Hydrodynamical chemistry simulations of the SZ effect and the impacts from primordial non-Gaussianities

Francesco Pace1*, Umberto Maio2,3,4†

1 Institute for Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, PO1 3FX, Portsmouth, England, Great Britain
2 Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, 34143 Trieste, Italy
3 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching b. München, Germany
4 Leibniz-Institut für Astrophysik (AIP), An der Sternwarte, 16, 14482 Potsdam, Germany

Received October 22, 2013; accepted ?

ABSTRACT
The impacts of Compton scattering of hot cosmic gas with the cosmic microwave background radiation (Sunyaev-Zel’dovich effect, SZ) are consistently quantified in Gaussian and non-Gaussian scenarios, by means of 3D numerical, N-body, hydrodynamic simulations, including cooling, star formation, stellar evolution and metal pollution (He, C, O, Si, Fe, S, Mg, etc.) from different stellar phases, according to proper yields for individual metal species and mass-dependent stellar lifetimes. Light cones are built through the simulation outputs and samples of one hundred maps for the resulting temperature fluctuations are derived for both Gaussian and non-Gaussian primordial perturbations. From them, we estimate the possible changes due to early non-Gaussianities on: SZ maps, probability distribution functions, angular power spectra and corresponding bispectra. We find that the different growth of structures in the different cases induces significant spectral distortions only in models with large non-Gaussian parameters, f_{NL}. In general, the overall trends are covered by the non-linear, baryonic evolution, whose feedback mechanisms tend to randomize the gas behaviour and homogenize its statistical features, quite independently from the background matter distribution. Deviations due to non-Gaussianity are almost undistinguishable for $f_{NL} \lesssim 100$, remaining always at few-per-cent level, within the error bars of the Gaussian scenario. Rather extreme models with $f_{NL} \sim 1000$ present more substantial deviations from the Gaussian case, overcoming baryon contaminations and showing discrepancies up to a factor of a few in the spectral properties.

Key words: cosmology: theory – structure formation; methods: numerical

1 INTRODUCTION

In the current paradigm of cosmological structure formation, stars, galaxies, and clusters of galaxies develop by gravitational collapse in an expanding space-time (e.g. Gunn & Gott 1972; Press & Schechter 1974; White & Rees 1978; Peebles 1980; Sheth & Tormen 1999; Peacock 1999; Hogg 1999; Barkana & Loeb 2001; Coles & Lucchin 2002; Peebles & Ratra 2003; Ciardi & Ferrara 2003; Bromm & Yoshida 2011), growing from primordial matter perturbations originated during the very early phases of the Universe, during the Inflation Era (Starobinsky 1980; Guth 1981; Linde 1990). Such perturbations are usually assumed to follow a Gaussian distribution (e.g. Komatsu et al. 2010; Komatsu et al. 2011; Hinshaw et al. 2013; Casaponsa et al. 2011; Curto et al. 2013, and references therein), because of the central limit theorem. However, experimental constraints and theoretical arguments (Peebles 1983; Desjacques & Seljak 2010; LoVerde & Smith 2011; D’Amico et al. 2011) have often questioned this assumption and supported the idea of possible deviations from pure Gaussianity. Recent analyses by the Planck mission (Planck Collaboration et al. 2013a,b) suggest small levels of non-Gaussianities, as well.

Such deviations from non-Gaussianities can be parametrized by means of a perturbative expansion of the Bardeen gauge-invariant potential (Salopek & Bond 1990; Komatsu & Spergel 2001; Verde 2010; Desjacques & Seljak 2010):

$$\Phi = \Phi_L + f_{NL} \left[\Phi_L^2 - <\Phi_L^2> \right] ,$$

with Φ_L the linear Gaussian part, and f_{NL} the dimensionless coupling constant ruling the magnitude of the deviations from Gaussianity.

The effects of non-Gaussianities are expected to affect objects arisen from the evolution of high-sigma matter density fluctuations (e.g. Grinstein & Wise 1986; Kovama et al. 1999; Zaldarriaga

* E-mail: Francesco.Pace@port.ac.uk
† E-mail: maio@oats.inaf.it

© 0 RAS
at various epochs sum up and give different contributions to the Comptonization y the CMB temperature distortions, variations in the cosmic plasma.

In fact, when integrating along the line of sight, l., to estimate thermal Sunyaev-Zel’dovich (SZ) effect (Kompaneets 1956, 1957; Birkinshaw 1999). (CMB) radiation via Compton scattering between photons and ionized gas), and (much larger than the CMB temperature, T in the case of interest of ionized gas), and $(n_e \sigma_T)^{-1}$ represents the scattering mean free path. The related spectral change in the CMB temperature depends on the frequency, ν (Sunyaev & Zeldovich 1969, 1970, 1980; Birkinshaw 1999).

In the following, we will estimate the Compton y-parameter for models making different assumptions on the f_{NL} value. We will build simulated light cones (see e.g. Pace et al. 2008, and references therein) from redshift $z = 0$ to $z \sim 7$ along some hundreds randomly chosen lines of sight. We will show how the SZ signal can probe the underlying matter distribution by performing a detailed analysis of the light cones obtained in different non-Gaussian, N-body, hydrodynamic, chemistry simulations of large-structure formation. In the simulated volumes, cooling, star formation, and feedback mechanisms are addressed on the base of the local thermodynamical properties of the collapsing gas, by consistently following its density, temperature and chemical composition, and by taking into account stellar evolution for both population III and population II-I stars. The runs have been presented and described by Maio & Iannuzzi (2011) and we refer the interested reader to that work for further details.

