MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1

1994
50 pages
Report number:
  • CERN-D-506,
  • CERN-D506

Citations per year

19811992200320142025051015202530
Abstract:
Minuit is conceived as a tool to find the minimum value of a multi-parameter function and analyze the shape of the function around the minimum. The principal application is foreseen for statistical analysis, working on chisquare or log-likelihood functions, to compute the best-fit parameter values and uncertainties, including correlations between the parameters. It is especially suited to handle difficult problems, including those which may require guidance in order to find the correct solution.
  • [1]
    LATEX A Document Preparation System 1986
    • L. Lamport
    • [2]
      HBOOK users guide (Version 4.15), Program Library Y250. CERN, 1992
      • R.Brun
      • [3]
        PAW users guide, Program Library Q121. CERN, 1991
        • R.Brun
          ,
        • O.Couet
          ,
        • C.Vandoni
          ,
        • P.Zanarini
        • [4]
          Determining the statistical Significance of experimental Results. Technical Report DD/81/02 and CERN Report 81-03, CERN, 1981
          • F.James
          • [5]
            Statistical Methods in Experimental Physics 1971
            • W.T.Eadie
              ,
            • D.Drijard
              ,
            • F.James
              ,
            • M.Roos
              ,
            • B.Sadoulet
            • [6]
              Methods for unconstrained optimization problems. American Publishing Co., Inc., New York, 1968
              • J. Kowalik
                ,
              • M.R. Osborne
              • [7]
                An automatic method for finding the greatest or least value of a function
                • H.H. Rosenbrock
                  • Comput.J. 3 (1960) 175
              • [8]
                Direct search solution of numerical an statistical problems
                • R. Hooke
                  ,
                • T.A. Jeeves
                  • J.Assoc.Comput.Machinery 8 (1961) 212
              • [9]
                Non-linear optimization. English Universities Press, London, 1972
                • L.C.W. Dixon
                • [11]
                  A modification of Davidon’s method to accept difference approximations of derivatives
                  • G.W. Stewart
                    • J.Assoc.Comput.Machinery 14 (1967) 72
                • [12]
                  Function minimization by conjugate gradients
                  • R. Fletcher
                    ,
                  • C.M. Reeves
                    • Comput.J. 7 (1964) 149
                • [14]
                  The classical theory of fields Publ. Co., Inc., Reading, Mass., 1951
                  • L.D. Landau
                    ,
                  • E.M. Lifshitz
                  • [15]
                    A rapidly converging descent method for minimization
                    • R. Fletcher
                      ,
                    • M.J.D. Powell
                      • Comput.J. 6 (1963) 163
                  • [16]
                    Variance algorithm for minimization
                    • W.C. Davidon
                      • Comput.J. 10 (1968) 406
                  • [17]
                    Rank one methods for unconstrained optimization, appearing in Integer and Nonlinear Programming. J Adabie, editor Publ. Co., Amsterdam, 1970
                    • M.J.D. Powell
                    • [19]
                      Quasi-Newton methods and their application to function minimization 47 48 BIBLIOGRAPHY
                      • C.G. Broyden
                        • Math.Comput. 21 (1967) 368
                    • [20]
                      and f.L. Tsetlin. The principle of non-local search in automatic optimization systems
                      • I.M. Gelfand
                        • Sov.Phys.Dokl. 6 (1961) 192
                    • [21]
                      On descent from local minima
                      • A.A. Goldstein
                        ,
                      • J.F. Price
                        • Math.Comput. 25 (1971) 569
                    • [22]
                      Methods for the solution of optimization problems
                      • R. Fletcher
                        • Comput.Phys.Commun. 3 (1972) 159
                    • [23]
                      A survey of numerical methods for unconstrained optimization
                      • M.J.D. Powell
                        • SIAM Rev. 12 (1970) 79
                    • [24]
                      A method for minimizing a sum of squares of non-linear functions without calculating derivatives
                      • M.J.D. Powell
                        • Comput.J. 7 (1965) 303
                    • [25]
                      On the relative efficiencies of gradient methods
                      • J. Greenstadt
                        • Math.Comput. 21 (1967) 360