We show that acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wave length limit. To study such response we generalize Haldane’s geometrical description of fractional quantum Hall states to situations where the external metric is time-dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrupolar mode at long wave length, and magneto-roton at finite wave length. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

PACS numbers: 73.43.Nq, 73.43.-f

Fractional quantum Hall (FQH) liquid is the prototype topological state of matter. Haldane\[1\] pointed out recently that description of FQH liquids in terms of topological quantum field theories, while capturing the universal and topological aspect of the physics, is incomplete in the sense that an internal geometrical degree of freedom responsible for the intra-Landau level dynamics of the system is not included. This geometrical degree of freedom, or internal metric, couples to anisotropy in the interaction between electrons\[2–4\] or the electron band structure\[5\], and its expectation value is determined by energetics of the system. In a recent work\[6\] we showed that this internal metric parameter manifests itself as anisotropy of composite fermion Fermi surface, which is measurable. Our quantitative result compares favorably with recent experiments, in which electron mass anisotropy is induced and controlled by an in-plane magnetic field\[7–9\]. This demonstrates the observability of anisotropy of composite Fermi surface, which can be generated by acoustic waves, that play a role very similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wave length limit. To study such response we generalize Haldane’s geometrical description of fractional quantum Hall states to situations where the external metric is time-dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrupolar mode at long wave length, and magneto-roton at finite wave length. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

PACS numbers: 73.43.Nq, 73.43.-f

Fractional quantum Hall (FQH) liquid is the prototype topological state of matter. Haldane\[1\] pointed out recently that description of FQH liquids in terms of topological quantum field theories, while capturing the universal and topological aspect of the physics, is incomplete in the sense that an internal geometrical degree of freedom responsible for the intra-Landau level dynamics of the system is not included. This geometrical degree of freedom, or internal metric, couples to anisotropy in the interaction between electrons\[2–4\] or the electron band structure\[5\], and its expectation value is determined by energetics of the system. In a recent work\[6\] we showed that this internal metric parameter manifests itself as anisotropy of composite fermion Fermi surface, which is measurable. Our quantitative result compares favorably with recent experiments, in which electron mass anisotropy is induced and controlled by an in-plane magnetic field\[7–9\]. This demonstrates the observability of this internal geometry. It has also been argued\[1, 10–12\] that this internal metric may be viewed as a dynamical degree of freedom, whose long-wave length dynamics corresponds to the collective excitations of the system that can be viewed as “gravitons”\[13\]. In a parallel stream of works, much effort has been devoted to studying FQH liquids in a curved background space\[14–23\], following earlier seminal work by Wen and Zee\[24\]. In the existing theoretical studies\[2–6, 25, 26\] has thus far focused on non-relativistic electrons. On the other hand graphene has emerged as a new arena to study quantum Hall physics\[27\]. A second purpose of the present work is to show that much of the considerations in the present and earlier works carry over to Dirac electrons and thus graphene straightforwardly, once we identify the anisotropy of Fermi velocity with the external metric. We thus start our discussion below with a description of how the Fermi velocity anisotropy of Dirac electrons translate into a background metric for FQH states they form.

External Metric of Dirac and Schrodinger Electrons – Consider the Hamiltonian

\[
H = T + V, \tag{1}
\]

with the kinetic energy for massless Dirac electrons in a magnetic field.

\[
T = \sum_j \mathbf{v}^{\mu\nu} \sigma_\mu \Pi_\nu, \tag{2}
\]

where \(j \) is electron index, \(\sigma_{\mu=1,2} \) are the Pauli matrices, and \(\mathbf{v}^{\mu\nu} \) is the (real) Fermi velocity matrix. Repeated Greek indices are summed over.