A consistent inclusion of stellar evolution properties of cosmic gas (as in the simulations considered here) is extremely important when evaluating the thermal SZ effect, because the latter reflects the behaviour of gas temperatures and densities. Therefore, while dark-matter-only simulations might be ideal tools for studying clustering, mass functions (e.g. Grossi & Springel 2009; Roncarelli et al. 2007; Pace et al. 2008). However, the impact of non-Gaussianities ($f_{\text{NL}} \neq 0$) on the SZ effect, by means of hydrodynamical, chemical simulations has not been investigated yet. The present work is, so far, the first of this type, as previous investigations have, thus, neglected effects from stellar evolution, chemical enrichment and consequent metal-dependent cooling and their interplay with the background cosmological scenario.

Thus the CMB effective temperature fluctuations drops exponentially, as $\sim e^{-2y}$, (Sunyaev & Zeldovich 1970), and determines colder “holes” in the temperature maps of microwave background radiation, associated to large structures containing hot gas (Sunyaev & Zeldovich 1972).

Quantitatively, the strength of induced CMB anisotropies will obviously depend on the amount of structures formed in the particular cosmological model considered, and will rely on the specific hydro-, chemo- and thermodynamical history expected in different models. In a large-scale cosmological context, spatially distributed enhancements or deficits in the SZ effect could trace the underlying structure distribution. However, reliable modelling of hydro and chemical properties at different cosmic epochs is required to properly estimate thermal gas cooling and heating in different environments having different chemical compositions. Initial empirical

2 SIMULATIONS

We consider three simulations with different non-Gaussian parameters, described in Maio & Iannuzzi (2011), with initial conditions generated according to Eq. (1) with $f_{\text{NL}}=0$, 100, 1000. Even if these non-null values of f_{NL} are somewhat larger than those provided from recent measurements using the Planck satellite (Planck Collaboration et al. 2013c), our choice will allow us to better highlight the interplay of dark-matter non-Gaussianity with gas and stellar physics. We will be able to check how relevant contaminations due to baryon evolution and feedback effects are and how much they affect the resulting SZ signal in different f_{NL} models. This will give us hints about the disentanglement of possible degeneracies between the luminous and the dark sectors, as well.

The simulations were performed by using a modified version of the parallel tree/SPH Gadget-3 code (Springel 2005), which included gravity and hydrodynamics, with radiative gas cooling (Sutherland & Dopita 1993; Maio et al. 2007), multi-phase model for star formation (Springel & Hernquist 2003), UV background radiation (Haardt & Madau 1996), wind feedback (Springel & Hernquist 2003; Aguirre et al. 2001) and metal pollution from Pop II and/or Pop II-I stellar generations, all ruled by a critical metallicity threshold of $Z_{\text{crit}}=10^{-4}Z_\odot$ (see further details in Yoshida et al. 2003; Maio et al. 2006; 2007; Forman et al. 2004, 2007, 2010; Maio et al. 2010, 2011; Petkova & Maio 2013; Maio et al. 2011; Biffi & Maio 2013). We stress that in the simulations hydrodynamical quantities are self-consistently estimated from Pop III and/or Pop II-I stellar generations, all ruled by a critical metallicity threshold of $Z_{\text{crit}}=10^{-4}Z_\odot$ (see further details in Yoshida et al. 2003; Maio et al. 2006; 2007; Forman et al. 2004, 2007, 2010; Maio et al. 2010, 2011; Petkova & Maio 2013; Maio et al. 2011; Biffi & Maio 2013). We stress that in the simulations hydrodynamical quantities are self-consistently estimated from Pop III and/or Pop II-I stellar generations, all ruled by a critical metallicity threshold of $Z_{\text{crit}}=10^{-4}Z_\odot$ (see further details in Yoshida et al. 2003; Maio et al. 2006; 2007; Forman et al. 2004, 2007, 2010; Maio et al. 2010, 2011; Petkova & Maio 2013; Maio et al. 2011; Biffi & Maio 2013).

The cosmological parameters were fixed by assuming a concordance ΛCDM model with matter-density parameter $\Omega_{\text{m},0}=0.3$, cosmological-density parameter $\Omega_{\Lambda,0}=0.7$, baryon-density parameter $\Omega_{b,0} = 0.04$, expansion rate at the present epoch of $H_0 = 70 \text{km/s/Mpc}$ (i.e., normalized at 100km/s/Mpc, $h = 0.7$), power spectrum normalization via mass variance within 8 Mpc/h radius sphere $\sigma_8 = 0.9$, and spectral index $n = 1$. The cosmological volume was sampled as a cube of $100 \text{Mpc}/h$ side with resolution down to \sim kpc scales at $z \sim 0$. A schematic summary of the properties of the runs considered here is shown in Table 1. Additional details are in Maio & Iannuzzi (2011).

Gas densities and temperatures are extracted by the simulation snapshots and are projected along the line of sight to obtain three map samples for the three $f_{\text{NL}}=0$, 100, 1000 cases, as described in the following Sect. 3.

Table 1. Initial parameters for the runs considered in this paper (from Maio & Iannuzzi 2011).

<table>
<thead>
<tr>
<th>Runs</th>
<th>Box side [Mpc/h]</th>
<th>Particle mass [M_\odot/h for gas (dark matter)]</th>
<th>Softening [kpc/h]</th>
<th>f_{NL}</th>
<th>Pop III IMF range [M_\odot]</th>
<th>Pop II-I IMF range [M_\odot]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run100.0</td>
<td>100</td>
<td>3.39×10^8 (2.20 \times 10^9)</td>
<td>7.8</td>
<td>0</td>
<td>[100, 500]</td>
<td>[0.1, 100]</td>
</tr>
<tr>
<td>Run100.100</td>
<td>100</td>
<td>3.39×10^8 (2.20 \times 10^9)</td>
<td>7.8</td>
<td>100</td>
<td>[100, 500]</td>
<td>[0.1, 100]</td>
</tr>
<tr>
<td>Run100.1000</td>
<td>100</td>
<td>3.39×10^8 (2.20 \times 10^9)</td>
<td>7.8</td>
<td>1000</td>
<td>[100, 500]</td>
<td>[0.1, 100]</td>
</tr>
</tbody>
</table>

3 LIGHT CONES THROUGH THE UNIVERSES

We build light cones by stacking the output snapshots and by following the procedure outlined in Pace et al. (2008). We make sure to cover completely the whole space from $z=0$ to $z \sim 7$, and discard possibly overlapping regions from different “adjacent” snapshots. However, a simulation is only one realization of the many possible realizations in the Universe. Thus, in order to have statistically meaningful results, it is necessary to avoid the unavoidable replication of the same structures when piling up the snapshots at different times for the same box. We reach this goal by arbitrarily reshuffling particle positions and velocities via random rotations and translations of the box axes.

