Constraints on the septet-doublet mixing models from oblique parameters

Chao-Qiang Geng1,2,3*, Lu-Hsing Tsai†, and Yao Yu‡

1Chongqing University of Posts \& Telecommunications, Chongqing, 400065, China
2Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan
3Physics Division, National Center for Theoretical Sciences, Hsinchu, 300, Taiwan

(Dated: April 2, 2015)

Abstract

The limitations of the doublet-septet mixing models by the deviations of electroweak oblique parameters ΔS and ΔT are studied. In the minimal model, the mixture of the septet η and the scalar doublet in the standard model (SM) is driven by a non-Hermitian dimension-7 operator. For a smaller bare mass of the septet, ΔS gives a stringent constraint on the mixing angle $\sin \beta$ between the CP-odd neutral parts of the SM Higgs doublet and η. In general, increasing the mass of the scalar septet M_{η} will enhance the deviation of T from the SM, whereas it decreases the magnitude of ΔS for a larger bare mass within the range $M_{\eta} \lesssim 400$ GeV. We also examine two extended models from the ordinary doublet-septet mixture pattern. One of them is based on an inert doublet-septet mixing pattern, in which there is no vacuum expectation value for the neutral component of η, and a stable dark matter could naturally exist. For a benchmark point with this inner doublet mass of $M_{\chi} = 250$ and $M_{\eta} = 400$ GeV in this model, the mixing coefficient is found to be less than 1.8. The other extension is constructed by imposing a doubly charged scalar mixed with the doubly charged component of the septet. Apart from the contribution by the septet-doublet admixture, ΔS is suppressed by a factor of s_{η}^2 and ΔT has a significant constraint due to the vanishing vacuum polarization of Z at the momentum transfer $p^2 = 0$.

PACS numbers:
I. INTRODUCTION

The discovery of the 125 GeV Higgs boson makes the standard model (SM) complete [1, 2]. However, there is still a possibility that some fraction of this light boson comes from other unknown scalar particles, carrying quantum numbers (I, Y) under the gauge symmetry of $SU(2)_L \times U(1)_Y$, for which the electric charge is related by $Q = I_3 + Y/2$, where I_3 is the third component of the weak isospin $I = (n - 1)/2$, with n being the dimension of the representation for $SU(2)_L$. One example is to impose one or more scalar doublets with the quantum number $(2, 1)$ [3, 4] or singlet $(1, 0)$ [5, 6] to couple with the ordinary SM scalar doublet. It is interesting to note that the vacuum expectation value (VEV) of the singlet or doublet does not change the ρ parameter from unity at tree level [7, 8], so that these types of the models can only be constrained by the electroweak oblique parameters of $S, T,$ and U [9, 10], in which $S = -0.03 \pm 0.10, T = 0.01 \pm 0.12,$ and $U = 0.05 \pm 0.10$ have been given by the recently global fitting [11]. In particular, it has been pointed out that the mixing angles in singlet-doublet mixing [12, 13], two Higgs doublet [14–17], and multi-doublet [18, 19] models are bounded by S and T.

Besides the $SU(2)$ singlet or doublet, there are a series of specific higher multiplets which can also retain $\rho = 1$. In particular, the $SU(2)$ septet η with $Y = 4$ is the smallest choice of the multiplet to have the feature [20]. However, the septet with a nonzero VEV via the renormalizable operators is not allowed. Instead, some higher dimensional operators involving the septet and doublet are required to offer the mixings between them [21]. Although the VEV of the septet v_η is not limited by the ρ parameter, electroweak oblique parameters could further constrain it to be $v_\eta \lesssim 20$ GeV [22]. Furthermore, the Higgs-gauge and Higgs-fermion couplings observed from the LHC also restrict the structure of the septet [23, 24] with $v_\eta \lesssim 6$ GeV [25].

There are also many applications for the scenarios that the extra multiplet cannot preserve the unity for ρ. The value of $\rho = 1.0000 \pm 0.0009$ [11] from the global fitting constrains the VEV of the multiplet up to order of several GeV, which means that the multiplet should be inert from the SM Higgs doublet, with only a tiny mixture allowed. The Higgs triplet model (Type-II seesaw) [26–32] is one of the typical example in which the VEV of the triplet is limited to be less than $\mathcal{O}(1)$ GeV [33–37]. The constraint on the VEV of the quintuplet $(5, 2)$ was also studied [38]. For the extreme case that the VEV of the multiplet is forbidden
by some discrete or continue symmetry, the oblique parameters can help to constrain the
mixings of the multiplet with other particles. This type of the models can also contain dark
matter if there exists a lightest component carrying a nonzero charge for the symmetry 39–
43. For more complicated situations, it is worth to explore the possibility that one or more
scalar doublets and singlets mix with the septet.

This paper is organized as follows. In Sec. II, we review the septet-doublet mixing model
and constrain the model from the oblique parameters. In Sec. III, we study the extended
septet models. We give our conclusions in Sec. IV.

II. THE DOUBLY-SEPTET MIXING MODEL

It is known that the non-zero VEVs of new SU(2)×U(1) multiplets with (n,Y) could
contribute to ρ with the general form 44

\[\rho \equiv \frac{m_W^2}{m_Z^2 c_W^2} = \sum_i \left[I(i) \frac{1}{4} Y^2_{(i)} v^2_{(i)} \left(I(i) + 1 \right) \right] \sum_i \frac{1}{2} Y^2_{(i)} v^2_{(i)}, \]

(1)

where the subscript (i) indicates for the i-th multiplet. From Eq. (1), it is easy to see
that both singlet and doublet scalars as well as the septet η : (7, 4) will not change the ρ
parameter from unity. We would like to examine some models with the septet to keep ρ = 1
but constrained by the oblique parameters.

