Proof of Positivity of Mass for Maximally Sliced, Asymptotically Flat Spacetimes

Vasudev Shyam

Perimeter Institute For Theoretical Physics, Waterloo ON, N2L 3Y5

September 26, 2014

Abstract

There exists in General Relativity an unambiguous notion of Mass associated to asymptotically flat spacetimes known as the ADM (Arnowitt–Deser–Misner) mass. The standard expression for the same is a surface integral over spatial infinity of a linear combination of spatial derivatives of the three metric adapted to a constant time spatial hypersurface evaluated at infinity. In this form however the positivity of this mass formula is not apparent, so in the following an attempt shall be made to bring this functional into a form where it’s positivity is evident.

1 Introduction

1.1 The ADM Mass

There exist a class of solutions to the Einstein field equations, i.e. equivalence classes of metrics under spacetime diffeomorphisms which possess the property of non trivial asymptotics. In the case of Asymptotically Flat spacetimes, i.e. solutions to the field equations where the metrics at the asymptotically flat end resemble that of flat Minkowski space, the aforementioned feature of non trivial asymptotics implies that certain terms in the variation of the action which one need partially integrate in order to obtain the equations of motion shall not vanish when evaluated at spatial infinity. For a careful definition of Spatial Infinity and the fall off conditions the phase space variables need satisfy, see [5]. This means that the variational principle shall not be well defined unless these terms are made to vanish and this is accomplished by adding counterterms such that their variation which is supported on the asymptotic boundary, spatial infinity, is exactly the negative of the term which obstructs the variational principle from being well defined, thereby cancelling it. These additional terms which are functional of the metric that have support at spatial infinity are known in the case of the asymptotically flat spacetimes are known as the ADM (Arnowitt–Deser–Misner) quantities, for the original derivation of which, see [1]. When a Legendre decomposition is performed, one finds
that these terms are what consist the true Hamiltonian of the theory as the other bulk terms in the total gravitational Hamiltonian are but constraints, given as follows

$$H_{tot} = H(N) + H_i(\xi^i).$$

(1)

Here, H, H_i are known as the Hamiltonian and diffeomorphism constraints respectively, and, N, ξ^i are the lagrange multipliers corresponding to the aforementioned constraints, known as the lapse and shift vector respectively. Written down explicitly in terms of the three metric g_{ab} adapted to a constant time, spatial hypersurface (denoted Σ) and the momentum density canonically conjugate to this metric π^{ab}, the constraints read

$$H(N) = \int_\Sigma d^3x \sqrt{g} N \left\{ \frac{1}{\sqrt{g}} \left(\pi_{ij} \pi^{ij} - \frac{1}{2} \text{tr} \pi^2 \right) - R \right\},$$

(2)

$$H_i(\xi^i) = -2 \int_\Sigma d^3x (g^{ij} \mathcal{L}_{\xi^i} \pi_{ij})$$

(3)

R here denotes the scalar curvature of Σ, and \mathcal{L}_{ξ^i} denotes the Lie derivative w.r.t. the shift vector. With reference to the previous discussion, we find that in order for the action

$$S_{ADM} = \int_\Sigma d^3x d^t \sqrt{g} \left[\pi^{ij} \dot{g}_{ij} - H_{tot} \right],$$

where H_{tot} denotes the total Hamiltonian density. We know that in order to obtain the equations of motion from $\delta S_{ADM} = 0$ we need to ensure that counterterms are added to cancel the boundary variation. For the action written in the canonical form above, these counterterms are basically seen as additions to the total Hamiltonian and as a matter of fact they will be what defines the true Hamiltonian of the theory as these terms don’t vanish when the constraints do. The term added to the Hamiltonian constraint, i.e. the ADM mass is given as follows:

$$M_{ADM} = \frac{1}{16\pi} \oint_\infty d^2y \sqrt{h} \left(\frac{\partial g_{ij}}{\partial x^j} - \frac{\partial g_{jj}}{\partial x^i} \right) n^i.$$

In this formula, the metric $h_{ij} = g_{ij} + n_in_j$ is the metric adapted to spatial infinity, and n^i is the normal vector to the same. As we can see, the positivity of this entity is not at all apparent, but it has been proven to be positive by Schoen and Yau in [7] and Witten in [6]. This shall be the main object of study henceforth.