As a result, for any choice of the seed of the random generator, we obtain maps showing different structure locations, but keeping, on average, the same statistical properties (Thomas & Carlberg 1989; Scaramella et al. 1993; da Silva et al. 2000; Springel et al. 2001b). Then, at each redshift, z, we compute the value for y in a given pixel of the map with coordinates (i, j), y^{ij}, by discretizing Eq. (2) on a two-dimensional grid with (physical) cell size L_{pix} (according to e.g. Thomas & Carlberg 1989; Scaramella et al. 1993; da Silva et al. 2000; Springel et al. 2001b; Roncarelli et al. 2007; Pace et al. 2008):

$$y^{ij} = \frac{k_B \sigma_T}{m_e c^2} \frac{V}{L_{\text{pix}}} \sum_k n_{e,k}^{ij} T_{e,k}^3 w_k^{ij},$$

where V is the volume discretization along the line of sight, k is the summation index running over the particles in each pixel, and $n_{e,k}^{ij}$, $T_{e,k}^3$, the corresponding electron density, temperature and projected smoothing kernel. We highlight that in the runs considered here electron fractions and temperatures are tracked on-the-fly, and can change, from particle to particle, at each time step, according to the corresponding local metal-dependent cooling and heating rates. This is important, because in this way we get a precise estimation of y, taking into account the non-trivial backreaction of star formation, feedback effects and UV background on gaseous properties.

We repeat the procedure described above by choosing one hundred different random lines of sight to get three map samples for each f_{NL} value (and therefore we get a total of three hundred maps). We will denote these samples as: S_0, S_{100}, and S_{1000}, referring to $f_{\text{NL}} = 0$, $f_{\text{NL}} = 100$, and $f_{\text{NL}} = 1000$, respectively. Each map covers a field of view of 10^5.

In the following sections we will show the main results about the SZ effect computed for the three different f_{NL} models, according to the procedure just described.

© 0 RAS, MNRAS 000:000

In this respect, post-processing estimates of dark-matter only simulations might be misleading.
4 RESULTS

In the following, we will first give (Sect. 4.1) a brief description of expected typical maps (both for the Gaussian and for the two non-Gaussian models), as obtained from the procedure outlined in Sect. 3 then we will consider the three full samples, each one made of one hundred maps and referring to the different f_{NL} values considered in this work. This will allow us to analyse more carefully the statistical properties of the SZ effect and to get more solid conclusions about probability distributions (Sect. 4.2), power spectra (Sect. 4.3) and bispectra (Sect. 4.4).

4.1 Maps

In Fig. 1 we display $y-$parameter maps for the same line of sight in the three models with $f_{\text{NL}} = 0$ (left), $f_{\text{NL}} = 100$ (center), and $f_{\text{NL}} = 1000$ (right), as indicated by the labels. We note that the general structure and shape of the maps are quite similar, due to the fact that the same randomization process has been applied to the three cases, so the same cosmic objects broadly correspond and are easily detectable in the three panels.

While large collapsed structures are well detectable, filaments are usually not visible and covered by background signal, due to their typically lower densities and temperatures (see also discussions in e.g. da Silva et al. 2000; Springel et al. 2001; White et al. 2002; Scaramella et al. 1993; da Silva et al. 2000, for the Gaussian case). We also mention that $y-$values do not follow a (log-)normal distribution, mostly because of the more extended high-f_{NL} tail (as previously noted by e.g. Thomas & Carlberg 1989).

Because of the various non-Gaussian and Gaussian initial perturbations, the growth and evolution of different structures is slightly different. Typical values in Fig 1 are in the range between 2×10^{-7} and a few times 10^{-5}, with mean values of the order of 10^{-6}.

More specifically, the Gaussian $f_{\text{NL}} = 0$ case presents a maximum y of 4.70×10^{-5}, while the mean is 1.67×10^{-6}. In the non-Gaussian $f_{\text{NL}} = 100$ scenario, one finds a maximum of 5.13×10^{-5}, and the mean is 1.71×10^{-6}. In the non-Gaussian $f_{\text{NL}} = 1000$ model, there is a maximum of 6.70×10^{-5}, and the mean is 2.05×10^{-6}. This means that, while lower values for y might not be significantly affected, upper values and mean values feel more the underlying distribution, from a few per cents up to tens-per-cent levels. The reason for that is in the fact that lower values are found in colder environments, where the electron fraction is much smaller that unity and the effects of structure growth in boosting temperature and n_e are less important.

More precisely, differences of ~ 10 per cent are found between $f_{\text{NL}} = 1000$ and $f_{\text{NL}} = 0$, with y values in the former case being larger because of the more advanced heating process determined by feedback effects. When considering the peak values, differences with the Gaussian model are evident in all the cases and reach about ~ 8 per cent for $f_{\text{NL}} = 100$, and $\sim 30\%$ for $f_{\text{NL}} = 1000$. Mean values, instead, are larger than in the Gaussian case by ~ 1.7 per cent for $f_{\text{NL}} = 100$, and by ~ 18 per cent for $f_{\text{NL}} = 1000$.

We also mention that $y-$values do not follow a (log-)normal distribution, mostly because of the more extended high-f_{NL} tail (as previously noted by e.g. Thomas & Carlberg 1989). It is interesting that this conclusion still holds for the non-Gaussian cases (see next).

