some of the papers devoted to the black hole remnants due to Planck-length deformed field theory.53, 59–68

It was shown that for black holes with inner (Cauchy) horizon no remnant formation is expected due to the so-called mass inflation instability.69, 70

In our case, however, thanks to the properties of the potential described in the text, one can have at most one horizon, and if the horizon is present it is much like the Schwarzschild case and, therefore, this type of instability does not occur.

As a final comment, let us notice that a sufficient amount of small black holes can be produced in the early universe in order to consider Planck mass BH remnants as a viable candidates for the dark-matter.71–77

Appendix

Using the ϵ prescription, in the case $\beta = 0$ the double integral entering the Eq. (13):

$$
I_n = \int_{-1}^{1} d\tau \frac{1}{(1 - \tau^2)^{n/2}} \int_{0}^{\infty} dq q^{n+1} e^{iq(\tau+i\epsilon)} = \int_{-1}^{1} d\tau \frac{1}{(1 - \tau^2)^{n/2}} \int_{0}^{\infty} dq e^{iq(\tau+i\epsilon)}
$$

$$
(-1)^{n+1} \frac{d^{n+1}}{dn+1} \int_{-1}^{1} d\tau \frac{1}{(1 - \tau^2)^{n/2}} \int_{0}^{\infty} dq e^{iq(\tau+i\epsilon)}
$$

can be written in the form

$$
I_n = i(-1)^n \frac{d^{n+1}}{dn+1} \left[\int_{-1}^{1} d\tau \frac{1}{(1 - \tau^2)^{n/2}} \right] = i(-1)^n \frac{d^{n+1}}{dn+1} \left[\int_{-1}^{1} d\tau \frac{1}{(1 - \tau^2)^{n/2}} \right] = i(-1)^n \frac{d^{n+1}}{dn+1} \left[\int_{-1}^{1} d\tau \frac{1}{(1 - \tau^2)^{n/2}} \right] =
$$

$$
I_n = i(-1)^n \frac{d^{n+1}}{dn+1} \int_{-1}^{1} d\tau \frac{1}{(1 - \tau^2)^{n/2}} \int_{0}^{\infty} dq e^{iq(\tau+i\epsilon)}
$$

Making the substitution $\tau = \sin \theta$, one finds

$$
I_n = i(-1)^n \frac{d^{n+1}}{dn+1} \left[\int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^{n+1} \theta}{\sin^2 \theta + \epsilon^2} \right] = i(-1)^n \frac{d^{n+1}}{dn+1} \left[\int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^{n+1} \theta}{\sin^2 \theta + \epsilon^2} \right] = i(-1)^n \frac{d^{n+1}}{dn+1} \left[\int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^{n+1} \theta}{\sin^2 \theta + \epsilon^2} \right] = i(-1)^n \frac{d^{n+1}}{dn+1} \left[\int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^{n+1} \theta}{\sin^2 \theta + \epsilon^2} \right] =
$$

$$
I_n = \int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^n \theta}{\sin^2 \theta + \epsilon^2} \int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^{n-2} \theta(1 - \sin^2 \theta - \epsilon^2)}{\sin^2 \theta + \epsilon^2}
$$

So, we have

$$
I_n(\epsilon) = \int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^n \theta}{\sin^2 \theta + \epsilon^2} = \int_{-\pi/2}^{\pi/2} d\theta \frac{\cos^{n-2} \theta(1 - \sin^2 \theta - \epsilon^2)}{\sin^2 \theta + \epsilon^2}
$$

(34)
and hence
\[I_n(\epsilon) = (1 + \epsilon^2)I_{n-2}(\epsilon) - K_{n-2}, \quad (36) \]
where
\[K_n = \int_{-\pi/2}^{\pi/2} \cos^n \theta \, d\theta. \]

Using (36), we can prove by induction that
\[I_{2m} = (1 + \epsilon^2)^m I_0 - \sum_{j=0}^{m-1} (1 + \epsilon^2)^j K_{2(m-1)-2j}, \quad (37) \]
and
\[I_{2m+1} = (1 + \epsilon^2)^m I_1 - \sum_{j=0}^{m-1} (1 + \epsilon^2)^j K_{2m-2j}. \quad (38) \]