We start with a simple model in which η acquires a non-zero VEV and has a mixing
with the SM doublet. This model including two scalar components: the scalar doublet
Φ = (Φ⁺, Φ⁰)ᵀ in the SM, and the septet η, which has the irreducible form consisting of
seven independent complex components with the electric charges from Q = +5 to −1, given
by

\[η = (η^{(5)}, η^{(4)}, η^{(3)}, η^{++}, η^+, η^0, η^-). \]

(2)

The relevant terms of the scalar potential in this model are then given by

\[- L = -μ^2 (Φ^* Φ) + λ (Φ^* Φ)^2 + M_η^2 (η^* η) + \left[\frac{1}{Λ^2} η^* Φ (Φ^*)^5 + \text{H.c.} \right], \]

(3)

where the terms proportional to μ and λ are the couplings in the SM, M_η is the bare mass
of η, and and Λ is an effective energy scale. Note that the dimension-7 effective operator
(1/Λ³)ηΦ(Φ*)⁵ in Eq. (3) is the simplest form of a higher dimensional operator containing
a mixture of η and Φ which can generate nonzero VEV for η at the low energy scale 21. Here, we also assume that there is no other lower dimensional effective operator. Other renormalizable gauge invariant terms such as $(\Phi^*\Phi\eta^*\eta)$ and $(\eta\eta\eta^*\eta^*)$ are not relevant in this paper and will be ignored in this study.

After the spontaneous symmetry broken due to the negative quadratic term of the scalar doublet, it leads to the VEV with $\Phi^0 = (v_\Phi + R_\Phi + i I_\Phi)/\sqrt{2}$, and the the neutral part of the septet also acquires the VEV with $\eta^0 = (v_\eta + R_\eta + i I_\eta)/\sqrt{2}$ via the dimension-7 operator, with $v_\Phi(v_\eta), R_\Phi(R_\eta)$, and $I_\Phi(I_\eta)$ being the VEV, CP-even component, and CP-odd component of $\Phi^0(\eta^0)$, respectively. Then, we can take all mixing states of the doublet and septet into account, including neutral, singly charge, and doubly charged states. We discuss the mass spectrum of the septet by following the formulae in Ref. 21. In general, the weak and mass eigenstates of the scalars can be expressed by

$$
\begin{pmatrix}
R_\Phi \\
R_\eta
\end{pmatrix} =
\begin{pmatrix}
cos \alpha & -sin \alpha \\
sin \alpha & cos \alpha
\end{pmatrix}
\begin{pmatrix}
h \\
H
\end{pmatrix},
\begin{pmatrix}
I_\Phi \\
I_\eta
\end{pmatrix} =
\begin{pmatrix}
cos \beta & -sin \beta \\
sin \beta & cos \beta
\end{pmatrix}
\begin{pmatrix}
G^0 \\
A^0
\end{pmatrix},
$$

(4)

$$
\begin{pmatrix}
\phi^+ \\
\eta^+ \\
(\eta^-)^*
\end{pmatrix} = U
\begin{pmatrix}
G^+ \\
\bar{\eta}^+ \\
S^+
\end{pmatrix},
$$

(5)

where h, H, G^0 and A^0 are the neutral mass eigenstates; $G^+, \bar{\eta}^+$ and S^+ are the singly charged mass eigenstates; α and β are the mixing angles1 with $\tan \beta = (4v_\eta)/v_\Phi$, and the 3×3 matrix U is given by

$$
U =
\begin{pmatrix}
c_\beta & 0 & s_\beta \\
\frac{\sqrt{10}}{4}s_\beta & \frac{\sqrt{6}}{4} & -\frac{\sqrt{10}}{4}c_\beta \\
-\frac{\sqrt{6}}{4}s_\beta & \frac{\sqrt{10}}{4} & \frac{\sqrt{6}}{4}c_\beta
\end{pmatrix}.
$$

(6)

The mass spectra of the scalars are obtained as

$$
M^2_{h} = (1 - \frac{3}{2}t_\beta)M^2_\eta , M^2_H = (1 + \frac{3}{2}t_\alpha t_\beta)M^2_\eta , M^2_A = \frac{M_\eta}{c_\beta},
$$

$$
M_{\eta^\pm} = \frac{M_\eta}{c_\beta}, M_{S^\pm} = \frac{M_\eta}{c_\beta},
$$

$$
M_{\eta^{+5}} = M_{\eta^{+4}} = M_{\eta^{+3}} = M_{\eta^{+2}} = M_\eta,
$$

(7)

1 After taking $\beta \rightarrow (\pi/2) - \beta$ and $\alpha \rightarrow -\alpha$, the notations become those in Ref. 21.

4

where \(s_\theta \equiv \sin \theta, \ c_\theta \equiv \cos \theta, \) and \(t_\theta \equiv \tan \theta. \) The related details for the mass matrices are given in Appendix A. Without the mixing term \(\eta \Phi(\Phi^*)^5, \) \(\beta \) becomes zero and there is no mass splitting among the septet. Note that \(\alpha \) can be determined once we take \(m_h = 125.7 \) GeV \(^{11}\) and fix \(\sin \beta. \) Subsequently, \(m_H \) can be evaluated too.

Recall that the definitions of \(S, \ T, \) and \(U \) parameters are given by \(^{45, 46}\)

\[
S = \frac{16\pi^2c_W^2s_W^2}{e^2} \left[\frac{\Pi_{ZZ}(M_Z^2) - \Pi_{ZZ}(0)}{M_Z^2} \right] - \frac{c_X^2}{c_Ws_W} \left. \frac{\partial \Pi_{\gamma Z}(p^2)}{\partial (p^2)} \right|_{p^2=0} - \left. \frac{\partial \Pi_{\gamma\gamma}(p^2)}{\partial (p^2)} \right|_{p^2=0},
\]

\[
T = \frac{4\pi}{e^2} \left[\frac{\Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(0)}{M_Z^2} \right],
\]

\[
U = \frac{16\pi^2s_W^2}{e^2} \left[\frac{\Pi_{WW}(M_W^2) - \Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(M_Z^2) - \Pi_{ZZ}(0)}{M_Z^2} \right.
- 2c_Ws_W \left. \frac{\partial \Pi_{\gamma Z}(p^2)}{\partial (p^2)} \right|_{p^2=0} - \frac{s_W^2}{c_W} \left. \frac{\partial \Pi_{\gamma\gamma}(p^2)}{\partial (p^2)} \right|_{p^2=0},
\]