1.2 The Conformal Decomposition

In order to proceed, a choice of foliation shall be made, namely the Maximal Slicing condition, which implies that

$$g_{ij} \pi^{ij} = \text{tr} \pi = 0.$$

(4)

Upon imposing this condition, a conformal decomposition of the phase space variables can be carried out as follows:

$$g_{ab} = \varphi^4 \gamma_{ab},$$

(5)
\[n^{ab} = \varphi^{-4} \tilde{n}^{ab}, \quad (6) \]

\[\varphi = \ln \left(\frac{g}{f} \right)^{1/12}. \quad (7) \]

Here, \(f = \det f_{ab} \) is a reference density used to make the determinant of the metric to the 1/12th power a scalar. All the metric \(f_{ab} \) need satisfy is \(\partial_t f_{ab} = 0 \). In order to see how the condition (5) implies that the foliation is fixed, the propagation of this condition need be demanded, i.e.

\[\{ \text{tr} \pi, H_{1d} \} = 0, \]

this yields the following second order differential equation which determines the lapse \(N \):

\[\left\{ \nabla_a e^{2\varphi} \nabla^a - \frac{e^{-6\varphi}}{\sqrt{\gamma}} G_{ijkl} \tilde{\pi}^{ij} \tilde{\pi}^{kl} \right\} N = 0. \]

The Hamiltonian constraint upon conformal decomposition shall become a second order partial differential equation which is solved for \(\varphi \) and given condition (5), this equation is known as the Lichnerowicz equation, and is given as follows:

\[\nabla^2 \varphi = \frac{\tilde{R}}{8} \varphi - \frac{1}{\sqrt{\gamma}} \tilde{\pi}_{ij} \tilde{\pi}^{ij} \varphi^5, \quad (8) \]

where \(\tilde{R} \) is the scalar curvature of the conformal metric \(\gamma_{ij} \). The ADM Mass formula in terms of the conformally decomposed variables is given as follows:

\[M_{\text{ADM}} = -\frac{1}{2\pi} \oint_\infty \sqrt{h} s^i (\varphi_i - \partial^j \gamma_{ij}). \quad (9) \]

To see detailed calculations that go behind deriving these equations, see chapter 7 of [3].

2 The Quasi Isotropic Gauge and the ADM Mass Formula

In this section, a gauge fixing of the diffeomorphism invariance at spatial infinity shall be applied and this will allow the ADM mass formula to be written as a bulk integral over the phase space variables and the curvature. In order to prove the positivity of this, a conformal transformation shall be made such that the scalar curvature is set to zero everywhere on the spatial three manifold, allowing the mass to be written as the integral over a sum of squares of real numbers that is ensured to be positive.

2.1 The Quasi Isotropic/Asymptotic Dirac Gauge

In order to simplify (9), one can choose to apply a gauge fixing known as the Quasi Isotropic or Asymptotic Dirac gauge, which demands that

\[\partial^j \gamma_{ij}|_\infty = 0. \quad (10) \]
Thus the Mass formula reduces to
\[
M_{ADM} = -\frac{1}{2\pi} \int_{\infty}^{\infty} \sqrt{\tilde{h} s^i \varphi_i d^2 y} = -\frac{1}{2\pi} \int_{\Sigma} \sqrt{\gamma} \nabla^2 \varphi d^3 x
\]
Here, Gauss' integral tranformation is applied. The Lichnerowicz equation allows us to write this as follows
\[
M_{ADM} = \frac{1}{2\pi} \int_{\Sigma} \sqrt{\gamma} \left(\frac{1}{\gamma} \tilde{\pi}^{ij} \tilde{\pi}_{ij} \varphi^5 - \frac{\tilde{R}}{8} \varphi \right)
\] (11)

One further step in changing this formula given in the following subsection shall suffice to bring this formula to a form which is evidently positive.