4.2 Probability distributions from the whole samples

In the following we will consider the whole samples of simulated maps – S_{NL}, S_{100}, and S_{1000} – to draw more solid statistical constraints on the expected distribution of the $y-$parameter in the different scenarios.

In Fig. 2 we show our results for the differential probability distribution function (PDF) for the three models as a result of the averaging over 100 realisations. For sake of clarity, error bars, shown as a shaded region of equivalent width, are presented only for the Gaussian model (black curve) and represent $1 – \sigma$ deviations.

Models with $f_{\text{NL}} = 100$ and $f_{\text{NL}} = 1000$ are shown with red dashed and blue dotted curve, respectively. In the lower panels we show the corresponding ratio between the two non-Gaussian and the Gaussian models. The presence of primordial non-Gaussianity is mostly important for very high and unrealistic values of f_{NL}. The non-Gaussian models present peaks in the average PDF at higher values than the Gaussian one. This is particularly evident for $f_{\text{NL}} = 1000$ (blue-dotted curve), while the average PDF for $f_{\text{NL}} = 100$ is only slightly shifted of a few per cent. We notice that, since curves are normalised to unity, the case with $f_{\text{NL}} = 1000$ shows a slightly lower peak: this is understood with the fact that this model presents higher values for the $y-$parameter – due to the predicted more massive and hotter clusters – therefore, in order to span the same area, it must have a lower peak (see previous Sect. 4.1).

This result is consistent with the average values for samples. Average values are 1.34×10^{-6} and 1.36×10^{-6} for the $f_{\text{NL}} = 0$ and $f_{\text{NL}} = 100$ model respectively, while a higher sample average of 1.6×10^{-6} for $f_{\text{NL}} = 1000$ is reached. Thus, sample averages do not differ too much and can easily be accommodated within the error bars (see next). In addition to this, we have to take into account that measurements will suffer of uncertainties on the cosmological
with respect to the Gaussian ones, and the differences in the PDFs are comparable to the ones found here. However, due to the impacts from baryonic processes and feedback effects that tend to homogenize gas behaviour mostly for \(f_{\text{NL}} \ll 100 \), the SZ ratios in Fig. 2 (sensitive to gas) are slightly lower than effective-convergence ratios (sensitive to the total mass and thus less affected by baryons). We also note that extreme models with \(f_{\text{NL}} = 1000 \) present very strong deviations in both cases, as a result of a more clearly dominant contribution of the underlying dark sector over the luminous one.

In the case of the Gaussian sample, we note that our average value is slightly different than the values obtained in early works (e.g. da Silva et al. 2001; Springel et al. 2001b). This is not surprising since our simulations include much more baryonic physics than previous ones. Comparing our findings against the Gaussian model of Roncarelli et al. (2010) we note that our average values for the \(y \) parameter are higher, despite the similar cosmology adopted. This is due essentially to two reasons: on one side here we integrate our light-cones up to \(z \approx 7 \), while Roncarelli et al. (2010) stopped at \(z \approx 4 \), on the other side differences are also partly due to the fact that here we consider several hydrodynamical processes as cooling, star formation and especially feedback (that increases temperatures quite rapidly) that in DM-only simulations are not included. This highlights that high-redshift objects can still contribute to the Compton \(y \) parameter when projecting along the line of sight. Therefore, our results are in better agreement with the analyses by Roncarelli et al. (2007), performed by using the hydrodynamical simulations by Borgani et al. (2004), which were integrated up to \(z \approx 6 \) giving \(< y > = 1.19 \times 10^{-6} \). Consequently, also the location of the PDF peak in the Gaussian scenario results in good agreement with Roncarelli et al. (2007).

Direct comparisons with other analyses of the \(y \)-parameter in different non-Gaussian cases are not possible as there are no related works available in literature.

4.3 Power spectrum from the whole samples

Given that the SZ effect contributes to the CMB power spectrum, its theoretical knowledge is of great importance. The Compton \(y \)-parameter power spectrum was studied in many papers (Komatsu & Kitayama 1999; Holder & Carlstrom 1999; Molnar & Birkinshaw 2004; Cooray et al. 2004; Refregier et al. 2000; Seljak 2000; Springel et al. 2001b; da Silva et al. 2001; Zhang & Pei 2001; Zhang et al. 2002; Refregier & Teyssier 2002; Seljak 2003), but never with a detailed hydro, chemical treatment for gas physics and stellar evolution in non-Gaussian scenarios.

In this section we explore the effects of primordial non-Gaussianity on the expected SZ power spectrum, and we plot error bars as for the PDF case, we use a shaded region of width identical to the error bars in (upper panel). This means that the two cases are basically indistinguishable. At very low and high values of the \(y \)-parameter, differences become substantial, but much less significant, due to poorer statistics. Larger deviations, up to a factor of a few, arise for a value of \(f_{\text{NL}} \) ten times higher, making therefore easier to distinguish this model from the reference one, in particular for high values of the Compton \(y \)-parameter.

We stress that gas thermal state in the different scenarios is significantly affected by the aforementioned baryonic processes that take place during cosmic structure growth (star formation, stellar evolution, metal spreading, feedback effects). These inject entropy in the surrounding medium and introduce remarkable chaotic motions in the gas, which, in turn, wash out, partly (as in the \(f_{\text{NL}} = 1000 \) case) or completely (as in the \(f_{\text{NL}} = 100 \) case), non-Gaussian signatures and are mainly responsible for a similar gas evolution within corresponding cosmic structures.