where \(\Pi_{ab}(p^2) \) are the coefficients of \(g_{\mu\nu} \) for the vacuum polarizations of gauge bosons \(a \) and \(b \) (\(a,b = W, Z, \gamma \)) under the momentum transfer \(p^2. \) For \(\Delta U = 0, \) the deviation parameters of \(\Delta S \) and \(\Delta T \) from the data are \(\Delta S = 0.00 \pm 0.08 \) and \(\Delta T = 0.05 \pm 0.07 \) \(^{11}, \) respectively. We find that in this model \(|\Delta U| \) is typically smaller than \(|\Delta S| \) and \(|\Delta T| \) (see the expression of \(\Delta U \) in Appendix B), with the order of \(10^{-3} \) for \(M_\eta \gtrsim 200 \) GeV and \(\sin \beta \lesssim 0.3, \) so that the assumption of \(\Delta U = 0 \) is viable. We show the formulae of \(\Delta S \) and \(\Delta T \) in Appendix B. Both of them only depend on \(M_\eta \) and \(\tan \beta, \) with the one-to-one correspondence in the interesting area of the \(S - T \) plane, in the sense that there is no intersection among the curves with a constant \(M_\eta \) (or \(\tan \beta) \) as shown in Fig. 1. In general, \(\Delta S \) is negative, whereas \(\Delta T \) is always positive. Turning off the dimension-7 interaction \((\sin \beta \rightarrow 0) \) will go back to an inert septet without a VEV, for which \(\Delta T = 0, \) while \(\Delta S \) approaches zero for a large \(M_\eta. \) Notice that the allowed region by the observation at 90\%C.L. is positively correlated between \(\Delta S \) and \(\Delta T \) \(^{11}, \) so that for a larger value of \(M_\eta \) the restriction on \(\sin \beta \) does not become much more strongly despite its larger contribution to \(\Delta T. \) As an example, we have \(\sin \beta \lesssim 0.21(0.22) \) for \(M_\eta = 200(300) \) GeV. We note that \(M_\eta \) is also limited by the experimental constraint from the pair production of \(\eta, \) dominated by Drell-Yan processes, which is independent of \(v_\eta \) and \(\sin \beta. \) In Ref. \(^{25}, \) \(M_\eta \) is found to be larger than \(\sim 400 \) GeV. Similar results about the oblique parameters in this model were also discussed in Ref. \(^{21}. \) We point out that our results for \(\Delta S \) have two features which are different from those in Ref. \(^{21} \) (see Eq. (11) in Appendix B). Firstly, we note that \(\Delta S \) in our calculation is an increasing function of \(M_\eta \)
within the range $M_\eta \lesssim 400$ GeV, and secondly, $\Delta S \neq 0$ when $\sin \beta \to 0$.

III. APPLICATIONS

A. Mixing between $\eta : (7, 4)$ and $\chi : (2, 1)$

We consider the model with an extra doublet $\chi = (\chi^+, \frac{1}{\sqrt{2}}(\chi_R + i\chi_I))^T$ besides the septet η, where both scalars take odd charges under an Z_2 symmetry. The scalar potential can be written as

\[-L = -\mu^2(\Phi^*\Phi) + \lambda(\Phi^*\Phi)^2 + M_\chi^2(\chi^*\chi) + \lambda_\chi(\chi^*\chi)^2,
\]

\[+ \frac{\lambda_5}{2} [(\Phi^*\chi)^2 + \text{h.c.}] + M_\eta^2(\eta^*\eta) + \left[\frac{C_a}{\Lambda^3} \eta\chi(\Phi^*)^5 + \frac{C_b}{\Lambda^3} \eta\Phi(\Phi^*)^4\chi^* + \text{H.c.}\right].\]

(11)

Note that the Z_2 symmetry forbids the mixing of χ or η with the SM doublet Φ. Here, the quarter terms associated with $(\Phi^*\Phi)\chi^*\chi$ has been ignored, and the dimensional seven operators, $\eta\chi(\Phi^*)^5$ and $\eta\Phi(\Phi^*)^4\chi^*$, are imposed to yield the mixing between χ and η. Without the last term in Eq. (11), the model will be reduced to the ordinary inert doublet one \[47–53\], in which the mass spectra are given by

\[M^2_\pm = M^2_\chi, \quad M^2_R = M^2_\chi + \frac{\lambda_5}{2} v^2, \quad M^2_I = M^2_\chi - \frac{\lambda_5}{2} v^2.\]

(12)
The above masses turn into degeneracy when λ_5 approaches zero. The mass splittings inside χ are the crucial quantities to give sizable contributions to T or S. The deviation of the T parameter for the inert doublet is

$$\Delta T = \frac{1}{16\pi m_W^2 s_W^2} [F(M_{\pm}^2, M_R^2) + F(M_{\pm}^2, M_I^2) - F(M_R^2, M_I^2)] .$$

where the definition of $F(x, y)$ is given in Appendix B. It is interesting to note that ΔT can be negative when there exists a large mass splitting between χ_R and χ_I, which is governed by M_χ and λ_5. Note that in this case η only contributes to ΔS, but not to ΔT.

The next step is to take into account the interaction between χ and η. We separately study the effects on masses of neutral and singly charged states with some non-zero values of C_a and C_b, given by

$$M_{x1}^2 = \frac{\cos^2 \theta_x M_x^2}{\cos(2\theta_x)} - \frac{\sin^2 \theta_x M^2_\eta}{\cos(2\theta_x)} ,
$$

$$M_{x2}^2 = \frac{\cos^2 \theta_x M_x^2}{\cos(2\theta_x)} - \frac{\sin^2 \theta_x M^2_\eta}{\cos(2\theta_x)} ,$$

where M_{x1} and M_{x2} are two mass eigenvalues of χ and η, and θ_x are mixing angles with $x = R(I)$ and \pm corresponding to the real(imaginary) part of the neutral and charged components, respectively. When taking the condition $M_x < M_\eta$, it is obvious that $M_{x1} < M_{x2}$, which will be applied thereinafter. We list the mixing angles for two special cases as follows:

(i) $C_a \neq 0$ and $C_b = 0$:

$$\tan(2\theta_R) = \frac{1}{\sqrt{6}} d_a M_R^2 - M_\eta^2 v^2 , \quad \tan(2\theta_I) = \frac{1}{\sqrt{6}} d_a M_I^2 - M_\eta^2 v^2 , \quad \tan(2\theta_\pm) = \frac{-d_a}{M_\pm^2 - M_\eta^2} v^2 ;$$

(ii) $C_a = 0$ and $C_b \neq 0$:

$$\tan(2\theta_R) = \frac{1}{\sqrt{6}} d_b M_R^2 - M_\eta^2 v^2 , \quad \tan(2\theta_I) = \frac{1}{\sqrt{6}} d_b M_I^2 - M_\eta^2 v^2 , \quad \tan(2\theta_\pm) = \frac{1}{\sqrt{15}} d_b M_\pm^2 - M_\eta^2 v^2 ,$$

where $d_j = (C_j v^3)/(\sqrt{\Lambda^3})$ for $j = a, b$. The relevant coefficients in the above formulae can be found in Appendix A. Increasing the values of $d_{a,b}$ will also enlarge all the magnitudes of mixing angles between η and χ. For the limit of $\lambda_5 \to 0$, we find that $|\theta_R| = |\theta_I| < |\theta_\pm|$ for (i), which means that $M_RI = M_{I1} > M_{\pm 1}$, so that the lightest inert component is $M_{\pm 1}$. Therefore, the stable neutral particle does not exist in this case. On the other hand, the
FIG. 2: (a) ΔS and (b) ΔT as functions of d_b with $M_\chi = 250$ GeV and different sets of m_η, where the horizontal dashed lines in (a) and (b) correspond to the $1.5 - 1.7\sigma$ bounds of $\Delta S \geq -0.08$ and $\Delta T \leq 0.12$ [11], respectively.

existence of the stable charged scalar makes this scenario diafoavored by experiments, unless we further impose some other effective operator to break the Z_2 symmetry. The situation for (ii) is opposite as $|\theta_R| = |\theta_I| > |\theta_\pm|$ and $M_{R1} = M_{I1} < M_{\pm 1}$, resulting in a stable DM. Notice that in the above discussion the mass splitting scale generated by the mixing is usually larger than the quantum corrections by gauge bosons (see Ref. [40]).

The explicit formulae for ΔT and ΔS are given in Appendix B. By fixing $M_\chi = 250$ GeV, we plot them as functions of the coupling constant d_b for (ii) in Fig. 2. From the figure, we see that ΔS is always negative, whereas ΔT is positive. The magnitudes of ΔT raises with increasing d_b, and a larger M_η gives smaller ΔS and ΔT. For around 1.5σ deviation of an observed ΔT, that is, $\Delta T < 0.12$ [11], we have the upper bounds of $d_b < 1.5$, 1.8, and 2.1 for $M_\eta = 300$, 400, and 500 GeV, respectively. On the other hands, the constraint by ΔS is relatively weak.

B. Mixing between $\eta : (7, 4)$ and $\rho : (1, 4)$

We now study the mixing of η with a doubly-charge $SU(2)_L$ singlet $\rho : (1, 4)$, which can have the lepton number -2 due to the coupling with the charged lepton $\rho \bar{l}_R l_R$. If η^0 acquires a VEV and ρ mixes with η^{++}, then the lepton number is broken. Majorana neutrino masses can be generated through a two-loop diagram involving the interaction $\rho^{--}W^+W^+$ [54-58]. To mix ρ and η, like the scenario of the mixing between η and Φ, some other higher
dimensional operator are needed to achieve this goal in addition to the original one, $\eta \Phi (\Phi^5)^*$, which gives a nonzero v_η. A dimension-8 operator $\rho \eta \Phi^3 (\Phi^3)^*$ is one of the possibility to drive the $\rho - \eta$ mixing. In this case, the potential is given by

$$\begin{align*}
-L &= -\mu^2 (\Phi^* \Phi) + \lambda (\Phi^* \Phi)^2 + M_\rho^2 (\rho^* \rho), \\
&+ M_\eta^2 (\eta^* \eta) + \left[\frac{1}{\Lambda^2} \eta \Phi (\Phi^*)^5 + \frac{1}{\Lambda^4} \rho \eta (\Phi^*)^3 (\Phi^*)^3 + \text{H.c.} \right],
\end{align*}$$

where Λ' is the mass scale related to the dimension-8 operator. Here, some of the quartic terms have been ignored. We will focus on the discussion of the effects on the oblique parameters by the mixing pattern independent of the source of the mixture.

The doubly-charge mixing can be parametrized as:

$$\begin{pmatrix}
\rho^{++} \\
\eta^{++}
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
P_1^{++} \\
P_2^{++}
\end{pmatrix},$$

where θ is the mixing angle and $P_{1,2}$ are the two mass eigenstates. The mass eigenvalues are then derived directly by

$$\begin{align*}
M_{P_1}^2 &= \frac{\cos^2 \theta}{\cos(2\theta)} M_\rho^2 - \frac{\sin^2 \theta}{\cos(2\theta)} M_\eta^2, \\
M_{P_2}^2 &= \frac{\cos^2 \theta}{\cos(2\theta)} M_\eta^2 - \frac{\sin^2 \theta}{\cos(2\theta)} M_\rho^2.
\end{align*}$$