2.2 Scaling Scalar Curvature and proof of Positivity

In order to show that the aforementioned formal for the ADM mass, i.e. (11), one needs to ensure that that the conformally rescaled scalar curvature is non positive. In order to show this, an appropriate conformal transformation of the initial data must be made. First, we consider an arbitrary asymptotically flat metric, which satisfies fall-off conditions (at spatial infinity):
\[
g_{ab} \to \delta_{ab} + O(r^{-(1/2+\epsilon)}),
g_{ab,c} \to O(r^{-(3/2+\epsilon)}), \epsilon > 0.
\]
and has scalar curvature scalar curvature R. The existence and uniqueness properties of the Lichnerowicz equation demand that the relevant three metrics are in the positive Yamabe class. This means that they all admit a conformal transformation to a metric with 0 scalar curvature. This implies that the Ricci scalar can be expressed as follows:
\[
\nabla^2 \theta = \frac{R}{8}.
\]

We then apply a conformal transformation of the phase space variables with the conformal factor $e^\theta = \phi$. Then, the phase space variables are rescaled
\[
\tilde{\gamma}_{ab} = \phi^4 g_{ab}
\]
\[
\tilde{\pi}^{ab} = \phi^{-4} \pi^{ab}
\]
The scalar curvature of the rescaled metric is given as follows
\[
\tilde{R} = \phi^{-4} R - 8\phi^{-5} \nabla^2 \phi = -8\phi^{-6} (\nabla \phi)^2.
\] (12)

This is indeed manifestly non positive. The bulk ADM mass formula written in these variables is given as follows
\[
M_{ADM} = \frac{1}{2\pi} \int_{\Sigma} d^3 x \sqrt{\gamma} \left(\frac{1}{\gamma} \phi^5 \tilde{\pi}^{ab} \tilde{\pi}_{ab} + \phi^{-5} (\nabla \phi)^2 \right) \geq 0.
\] (13)
The above conformal transformation is borrowed from [2]
2.3 The Case with Matter

So far the discussion has pertained to the vacuum solutions, but this proof remains valid even when the matter stress energy tensor is non zero. The term which contributes to the ADM mass given as in (11) would be the following:

\[M_{\text{ADM}}^{\text{mat}} = \int_\Sigma \sqrt{\gamma} \phi^5 \mathcal{T}_{\mu \nu} s^\mu s^\nu, \quad (14) \]

here \(T_{\mu \nu} \) denotes the matter stress energy tensor and \(s^\mu \) denotes the normals to \(\Sigma \) embedded in spacetime. The dominant energy condition would ensure that this term remains positive and so that is what need be assumed for the proof to remain valid when there is matter.

3 Conclusion

Thus we find that by applying the conformal decomposition to the canonical phase space variables of General Relativity, we can very easily demonstrate that the ADM mass is a manifestly positive entity. Aside from the proof, it is interesting to note that the ADM mass is, in fact the true Hamiltonian of the system and is non zero even on constraint shell. Although this fact has been acknowledged before, the use of the formula (11) can in fact allow one to functionally differentiate it and find equations of motion for the metric and the conjugate momentum. The time conjugate to this momentum is indeed the Killing time of the stationary spacetime and thus we find that the problem of time can be trivially solved at the classical level without deparameterizing the constraints. Further implications of the same shall be postponed to future work.

4 Acknowledgements

The author would like to sincerely thank Eric Gourgoulhon for clarifications regarding the Quasi Isotropic Gauge fixing and Sean Gryb for enlightening him on an important subtlety. He would also like to thank Bianca Dittrich for comments on the same. This research was supported by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

References