Our results are in good agreement with existing investigations of weak-lensing maps and effective-convergence studies probing the total matter distribution of collapsed objects (Pace et al. 2011). Also for the effective convergence, underdense (overdense) regions show a ratio smaller (higher) than unity in non-Gaussian models parameters, as well, that will be degenerate with baryon physics. The lower panel of Fig. 2 clearly shows that, over a scale of two orders of magnitude in the Compton parameter (\(-6.5 < \log_{10}(y) < -4.5\)), the model with \(f_{\text{NL}} = 100 \) differs of at most of 5% from the Gaussian one and it is well within its error bars (upper panel). This means that the two cases are basically indistinguishable. At very low and high values of the \(y \)-parameter, differences become substantial, but much less significant, due to poorer statistics. Larger deviations, up to a factor of a few, arise for a value of \(f_{\text{NL}} \) ten times higher, making therefore easier to distinguish this model from the reference one, in particular for high values of the Compton \(y \)-parameter.

We stress that gas thermal state in the different scenarios is significantly affected by the aforementioned baryonic processes that take place during cosmic structure growth (star formation, stellar evolution, metal spreading, feedback effects). These inject entropy in the surrounding medium and introduce remarkable chaotic motions in the gas, which, in turn, wash out, partly (as in the \(f_{\text{NL}} = 1000 \) case) or completely (as in the \(f_{\text{NL}} = 100 \) case), non-Gaussian signatures and are mainly responsible for a similar gas evolution within corresponding cosmic structures.

Our results are in good agreement with existing investigations of weak-lensing maps and effective-convergence studies probing the total matter distribution of collapsed objects (Pace et al. 2011). Also for the effective convergence, underdense (overdense) regions show a ratio smaller (higher) than unity in non-Gaussian models parameters, as well, that will be degenerate with baryon physics. The lower panel of Fig. 2 clearly shows that, over a scale of two orders of magnitude in the Compton parameter (\(-6.5 < \log_{10}(y) < -4.5\)), the model with \(f_{\text{NL}} = 100 \) differs of at most of 5% from the Gaussian one and it is well within its error bars (upper panel). This means that the two cases are basically indistinguishable. At very low and high values of the \(y \)-parameter, differences become substantial, but much less significant, due to poorer statistics. Larger deviations, up to a factor of a few, arise for a value of \(f_{\text{NL}} \) ten times higher, making therefore easier to distinguish this model from the reference one, in particular for high values of the Compton \(y \)-parameter.

We stress that gas thermal state in the different scenarios is significantly affected by the aforementioned baryonic processes that take place during cosmic structure growth (star formation, stellar evolution, metal spreading, feedback effects). These inject entropy in the surrounding medium and introduce remarkable chaotic motions in the gas, which, in turn, wash out, partly (as in the \(f_{\text{NL}} = 1000 \) case) or completely (as in the \(f_{\text{NL}} = 100 \) case), non-Gaussian signatures and are mainly responsible for a similar gas evolution within corresponding cosmic structures.

Our results are in good agreement with existing investigations of weak-lensing maps and effective-convergence studies probing the total matter distribution of collapsed objects (Pace et al. 2011). Also for the effective convergence, underdense (overdense) regions show a ratio smaller (higher) than unity in non-Gaussian models with respect to the Gaussian ones, and the differences in the PDFs are comparable to the ones found here. However, due to the impacts from baryonic processes and feedback effects that tend to homogenize gas behaviour mostly for \(f_{\text{NL}} \lesssim 100 \), the SZ ratios in Fig. 2 (sensitive to gas) are slightly lower than effective-convergence ratios (sensitive to the total mass and thus less affected by baryons). We also note that extreme models with \(f_{\text{NL}} = 1000 \) present very strong deviations in both cases, as a result of a more clearly dominant contribution of the underlying dark sector over the luminous one.

In the case of the Gaussian sample, we note that our average value is slightly different than the values obtained in early works (e.g. da Silva et al. 2001; Springel et al. 2001b). This is not surprising since our simulations include much more baryonic physics than previous ones. Comparing our findings against the Gaussian model of Roncarelli et al. (2010) we note that our average values for the \(y \) parameter are higher, despite the similar cosmology adopted. This is due essentially to two reasons: on one side here we integrate our light-cones up to \(z \approx 7 \), while Roncarelli et al. (2010) stopped at \(z \approx 4 \), on the other side differences are also partly due to the fact that here we consider several hydrodynamical processes as cooling, star formation and especially feedback (that increases temperatures quite rapidly) that in DM-only simulations are not included. This highlights that high-redshift objects can still contribute to the Compton \(y \) parameter when projecting along the line of sight. Therefore, our results are in better agreement with the analyses by Roncarelli et al. (2007), performed by using the hydrodynamical simulations by Borgani et al. (2004), which were integrated up to \(z \approx 6 \) giving \(< y > = 1.19 \times 10^{-6} \). Consequently, also the location of the PDF peak in the Gaussian scenario results in good agreement with Roncarelli et al. (2007).

Direct comparisons with other analyses of the \(y \)-parameter in different non-Gaussian cases are not possible as there are no related works available in literature.
objects are more affected by non-Gaussianities than more common smaller ones. For the simulation with $f_{NL} = 100$ the ratio with the Gaussian calculations is approximately constant, since in the $f_{NL} = 100$ and $f_{NL} = 0$ scenarios statistical and physical effects are very similar and the resulting differences are not very pronounced. This is not the case for the non-Gaussian cosmology with $f_{NL} = 1000$, where we observe an evident U-shaped curve (this will happen also for the bispectrum – see next Sect. 4.3). The increase of power at small scales (large ℓs) highlights the bias towards higher values of the initial perturbations in such model and the consequent higher clustering during the whole structure formation evolution. Instead the trend for multipoles of $\ell \approx$ few thousands is the result of the non-Gaussian bias. As shown in Grossi & Springel (2009), the halo bias in non-Gaussian cosmologies has a unique scale dependence: differences appear at large scales, while on smaller scales the non-Gaussian bias approaches the value of the Gaussian bias. Therefore, using gas particles to trace the underlying matter distribution, we expect to be affected by bias. This explains the declining part in the ratio between the model with $f_{NL} = 1000$ and the Gaussian case. The later increase is due to a combination of shot noise and bias due to higher clustering.