To study the influence on the electroweak structure, it is important to distinguish the deviations of the oblique parameters from different sources. Hence, the deviation of T can be decomposed into two parts, $\Delta T = \Delta T_1 + \Delta T_2$, where ΔT_1 corresponds to the contribution from the $\eta - \Phi$ mixing, which is the same as the result in Eq. (16), while ΔT_2 is the rest given from the doubly-charge mixing, given by

$$\Delta T_2 = \frac{1}{4\pi s_w^2} \left\{ 15 s_\beta^2 s_\beta F(M_{P_1}^2, M_W^2) + c_\beta^2 F(M_{P_2}^2, M_W^2) - K(M_\eta^2, M_W^2) \right\}$$

$$\begin{align*}
&+ \frac{6}{m_W^2} \left[s_\beta^2 F(M_{P_1}^2, M_\eta^2) + c_\beta^2 F(M_{P_2}^2, M_\eta^2) \\
&+ \frac{5}{8} s_\beta^2 F(M_{P_1}^2, M_W^2) + c_\beta^2 F(M_{P_2}^2, M_W^2) - F(M_\eta^2, M_W^2) \right] \\
&+ \frac{3}{8} (s_\beta^2 F(M_{P_1}^2, M_{\eta^\pm}^2) + c_\beta^2 F(M_{P_2}^2, M_{\eta^\pm}^2)) \\
&+ \frac{5}{8} s_\beta^2 F(M_{P_1}^2, M_{S^\pm}^2) + c_\beta^2 F(M_{P_2}^2, M_{S^\pm}^2) - F(M_\eta^2, M_{S^\pm}^2) \right\}.
\end{align*}$$

\[19\]
The identical quantum numbers of I_3 and Y between η^{++} and ρ^{++} make the relevant contribution to ΔT to be large because of the absence of $F(M_{\rho_1}^2, M_{\rho_2}^2)$. As a result, the mass splitting of doubly-charge eigenstates is constrained stringently. Similarly, $\Delta S = \Delta S_1 + \Delta S_2$, where ΔS_1 is the same as Eq. (B1), while ΔS_2 is given by

$$\Delta S_2 = -\frac{2}{\pi} (4 s_W^4) \left[\xi \left(\frac{M_1^2}{M_Z^2} \cdot \frac{M_1^2}{M_Z^2} \right) + \xi \left(\frac{M_2^2}{M_Z^2} \cdot \frac{M_2^2}{M_Z^2} \right) - \xi \left(\frac{M_\eta^2}{M_Z^2} \cdot \frac{M_\eta^2}{M_Z^2} \right) \right].$$

(21)

It is obvious that the contribution from ΔS_2 is tiny, because I_3 is zero for both ρ^{++} and η^{++}, which makes the corresponding result proportional to s_W^4.

Our numerical results are shown in Fig. 3 where we have used $\sin \theta = 0.04$ and 0.08, together with $M_\rho = 250 \text{GeV}$ as illustrations. When M_η is large, say, $M_\eta \gtrsim 400 \text{GeV}$, ΔT_2 can yield a significant contribution to ΔT, so that the distortion in the $S - T$ plane appears, which is obvious in comparison with the ordinary figure in Fig. 1. For a larger value of $\sin \theta$, the deformation is more apparent. Explicitly, we find that with $M_\eta = 400 \text{GeV}$, $\sin \beta \lesssim 0.2 (0.15)$ for $\sin \theta = 0.04 (0.08)$.

IV. CONCLUSIONS

We have studied the model including a mixing term between the SM Higgs doublet and an extra septet $\eta : (7, 4)$ under $SU(2)_L \times U(1)_Y$, which preserves the ρ parameter to unity. The mixing between them arises from the effective dimension-7 operator $\eta \Phi (\Phi^*)^5$. The possible

![Figure 3: Contours of M_η and $\tan \beta$ in the $\Delta S - \Delta T$ planes, for (a) $\sin \theta = 0.04$ and (b) $\sin \theta = 0.08$ with $M_\rho = 250 \text{GeV}$, where the gray region corresponds to the global fitting results at 90% C.L.](image)
parameter space has been explored by examining the electroweak oblique parameters. We have focused on the mass range $M_\eta \lesssim 1500$ GeV. In general, ΔS is negative and increasing with M_η under the range of $M_\eta \lesssim 400$ GeV, whereas ΔT is always positive and increasing for a large $\sin \beta$. Basically, the constraint on $\sin \beta$ changes slowly for different values of M_η. In the future, the global fitting of the oblique parameters could help to determine M_η and $\tan \beta$ more precisely or directly exclude this model.

Besides the minimal doublet-septet mixing model, two extensions have been also discussed. One of them is to create an Z_2 odd sector which consists of the septet and an additional doublet χ. Only two dimension-7 operators are possible to generate the mixing between η and χ. We have examined the effects of $\eta \Phi (\Phi^*)^4 \chi^*$ on the scalar mass spectra and oblique parameters. In particular, we have found the mixing coefficient $d_b \lesssim 1.8$ for $M_\eta = 400$ GeV and $M_\chi = 250$ GeV. This result can help us to distinguish different mixing patterns by future analyses. The other extension is to have an additional admixture between the septet and an SU(2) singlet $\rho: (1, 4)$. We can limit the mixing angle $\sin \theta$ in this kind of the models. For example, we have found that $\sin \beta \lesssim 0.15$ for $M_\rho = 250$ GeV, $\sin \theta = 0.08$, and $M_\eta = 400$ GeV, where the dominant constraint comes from ΔT. The existence of this kind of the mixing pattern could also be tested by the oncoming experiments.

Acknowledgments

This work was supported by National Center for Theoretical Sciences, National Science Council (Grant No. NSC-101-2112-M-007-006-MY3) and National Tsing Hua University (Grant No. 104N2724E1).