\[
\Pi = \mathbf{p} + \frac{e}{c} \mathbf{A}(\mathbf{r}) \tag{3}
\]

is the mechanical momentum. \(\nabla \times \mathbf{A}(\mathbf{r}) = -B \hat{z} \) thus the electrons move in a uniform perpendicular magnetic field. The two components of \(\Pi \) satisfy the commutation relation

\[
[\Pi_x, \Pi_y] = \frac{i\hbar e}{c} (\partial_x A_y - \partial_y A_x) = \frac{i\hbar B}{c} = \frac{i\hbar^2}{\ell^2}, \tag{4}
\]

where \(\ell = \sqrt{\hbar c/(eB)} \) is the magnetic length.
The easiest way to obtain the Landau level energies and corresponding wave functions is to square the kinetic energy of a single electron:

\[[v^{\mu\nu} \sigma_{\mu} \Pi_{\nu}]^{2} = (v v^{T})^{\alpha\beta} \Pi_{\alpha} \Pi_{\beta} - \frac{\hbar^{2}}{2} (v^{11} v^{22} - v^{12} v^{21}) \sigma_{z} \] \tag{5}

from which it is clear that the zero energy Landau level \((0LL, \text{which will be the focus of the rest of this paper}) \) wave functions only have weight in one of the two components, and the symmetric matrix \(vv^{T} \) plays a role identical to the inverse effective mass matrix for quadratic bands:

\[T = \frac{1}{2} (m^{-1})^{\mu\nu} \Pi_{\mu} \Pi_{\nu} = \frac{g^{\mu\nu} \Pi_{\mu} \Pi_{\nu}}{2m_{0}}, \tag{6} \]

where \(m^{-1} \) is the inverse effective mass tensor, \(1/m_{0} \) is the geometric mean of the eigenvalues of \(m^{-1} \), and the (space-only) metric tensor \(g \) is defined by the second equality above, which is symmetric and unimodular.

For massless Dirac electrons, we may therefore diagonalize this matrix \(vv^{T} \) to obtain its eigenvalues \(\alpha_{\nu} \) and \(\nu^{2} / a \), with \(\sqrt{\alpha_{\nu} F} \) and \(\nu^{2} / \sqrt{a} \) the Fermi velocities along the two principle directions, defined to be the \(x \) and \(y \) directions hereafter, and \(v_{x} \) and \(v_{y} \) their geometric mean, \(|a - 1| \) is a measure of the anisotropy. It is known \[28\] that strain and ripple modifies the \(v \) matrix in graphene, and thus \(v_{x} \) and \(v_{y} \) in particular the anisotropy \(a \), which plays a role very similar to the effective mass anisotropy parameter in a quadratic band (here the notation is the same as that of Ref. \[6\]). In ordinary semiconductors we expect strain of lattice also induces or modifies effective mass anisotropy. We thus discuss the massless Dirac and (massive) Schrödinger electrons on equal footing in the remainder of the paper. In the notation of Eq. \[6\], a strain induces a change of metric and thus geometry (of spaces), and a time-dependent strain plays a role similar to a gravitational wave, that can excite the “gravitons” of the FQH systems as we will see below.

Geometrical Coupling of Intra-Landau Level Dynamics and External Metric – The intra-Landau level degrees of freedom are described by guiding center coordinates

\[\mathbf{R} = \mathbf{r} - (\ell^{2} / \hbar) \mathbf{\hat{z}} \times \Pi \] \tag{7}

which commute with \(\Pi \). The interaction term

\[V = \sum_{i,j} V(\mathbf{r}_{i} - \mathbf{r}_{j}) = \frac{1}{2} \sum_{\mathbf{q}} V_{\mathbf{q}} \rho_{\mathbf{q}} \rho_{-\mathbf{q}}. \tag{8} \]

where \(V_{\mathbf{q}} \) is the Fourier transform of electron-electron interaction potential \(V(\mathbf{r}) \) (assumed to be isotropic) and

\[\rho_{\mathbf{q}} = \sum_{i} e^{i \mathbf{q} \cdot \mathbf{r}_{i}} \tag{9} \]

is the density operator. In the large \(B \) limit, Landau level spacing overwhelms \(V \), and the electron motion is confined to a given Landau level. In this case it is appropriate to project \(V \) onto \(0LL \) that results in a reduced Hamiltonian involving the \(\mathbf{R} \)’s only \[6\]:

\[\tilde{V} = \frac{1}{2} \sum_{\mathbf{q}} V_{\mathbf{q}} e^{-\frac{i}{\hbar} (a q_{x}^{2} + q_{y}^{2}) / a^{2}} \mathbf{\hat{q}} \tilde{\rho}_{-\mathbf{q}}, \tag{10} \]

where

\[\mathbf{\tilde{R}} = \sum_{i} e^{i \mathbf{q} \cdot \mathbf{R}_{i}} \tag{11} \]

is the guiding center density operator, and we choose \(\mathbf{\hat{x}} \) and \(\mathbf{\hat{y}} \) directions to be the diagonal directions of \(m^{-1} \) or \(vv^{T} \), with anisotropy possibly induced by lattice distortion. We note the only place that the background geometric parameter \(a \) enters \(\tilde{V} \) is in the Gaussian form factor of \(0LL \). Once confined to the \(0LL \) the difference between Dirac and Schrödinger electrons disappears, and our discussions below apply to both.