Hence, when \(n = 2m - 1 \) is odd, we get from Eqs.(34, 37)
\[I_{2m-1} = (2m)!i\pi - i\pi \frac{d^{2m}}{d\epsilon^{2m}} \left[(1 + \epsilon^2)^{m-1/2} \right], \quad (39) \]
all other terms in Eq.(37) are giving zero contribution. Going further, one easily finds the values of \(I_0, K_0 \)
\[I_0(\epsilon) = \int_{-\pi/2}^{\pi/2} \frac{d\theta}{\sin^2 \theta + \epsilon^2} = \frac{\pi}{\epsilon \sqrt{1 + \epsilon^2}}, \quad K_0 = \pi, \]
and, therefore, the Eq.(39) reduces to
\[I_{2m-1} = (2m)!i\pi \frac{d^{2m}}{d\epsilon^{2m}} \left[(1 + \epsilon^2)^{m-1/2} \right], \]
which is the same as
\[I_{2m-1} = (2m)!i\pi \frac{d^{2m+1}}{2m+1 d\epsilon^{2m+1}} (1 + \epsilon^2)^{m+1/2}. \quad (40) \]
In the \(\epsilon \to 0 \) limit, the second term in Eq.(40) goes to zero as the Taylor expansion of \((1 + \epsilon^2)^{m+1/2} \) around \(\epsilon = 0 \) contains only even powers of \(\epsilon \). Hence,
\[\lim_{\epsilon \to 0} I_{2m-1} = (2m)!i\pi. \quad (41) \]
Similarly, when \(n \) is even \(n = 2m \), we get
\[I_{2m} = i\frac{d^{2m+1}}{d\epsilon^{2m+1}} \left[\epsilon^2 (1 + \epsilon^2)^{m} I_1(\epsilon) \right], \]
as no term containing \(K \)-factors survives after taking the \((2m+1)\)-th derivative. Using the relation

\[
I_1(\epsilon) = \int_{-\pi/2}^{\pi/2} \frac{\cos \theta}{\sin^2 \theta + \epsilon^2} d\theta = \frac{2}{\epsilon} \arctan \left(\frac{1}{\epsilon} \right),
\]

this equation reduces to

\[
I_{2m} = 2i \frac{d^{2m+1}}{d\epsilon^{2m+1}} \left[\epsilon (1 + \epsilon^2)^m \arctan \left(\frac{1}{\epsilon} \right) \right]. \tag{42}
\]

Now we can take the limit \(\epsilon \to 0 \) by taking into account that \(\arctan (1/\epsilon) \) and its derivatives are not singular in this limit. Exploiting the Leibniz rule to the Eq.\,(42) one finds

\[
\lim_{\epsilon \to 0} I_{2m} = 2i \lim_{\epsilon \to 0} \arctan \left(\frac{1}{\epsilon} \right) \frac{d^{2m+1}}{d\epsilon^{2m+1}} \left[\epsilon (1 + \epsilon^2)^m \right] = i\pi (2m + 1)! . \tag{43}
\]

All other terms vanish because for any \(j \geq 1 \) either

\[
\lim_{\epsilon \to 0} \frac{d^{2j}}{d\epsilon^{2j}} \left[\epsilon (1 + \epsilon^2)^m \right] = 0 ,
\]

since binomial expansion of \(\epsilon (1 + \epsilon^2)^m \) contains only odd powers of \(\epsilon \), or

\[
\lim_{\epsilon \to 0} \frac{d^{2j}}{d\epsilon^{2j}} \arctan \left(\frac{1}{\epsilon} \right) = -\lim_{\epsilon \to 0} \frac{d^{2j-1}}{d\epsilon^{2j-1}} \frac{1}{1 + \epsilon^2} = 0 .
\]

Equations (41) and (43) can be unified in the final result

\[
\lim_{\epsilon \to 0} I_n = i\pi (n + 1)! . \tag{44}
\]

acknowledgments

Authors are greatly indebted to Hendrik van Hees for useful discussions and to Igor Khavkine for his suggestion regarding the straightforward calculation of integrals for odd values of \(n \) by using the Eq.\,(15). Stimulating discussions with Gia Dvali and Cesar Gomez about the UV self-completeness of gravity are also kindly acknowledged. M. M. is indebted to Marcus Bleicher and Piero Nicolini for their hospitality at the Frankfurt Institute for Advanced Studies. This research was supported in part by the National Research Fund, Luxembourg - AFR PhD 6758696 (A. D.); by the Shota Rustaveli National Science Foundation under contract number 31/89 and the DAAD research fellowship for university teachers and researchers (M. M.); by the Ministry of Education and Science of the Russian Federation, Russian Federation President Grant for support of scientific schools NSh-2479.2014.2 and RFBR grant 13-02-00418-a (Z. S.).
Black hole remnants due to Planck-length deformed QFT

References

42. N. Straumann, astro-ph/0006423.