Appendix A: Mixing matrices for doublet-septet mixing model

To calculate the mass spectra in the doublet-septet mixing model, the first step is to deal with the non-hermitian effective coupling, which can be expanded as
\[\eta \Phi(\Phi^*)^5 + \text{H.c.} = \eta^{(+5)} \Phi^0(\Phi^*)^5 + \frac{1}{\sqrt{6}} \eta^{(+4)}[-(\Phi^+)^5 \Phi^+ + 5(\Phi^+)^4 \Phi^0] \\
+ \frac{1}{\sqrt{15}} \eta^{+3}[-5(\Phi^+)^4(\Phi^0)^4 \Phi^+ + 10(\Phi^+)^3(\Phi^0)^2 \Phi^0] \\
+ \frac{1}{\sqrt{20}} \eta^{++}[10(\Phi^+)^3(\Phi^0)^3 \Phi^+ + 5(\Phi^+)^2(\Phi^0)^4 \Phi^0] \\
+ \frac{1}{\sqrt{6}} \eta^0[-5(\Phi^+)^2(\Phi^0)^4 \Phi^+ + 5(\Phi^+)^2(\Phi^0)^4 \Phi^0] \\
+ \frac{1}{\sqrt{15}} \eta^0[-5(\Phi^+)^2(\Phi^0)^4 \Phi^+ + 5(\Phi^+)^2(\Phi^0)^4 \Phi^0] \\
\sim \frac{5}{\sqrt{15}} \eta^+ \Phi^+ \Phi^0(\Phi^0)^4 \Phi^+ + \frac{1}{\sqrt{6}} \eta^0 \Phi^0(\Phi^0)^4 \Phi^+ - \eta^- \Phi^*(\Phi^0)^5 \\
- \frac{5}{\sqrt{6}} \eta^0(\Phi^+)^2(\Phi^0)^4 \Phi^+ + \text{H.c.}, \quad (A1) \]

where we have only shown the relevant terms to provide the quadratic mixings of \(\eta \) and \(\Phi \) after the spontaneous symmetry breaking. The tadpole conditions in the potential are

\[-\mu^2 v_\Phi + \lambda v_\Phi^3 + \frac{12}{\sqrt{6}(\sqrt{2})^3} \Lambda^3 v_\eta v_\Phi^5 = 0 , \]
\[M_\eta^2 v_\eta + \frac{2}{\sqrt{6}(\sqrt{2})^3} \Lambda^3 v_\phi^6 = 0 . \quad (A2) \]

The mixing matrix of the imaginary part is

\[M_\eta^2 \begin{pmatrix} \frac{16i\alpha_\eta}{\sqrt{2}} & -4i\alpha_\eta \\ \frac{4\alpha_\eta}{\sqrt{2}} & 0 \end{pmatrix} . \quad (A3) \]

By comparing it with Eq. (4), we obtain the relation \(t_\beta = 4v_\eta/v_\Phi \) and the eigenvalues 0 and \(M_\eta^2/\sqrt{c_\beta} \). Similarly, the mass matrix of the neutral part is

\[\begin{pmatrix} 2\lambda c_\beta v^2 - \frac{3}{2} M_\eta^2 t_\beta^2 & -\frac{3}{2} t_\beta M_\eta^2 \\ -\frac{3}{2} t_\beta M_\eta^2 & M_\eta^2 \end{pmatrix} . \quad (A4) \]

From Eqs. (4) and (A4), we get two relations:

\[M_\eta^2 s^2_\alpha + M_H^2 c^2_\alpha = M_\eta^2 , \quad c_\alpha s_\alpha(M_\eta^2 - M_H^2) = -\frac{3}{2} M_\eta^2 t_\beta , \quad (A5) \]

which lead to the expressions of \(M_\eta^2 \) and \(M_H^2 \) shown in Eq. (7).

The singly-charge mass matrix in the weak basis \(\{\Phi^+, \eta^+, (\eta^-)^*\} \) is given by

\[M_\eta^2 \begin{pmatrix} \frac{t_\beta^2}{4} & -\frac{\sqrt{10}}{4} t_\beta & \frac{\sqrt{6}}{4} t_\beta \\ -\frac{\sqrt{10}}{4} t_\beta & 1 & 0 \\ \frac{\sqrt{6}}{4} t_\beta & 0 & 1 \end{pmatrix} . \quad (A6) \]
In the beginning of this section, we extract the terms relevant to the mixing for (i):

\[(i) : \eta \chi (\Phi^*)^5 + \text{h.c.} \sim \frac{1}{\sqrt{6}} \eta^0 (\Phi^0)^5 - \eta^- (\Phi^+) (\Phi^0)^5 + \text{H.c.}, \quad (A8)\]

\[(ii) : \eta \Phi (\Phi^*)^4 \chi^* + \text{h.c.} \sim \frac{1}{\sqrt{6}} \eta^0 (\Phi^0)^4 \Phi (\Phi^0)^4 + \frac{1}{\sqrt{15}} \eta^- (\Phi^+) (\Phi^0)^4 + \text{H.c.}. \quad (A9)\]

Then, the relations in Eq. (15) can be obtained directly.

Appendix B: oblique parameters \(\Delta S\) and \(\Delta T\)

In the doublet-septet mixing model, \(\Delta S\) is given by

\[
\Delta S = -\frac{2}{\pi} \left[\left(3 c_w^2 - 2 s_w^2 \right)^2 + (2 c_w^2 - 2 s_w^2)^2 + \left(\frac{1}{2} - \frac{2}{s_w} \right)^2 \xi \left(\frac{M_w^2}{M^2}, \frac{M_{\eta^+}^2}{M^2} \right) \right.
\]

\[
+ \frac{3}{2} - s_w^2 \right) \xi \left(\frac{M_z^2}{M^2}, \frac{M_{\eta^\pm}^2}{M^2} \right) + \left(\frac{1}{2} - s_w^2 \right)^2 \xi \left(\frac{M_{\eta^\pm}^2}{M^2}, \frac{M_z^2}{M^2} \right) \right]
\]

\[-\frac{2}{\pi} \left[\frac{15}{2} s_w^2 \xi \left(\frac{M_{\eta^+}^2}{M^2}, \frac{M_z^2}{M^2} \right) + \frac{15}{2} c_w^2 \xi \left(\frac{M_{\eta^\pm}^2}{M_z^2}, \frac{M^2}{M^2} \right) \right]
\]

\[+ \frac{1}{4} \left((c_\alpha c_\beta + 4 s_\alpha s_\beta)^2 - 1 \right) \xi \left(\frac{M_{\eta^+}^2}{M_z^2}, 1 \right) + (s_\alpha s_\beta - 4 s_\alpha c_\beta)^2 \xi \left(\frac{M_{\eta^+}^2}{M_z^2}, 1 \right)
\]