When we compare our $f_{NL} = 0$ results with the (Gaussian) power spectrum by Springel et al. (2001) we note that the function $\ell (\ell + 1) C_{\ell}$ shows a peak at $\ell \approx 8000$, in agreement with what found by those authors. Our findings are instead not easily comparable with the spectrum presented in Roncarelli et al. (2010), since their highest frequency is $\ell = 10000$ and no peak is clearly visible in those estimates. We remind that the amplitude of the $f_{NL} = 0$ spectrum in Fig. 3 is lower than the one predicted by Roncarelli et al. (2010) and it is larger than the one expected by Roncarelli et al. (2010). As mentioned before, this is simply explained by taking into account the different gas physics included in our simulations with respect to the adiabatic gas of Springel et al. (2001) and the limited redshift sample of the dark-matter-only estimates by Roncarelli et al. (2010).

AGNs (Rovchowdhury et al. 2004, 2005, Scannapieco et al. 2008, Battaglia et al. 2010, 2012, Prokhorov et al. 2012) might be another source of contamination when distinguishing non-Gaussian models via SZ effect since mechanical feeding from AGNs can inject significant entropy into the Intracluster medium (ICM). Authors found that the peak of the power spectrum is shifted towards higher (lower) ℓ for lower (higher) heating times and that modifications in the power spectrum are small for $\ell \leq 2000$, while they increase for higher multipoles, where a substantial reduction of the power at small angular scales was noticed. Moreover, the high-multipoles range is very sensitive to the particular feedback recipe used. Whatever the particular prescription (e.g. Scannapieco et al. 2008, Battaglia et al. 2010, 2012, Prokhorov et al. 2012) adopted in the runs, this will be the same gas-heating phenomenon acting in all the various cosmological models, independently from f_{NL}. Hence, the consequent boost of the chaotic state of the IGM will increase the level of degeneracy among possible f_{NL} values and further erase gaseous signatures of primordial non-Gaussianities – as any other feedback effect would do (Maio & Iannuzzi 2011, Maiolino 2011, Maio & Khochfar 2013). The resulting y distributions and spectra could suffer of systematic shifts, however, their ratio is expected to converge to the Gaussian behaviour more rapidly.

It is worth saying that our conclusions on the ratio of the power spectra might be affected by errors on the precise cosmological parameters, due to the scaling of the Compton parameter and of the power spectrum with Ω_m and σ_8, according to Komatsu & Seljak (2002, 2008), $\Delta y \propto (\Omega_m + \sigma_8)$. For most cosmological models the ratio is expected to converge to the Gaussian behaviour more rapidly.

Figure 3. Upper panel: Power spectrum (PS) for the y parameter for the three different models studied. Lower panel: ratio of the PS between the non-Gaussian and the Gaussian model. Black line with shaded region of width equal to the error bars refer to the $f_{NL} = 0$ model, red dashed line to the $f_{NL} = 100$ model and the blue dotted line to the $f_{NL} = 1000$ model.

e.g. Komatsu & Kitavama 1998, Seljak 2002, Komatsu & Seljak 2002. Another important aspect is that it is rather insensitive to selection effects and it receives important contribution from outskirts regions of galaxy clusters, minimising the poor knowledge of their cores.

Our results are summarised in Fig. 3 where we show average power spectra (more precisely $\ell (\ell + 1) P_y(\ell)$) for all the models (upper panel) and corresponding ratios with respect to the reference Gaussian scenario (lower panel). As expected, higher values of primordial non-Gaussianity imply stronger deviations from the power spectrum evaluated for the Gaussian model, as evident from the trends in the lower panel.

For the model with the highest amount of primordial non-Gaussianity we observe an increase of power from $\ell \approx 3000$, starting from about 50% more power than the Gaussian case till a factor of two more power at the smallest scales ($\ell \approx 2 \times 10^5$). This is consistent with the results on the effective convergence obtained by Pace et al. (2011) in their Fig. 3, as well (see discussion in the previous section). The model with $f_{NL} = 100$ differs from the Gaussian case of only 5–6 per cent at most and at every frequency available it is well within the error bars (see upper panel in Fig. 3). We stress that the error bars of Fig. 3 are bigger for lower multipoles than for higher ones, because the number of possible realisations is much smaller in the former case than in the latter one. A further comment is necessary to discuss the shape of the ratio of the power spectra. In general, larger f_{NL} values present higher power, but there are some dependencies on the particular scales considered, as rarer bigger
\[\Omega_m \sigma_8^2 = \text{and } C_\ell \propto \Omega_m \sigma_8^2. \] This means that small uncertainties in the cosmological parameters might strongly impact the expected results and get degenerated with realistic values of primordial non-Gaussianity.

4.4 Bispectrum from the whole samples

While Gaussian fields are entirely described by the PDF and the power spectrum (higher order moments are null), this is not true any more for non-Gaussian models, that, to be entirely characterised, would require the knowledge of all higher moments, corresponding to the so-called poly-spectra in the Fourier space.

In the following we will focus on the bispectrum, because it is related to the first non-null moment and possibly carries most of the physical information of non-Gaussian scenarios. Furthermore, it is a very useful quantity to constrain cosmological parameters, especially in combination with the power spectrum, and can help disentangle the effects of gravity from the effects of biasing (see e.g. Verde et al. 1999, 2000; Takada & Jain 2004; Sefusatti et al. 2006, 2010; Pace et al. 2011).

Compared to the power spectrum, the bispectrum depends on three frequencies such that in the Fourier space they form a triangular configuration. The evaluation of the bispectrum for each single configuration is computationally expensive, therefore we limit ourselves to the study of the equilateral configuration, in which all the three frequencies are assumed to be the same.