\[+ (s_\alpha c_\beta - 4 s_\alpha s_\beta)^2 \xi \left(\frac{M_{\eta^+}^2}{M_z^2}, 1 \right) + (s_\alpha s_\beta + 4 s_\alpha c_\beta)^2 \xi \left(\frac{M_{\eta^+}^2}{M_z^2}, 1 \right) \right] \quad (B1)\]
\[\xi(x, y) = \frac{4}{9} - \frac{5}{12}(x + y) + \frac{1}{6}(x - y)^2 + \frac{1}{4} \left[x^2 - y^2 - \frac{1}{3}(x - y)^3 - \frac{x^2 + y^2}{x - y} \right] \log \frac{x}{y} - \frac{1}{12} \Delta(x, y)f(x, y), \quad (B2)\]

\[\zeta(x, y) = \frac{1}{2} \left[x - y - \frac{x + y}{x - y} \right] \log \frac{x}{y} - 1 - \frac{1}{2} f(x, y), \quad (B3)\]

\[\Delta(x, y) = -1 + 2(x + y) - (x - y)^2, \quad (B4)\]

\[f(x, y) = \begin{cases}
-2 \sqrt{\Delta(x, y)} \left(\tan^{-1} \frac{x-y-1}{\sqrt{\Delta(x, y)}} - \tan^{-1} \frac{x-y+1}{\sqrt{\Delta(x, y)}} \right) & \text{for } \Delta(x, y) > 0, \\
0 & \text{for } \Delta(x, y) = 0, \\
\sqrt{-\Delta(x, y)} \log \frac{x+y-1+\sqrt{-\Delta(x, y)}}{x+y-1-\sqrt{-\Delta(x, y)}} & \text{for } \Delta(x, y) < 0.
\end{cases} \quad (B5)\]

Note that the above formula for \(\Delta S\) is different from that given in Ref. [21]. In comparison with the formulae in Ref. [21], we have one additional contribution from the first term in Eq. (B1), which decreases with a large value of \(M_\eta\), but it is dominated when \(\sin \beta\) is small. However, the result in Ref. [21] could be compatible with ours when \(M_\eta\) is not too small. It is easily checked that when \(\sin \beta \to 0\), our result of \(\Delta S\) from Eq. (B1) is nonzero, whereas \(\Delta S \to 0\) in Ref. [21]. \(\Delta T\) is found to be [21]

\[\Delta T = \frac{1}{4\pi s_W^2 M_W^2} \left\{ \frac{1}{4} \left[(c_\alpha c_\beta + 4s_\alpha s_\beta)^2 - 1 \right] \left[G(M_H^2, M_W^2) - G(M_H^2, M_Z^2) \right] \\
+ \frac{1}{4} \left[-s_\alpha c_\beta + 4c_\alpha s_\beta \right] \left[G(M_H^2, M_W^2) - G(M_H^2, M_Z^2) \right] \\
- \frac{15s_\beta^2}{4} \left[G(M_\eta^2, M_W^2) - G(M_\eta^2, M_Z^2) \right] \right\}, \quad (B6)\]

where

\[G(x, y) = F(x, y) + 4yK(x, y), \quad (B7)\]

\[F(x, y) = \frac{x + y}{2} - \frac{xy}{x - y} \log \frac{x}{y}, \quad K(x, y) = \frac{x \log x - y \log y}{x - y} \quad (B8)\]
In this model, ΔU is given by

\[
\Delta U = \frac{2}{\pi} \left[(3c_W^2 - 2s_W^2)^2 + (2c_W^2 - 2s_W^2)^2 + (c_W^2 - 2s_W^2)^2 + (-2s_W^2)^2 \right] \xi \left(\frac{M^2_n}{M^2_Z}, \frac{M^2_{\eta}}{M^2_H} \right) - \frac{7}{6} \log(M^4_n)
\]
\[
+ \left(\frac{3}{2} - s_W^2 \right)^2 \log \left(\frac{M^2_n}{M^2_Z}, \frac{M^2_{\eta}}{M^2_H} \right) - \frac{3}{16} \log(M^4_{\eta}) + \left(\frac{1}{2} - s_W^2 \right)^2 \xi \left(\frac{M^2_{\eta}}{M^2_Z}, \frac{M^2_{\eta}}{M^2_H} \right) - \frac{1}{48} \log(M^4_{\eta})
\]
\[
+ \frac{15}{2} s_W^2 \xi \left(\frac{M^2_{W}}{M^2_Z}, \frac{M^2_{\eta}}{M^2_H} \right) - 2s_W^2 \xi \left(\frac{M^2_{W}}{M^2_Z}, \frac{M^2_{\eta}}{M^2_H} \right) - \frac{1}{12} \log(M^2_{H, M^2_{\eta}})
\]
\[
+ \frac{15}{2} \xi \left(\frac{M^2_{\eta}}{M^2_Z}, \frac{M^2_{\eta}}{M^2_H} \right) - \frac{1}{12} \log(M^2_{H, M^2_{\eta}}) \right] \]
\[
- \frac{1}{2\pi} \left[((c_\alpha c_\beta + 4s_\alpha s_\beta)^2 - 1) \left(\xi \left(\frac{M^2_{H}}{M^2_Z}, 1 \right) - 2 \xi \left(\frac{M^2_{H}}{M^2_Z}, 1 \right) - \frac{1}{12} \log(M^2_{H}) \right) \right]
\]
\[
+ \left(-s_\alpha c_\beta + 4c_\alpha s_\beta \right)^2 \left(\xi \left(\frac{M^2_{H}}{M^2_Z}, 1 \right) - 2 \xi \left(\frac{M^2_{H}}{M^2_Z}, 1 \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
+ \left(-c_\alpha s_\beta + 4s_\alpha c_\beta \right)^2 \left(\xi \left(\frac{M^2_{H}}{M^2_Z}, \frac{M^2_{A}}{M^2_H} \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
+ \left(s_\alpha s_\beta + 4c_\alpha c_\beta \right)^2 \left(\xi \left(\frac{M^2_{H}}{M^2_Z}, \frac{M^2_{A}}{M^2_H} \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
- \frac{28}{\pi} \left(\xi \left(\frac{M^2_{\eta}}{M^2_{W}}, \frac{M^2_{\eta}}{M^2_{W}} \right) - \frac{1}{12} \log(M^2_{\eta}) \right)
\]
\[
- \frac{1}{2\pi} \left[((c_\beta c_\alpha + 4s_\beta s_\alpha)^2 - 1) \left(\xi \left(\frac{M^2_{H}}{M^2_{W}}, 1 \right) - \frac{1}{12} \log(M^2_{H}) \right) - 2 \xi \left(\frac{M^2_{H}}{M^2_{W}}, 1 \right) \right]
\]
\[
+ \left(-c_\beta s_\alpha + 4s_\beta c_\alpha \right)^2 \left(\xi \left(\frac{M^2_{H}}{M^2_{W}}, 1 \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
+ \left(-s_\beta s_\alpha + 4s_\beta c_\alpha \right)^2 \left(\xi \left(\frac{M^2_{H}}{M^2_{W}}, \frac{M^2_{A}}{M^2_{H}} \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
+ \left(s_\beta c_\alpha - 4c_\beta s_\alpha \right)^2 \left(\xi \left(\frac{M^2_{H}}{M^2_{W}}, \frac{M^2_{A}}{M^2_{H}} \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
+ (-s_\beta s_\alpha - 4c_\beta c_\alpha)^2 \left(\xi \left(\frac{M^2_{H}}{M^2_{W}}, \frac{M^2_{A}}{M^2_{H}} \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
+ \left(\xi \left(\frac{M^2_{H}}{M^2_{W}}, \frac{M^2_{H}}{M^2_{A}} \right) - \frac{1}{12} \log(M^2_{H}) \right)
\]
\[
- \frac{15}{2} \xi \left(\frac{M^2_{H}}{M^2_{W}}, 1 \right) - 2 \xi \left(\frac{M^2_{H}}{M^2_{W}}, 1 \right) - \frac{1}{12} \log(M^2_{H}) \right) \]
\[
+ \frac{9}{2} \left(\xi \left(\frac{M^2_{H}}{M^2_{W}}, \frac{M^2_{H}}{M^2_{W}} \right) - \frac{1}{12} \log(M^2_{H}) \right) + \frac{15}{2} \xi \left(\frac{M^2_{H}}{M^2_{W}}, \frac{M^2_{H}}{M^2_{W}} \right) - \frac{1}{12} \log(M^2_{H}) \right) \right].
\]
We now list ΔS and ΔT in the $\chi - \eta$ mixing model, given by