The bispectrum of the Compton parameter \(y \) is defined as

\[\langle \hat{y}(\ell_1)\hat{y}(\ell_2)\hat{y}(\ell_3) \rangle = (2\pi)^3 \delta_D(\ell_1+\ell_2+\ell_3) B(\ell_1, \ell_2, \ell_3). \]

To form a triangle in the Fourier space, we require that \(\ell_1 + \ell_2 + \ell_3 = 0 \). In the previous equation, \(\theta_1 \) represents the angle between \(\ell_1 \) and \(\ell_2 \), which, together with the triangle condition, fixes \(\ell_3 \).

We show our results in Fig. 4. In the upper panel we present the comparison of the bispectra for the three different models studied, while in the lower panel we show the ratio between the bispectrum of the non-Gaussian models and that of the Gaussian model. The trends are similar to what found for the power spectrum, with relative differences increasing with the primordial non-Gaussianity parameter. Ratios between non-Gaussian and Gaussian bispectra are higher than the ones relative to the power spectrum since higher order spectra are more sensitive to deviations from Gaussianity than the power spectrum.

For the most extreme \(f_{NL} = 1000 \) case the ratios at various scales range within a factor of 1.7-4, instead for the model with \(f_{NL} = 100 \) there is a roughly constant enhancement of \(\approx 10 \) - 12 per cent, that, nevertheless, is still within the error bars of the Gaussian \(f_{NL} = 0 \) case.

While for the case of the power spectrum even the model with the highest amount of non-Gaussianity considered was not so different from the Gaussian reference, for the bispectrum this is not the case any more. In fact, we see that (upper panel of Fig. 4) the bispectrum for the \(f_{NL} = 1000 \) initial conditions is clearly off the error-bars at all the scales probed in our simulations. This because the bispectrum is very sensitive to non-linearities and to clustering properties, which are enhanced in the \(f_{NL} = 1000 \) model. Moreover, physically, the bispectrum is expected to scale as the square of the power spectrum and this explains values and shapes of the lower panel in Fig. 4 compared to Fig. 3 (see also discussion in Sect. 4.3).

Theoretical derivation of the bispectrum for the thermal SZ (tSZ) effect has been recently carried out by Bhattacharya et al. (2012). The authors use the halo model approach, as done by Komatsu & Seljak (2002) for the SZ power spectrum. According to their derivation, the bispectrum is extremely sensitive to the matter power spectrum normalization (\(B_{tSZ} \propto \sigma_8^3 \)) and to the baryon density (\(B_{tSZ} \propto \Omega_b^2 \)). This has positive and negative aspects. The positive aspect is that a combined use of the tSZ spectra (power spectrum and bispectrum) will help to reduce the uncertainties on cosmological parameters. On the other side, such a steep dependence on the normalization is such that a small error on \(\sigma_8 \) will have catastrophic consequences on the bispectrum normalization. In other words, as shown also in Pace et al. (2011), the uncertainty on the cosmological parameters has by far bigger effects than primordial non-Gaussianity, usually overcoming it.

Now suppose instead that all the cosmological parameters are perfectly known. The major uncertainty comes from gas physics and in particular from AGN feedback. Bhattacharya et al. (2012) estimated a ~ 33% uncertainty on the overall amplitude of the tSZ bispectrum, see their Fig. 5. As it looks clear from the lower panel in our Fig. 4 errors of the order of ~ 33% in the amplitude will generically be within the error bars inferred from the different realizations up to \(\ell \sim 10^2 \) and will become progressively more important with the increase of the multipole. We also notice that therefore the uncertainty due the gas physics will be more important than the effect of primordial non-Gaussianity, at least for \(f_{NL} = 100 \). This shows clearly how important is the correct inclusion of gas physics. To date, the only known, at least to us, observational result on the tSZ bispectrum comes from the Planck analysis (Planck Collaboration et al. 2013d). In their Fig. 11, the authors...
show the bispectrum for $100 \lesssim \ell \lesssim 700$ for four different configurations, equilateral, orthogonal and flat isosceles and squeezed. A direct comparison is impossible due to the different multipoles probed here, as our bispectrum is evaluated for $\ell > 1000$. Nevertheless, despite this and the very large uncertainties, we can estimate that the amplitude of the bispectrum is comparable for both curves, making therefore our results stronger.

5 DISCUSSION AND CONCLUSIONS

In this work we have addressed the SZ effect and the possible implications from primordial non-Gaussianities, by using suited N-body, hydrodynamical, chemistry simulations (Maio & Iannuzzi 2011). The runs include dark-matter dynamics and gas hydrodynamics, metallicity-dependent resonant and fine-structure cooling, stellar formation, feedback, stellar evolution and metal spreading according to the proper stellar yields and lifetimes. As primordial non-Gaussianities are likely to impact the formation and evolution of dark-matter high-sigma objects and, hence, the whole baryonic star formation process of high-z gas, induced deviations in temperatures and densities would add up when integrating along the line of sight and possibly show up in the behaviour of the SZ signal at $z \sim 0$.

To check these issues, we build up different samples of one hundred simulated light cones, extracted from runs of structure formation and evolution in Gaussian $f_{\text{NL}} = 0$ initial conditions and non-Gaussian, $f_{\text{NL}} = 100$ and $f_{\text{NL}} = 1000$, initial conditions. We obtain y-parameter maps and study probability distribution functions, power spectra and bispectra in the different cosmological scenarios.

In general, for mild variations from Gaussianities – i.e. $f_{\text{NL}} \lesssim 100$ – the SZ signal varies by few per cent, while for larger variations – $f_{\text{NL}} \sim 1000$ – resulting discrepancies are much more visible and can reach a factor of a few.

Minimum y values are found to be not significantly affected by primordial non-Gaussianities, while mean and upper values retain some influence by the underlying matter distribution (see discussion in Sect. 4.1 and 5.2). These results are obtained by a more general investigation of the PDF functions of the Compton parameter, y (Fig. 2). The y distribution for the case of $f_{\text{NL}} = 100$ is within the error bars of the Gaussian model, instead for larger values of $f_{\text{NL}} \sim 1000$ differences are more substantial.