\[
\Delta S = -\frac{2}{\pi}\left[\left(23 - 58s_W^2 + 31s_W^4\right)\xi\left(\frac{M_{\eta}^2}{M_Z^2}, \frac{M_{\eta}^2}{M_Z^2}\right) + \left(\frac{1}{2}c_\pm - s_\pm - s_W^2\right)^2\xi\left(\frac{M_{\eta}^2}{M_Z^2}, \frac{M_{\eta}^2}{M_Z^2}\right)
\right.
\]
\[
+ \frac{9}{2}c_\pm s_\pm\xi\left(\frac{M_{\eta 1}^2}{M_Z^2}, \frac{M_{\eta 2}^2}{M_Z^2}\right) + \left(\frac{1}{2}s_\pm - c_\pm - s_W^2\right)^2\xi\left(\frac{M_{\eta 2}^2}{M_Z^2}, \frac{M_{\eta 2}^2}{M_Z^2}\right)
\]
\[
+ \frac{1}{4}\left((c_{R'I} + 4s_R's_I)^2\xi\left(\frac{M_{R1}^2}{M_Z^2}, \frac{M_{R2}^2}{M_Z^2}\right) + (c_{R'I} - 4s_R's_I)^2\xi\left(\frac{M_{R2}^2}{M_Z^2}, \frac{M_{R2}^2}{M_Z^2}\right)
\right)
\]
\[
+ (s_{R'I} - 4c_R's_I)^2\xi\left(\frac{M_{R2}^2}{M_Z^2}, \frac{M_{R1}^2}{M_Z^2}\right) + (s_{R'I} + 4c_R's_I)^2\xi\left(\frac{M_{R1}^2}{M_Z^2}, \frac{M_{R1}^2}{M_Z^2}\right)\right],
\]
\[\Delta T = \frac{1}{4\pi M_{R1}^2 s_W^2}\left[6[s_{\Theta 1}^2 F(M_{\eta}^2, M_{\eta 1}^2) + c_{\Theta 1}^2 F(M_{\eta}^2, M_{\eta 2}^2)]
\right.
\]
\[
+ \frac{1}{4} \sum_{X=R,I} \left[\left(c_{R'I} + \sqrt{10}s_{R'I}\right)^2 F(M_{\eta 1}^2, M_{X 1}^2) + (-c_{R'I} + \sqrt{10}s_{R'I}\right)^2 F(M_{\eta 2}^2, M_{X 2}^2)
\right]
\]
\[
+ (-s_{R'I} + \sqrt{10}s_{R'I}\right)^2 F(M_{R1}^2, M_{R1}^2) + (s_{R'I} + \sqrt{10}s_{R'I}\right)^2 F(M_{R2}^2, M_{R2}^2)
\right]\]
\[
+ \frac{3}{2}[s_R^2 F(M_{R1}^2, M_{\eta}^2) + c_R^2 F(M_{R2}^2, M_{\eta}^2) + s_I^2 F(M_{I 1}^2, M_{\eta}^2) + c_I^2 F(M_{I 2}^2, M_{\eta}^2)]
\]
\[
- \frac{9}{2}c_\pm s_\pm^2 F(M_{\eta 1}^2, M_{\eta 2}^2)
\]
\[
- \frac{1}{4}\left[(c_{R'I} + 4s_R's_I)^2 F(M_{R1}^2, M_{I 1}^2) + (c_{R'I} - 4s_R's_I)^2 F(M_{R2}^2, M_{I 2}^2)
\right.
\]
\[
+ (s_{R'I} - 4c_R's_I)^2 F(M_{R2}^2, M_{I 1}^2) + (s_{R'I} + 4c_R's_I)^2 F(M_{R1}^2, M_{I 2}^2)\right]\].
\]