We also stressed that the contribution of sources at $z > 4$ is important to correctly estimate the SZ signal (see discussion in Sect. 4.2).

The SZ power spectrum (Fig. 3) in a model with $f_{\text{NL}} = 100$ differs only from few percent from a Gaussian scenario and differences are within $1 - \sigma$ error bars, making the two models not easily distinguishable. Similar conclusions apply, in general, to cases with $0 < f_{\text{NL}} < 100$. In a model with ten times more primordial non-Gaussianity the underlying matter distribution and growth has a more significant impact on the SZ signal at all scales probed, achieving ~ 50 per cent or more enhancement with respect to the model with $f_{\text{NL}} = 0$. Due to the detailed gas and chemical treatments, we find that, although the peak in the $f_{\text{NL}} = 0$ angular power spectrum is consistent with early analyses (e.g. Springel et al. 2001b), the amplitude is lower, but in agreement with more recent estimates in Gaussian scenarios (e.g. Roncarelli et al. 2007). The bispectrum shows a stronger signal with deviations with respect to the reference Gaussian case reaching $\sim 10 - 12$ per cent for $f_{\text{NL}} = 100$ and even a factor of a few for the $f_{\text{NL}} = 1000$ case (Fig. 4). At the same time, also error bars are bigger, and models with low f_{NL} values remain compatible with the $f_{\text{NL}} = 0$ case. These results are roughly consistent with the behaviour of the effective-convergence power spectra and bispectra in non-Gaussian models, as well (see Pace et al. 2011, for a deeper discussion), although weak-lensing statistics is quite insensitive to baryon physics and show more distinct behaviours for the different f_{NL} scenarios. As shown by Bhattacharya et al. (2012), the tSZ bispectrum is very sensitive to the matter power spectrum and its amplitude is greatly affected by the AGN feedback. This means that effects of primordial non-Gaussianity will be overcome by the uncertainties in the knowledge of the cosmological parameter and in the gas physics, making therefore impossible to infer something for low values of primordial non-Gaussianity. Thanks to the Planck satellite (Planck Collaboration et al. 2013d), it is now possible to evaluate observationally the SZ bispectrum, but due to the small size of our simulated box, we can not make a direct comparison since the multipoles probed in our work do not cover the observed ones. Despite this we notice that amplitudes of the bispectra around $\ell \sim 1000$ are very similar.

An aspect to be taken into account is the degeneracy with cosmological parameters. Indeed, the SZ power spectrum depends both on the matter density, Ω_m, and, much more strongly, on the matter power spectrum normalisation, σ_8, according to $C_{\ell} \propto \Omega_m^2 \sigma_8^2$ (e.g. Komatsu & Seljak 2002, Diego & Majumdar 2004). Thus, small uncertainties on σ_8 will affect the determination of $P(y)$ and error estimation of cosmological parameters could dominate the effects of intrinsic non-Gaussianity (Pace et al. 2011). In this respect, also baryonic physics might be a severe source of contaminations, as e.g. primordial streaming motions could delay early star formation events and consequently alter the whole thermodynamic of collapsed objects at early times, introducing more degeneracies with f_{NL} (Mard 2011). Furthermore, stellar evolution and the final fates of stars are responsible for injecting huge amounts of entropy in the gas over cosmological times, directly impacting the resulting SZ signal. As a consequence, our lack of knowledge about detailed stellar parameters, yields, initial mass function for different populations, feedback effects from different kind of stars, etc. might have some effects. However, given the randomizing role of all these mechanisms, their influence should go in the direction outlined in this work, mostly for $f_{\text{NL}} \lesssim 100$ models.

In conclusion, what emerges clearly from our analyses is that implications from primordial non-Gaussianities on the SZ effect are strongly dependent on f_{NL} with larger impacts for larger f_{NL} values. Scenarios in which $f_{\text{NL}} \lesssim 100$ are almost undistinguishable from the Gaussian counterpart. Indeed, in these cases, the trends for the y parameter PDFs, spectra and bispectra lie within the error bars of the Gaussian case and the discrepancies are only at a few per cent level. More extreme models with larger f_{NL} values (~ 1000) present more substantial deviations from the Gaussian case with discrepancies up to a factor of a few.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee for the valuable comments that improved our manuscript. F. P. is supported by STFC grant ST/H002774/1. U. M.’s research leading to these results has received funding from a Marie Curie fellowship of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 267251. For the bibliographic research we made use of the NASA Astrophysics Data System.
Numerical computations were done on the IBM Power 6 (VIP) system at the Max Planck Computing Center Garching (RZG) and on the Intel SCIAMA High Performance Compute (HPC) cluster which is supported by the ICG, SEPNet and the University of Portsmouth.

References

Biffi V., Maio U., 2013, ArXiv e-prints, 1309.2283
Compton A. H., 1923, Physical Review, 21, 483
Desjacques V., Seljak U., 2010, Classical and Quantum Gravity, 27, 124011
Hogg D. W., 1999, ArXiv Astrophysics e-prints
Komatsu E., 2010, Classical and Quantum Gravity, 27, 124010
Kompaneets A. S., 1956, Zh.E.F.T., 31, 867
Kompaneets A. S., 1957, Zh.E.F.T., 31, 876
LoVerde M., Smith K. M., 2011, J. of Cosmology and Astroparticle Physics, 8, 3
Maio U., 2011, Classical and Quantum Gravity, 28, 225015
Peacock J. A., 1999, Cosmological Physics
Peebles P. J. E., 1993, Principles of physical cosmology
Peebles J. E., 1993, Principles of physical cosmology
Sunyaev R. A., Zeldovich Y. B., 1972, Comments on Astrophysics and Space Physics, 4, 173
Verde L., 2010, Advances in Astronomy, 2010
Wagner C., Verde L., Boubekeur L., 2010, J. of Cosmology and Astroparticle Physics, 10, 22

© 0 RAS, MNRAS 000, 1–10