Electron dispersion in GaAs and graphene is isotropic under ambient condition and thus \(a = 1 \). Now let us start by considering a particularly simple case, namely a small uniform anisotropy induced by either strain (in either GaAs or graphene) or ripple (in graphene), that is possibly time-dependent:

\[a = 1 + \xi(t). \tag{12} \]

This corresponds to space distortion induced by a long-wave length “gravitational wave”, in the gravity analogy. Physically it can be induced by a lattice wave that is either of long-wave length, or with wave vector perpendicular to the 2DEG plane so that the electrons see a uniform lattice distortion (see Fig. 1 and more on this later).

We assume the frequency of \(\xi(t) \) is low compared to Landau level spacing, thus no inter-Landau level transition is induced. Then the main physical effect of this
time-dependent geometry comes from its coupling to intra-Landau level dynamics of the electrons. This results in a time-dependent perturbation in the intra-Landau level Hamiltonian:

$$\delta V(t) = \frac{\xi(t)}{4} \sum_{\mathbf{q}} (q_y^2 - q_x^2) V_0 e^{-\frac{q_y^2 + q_x^2}{2}} \mathbf{p}_{\mathbf{q}} \mathbf{p}_{\mathbf{-q}}.$$ (13)

The 2DEG (assumed to be in its ground state) will absorb energy from the “gravitational wave”, with a rate determined by the spectral function:

$$I(\omega) = \sum_n |\langle n|\hat{O}|0\rangle|^2 \delta(\omega - \omega_n),$$ (14)

where $|0\rangle$ is the ground state, $|n\rangle$ is an excited state with excitation energy $\hbar \omega_n$, and

$$\hat{O} = \sum_{\mathbf{q}} (q_y^2 - q_x^2) V_0 e^{-\frac{q_y^2 + q_x^2}{2}} \mathbf{p}_{\mathbf{q}} \mathbf{p}_{\mathbf{-q}}.$$ (15)

describes the coupling between 2DEG in a FQH state to the lattice distortion/geometry. It is interesting to note that the \mathbf{q}-dependence of the term being summed over above takes a d-wave form, indicating \hat{O} carries angular momentum $L = 2$. It will thus couple to excitations with $L = 2$, which is the case for gravitons.

Excitation spectrum of Laughlin-type FQH states is illustrated schematically in Fig. 2(a). The lowest-energy elementary excitations are magneto-rotons (referred to as roton from now on) whose dispersion takes the form

$$\Omega(k) = \omega_0 + A(k - k_0)^2,$$ (16)

where ω_0 is the (minimum) roton frequency (or roton gap), k_0 is the momentum of roton minimum, and A is a constant. To a very good approximation, a roton with momentum \mathbf{k} is created by \mathbf{p}_k for $k = |\mathbf{k}| \approx k_0$, and exhausts its spectral weight. We thus find among other excitations, \hat{O} creates a pair of rotons with total momentum zero, and the roton pair contribution to the spectral function $I(\omega)$ takes the form

$$I_{\text{rotom}}(\omega) \propto \sum_{|\mathbf{q}| \approx k_0} (q_y^2 - q_x^2) V_0^2 e^{-\frac{q_y^2 + q_x^2}{2}} \delta(\omega - \omega_0),$$ (17)

$$\propto \delta[\omega - 2\Omega(q)],$$ (17)

It is easily seen that $I_{\text{rotom}}(\omega)$ has a threshold frequency at $2\Omega_0$, and diverges for $\omega \to 2\Omega_0 + 0^+$:

$$I_{\text{rotom}}(\omega) \propto \int dq \delta(\omega - 2\Omega_0 - 2A(q - q_0)^2)$$ (18)

$$\propto \frac{1}{\sqrt{\omega - 2\Omega_0}}.$$

Thus the roton gap Ω_0 is clearly visible in $I(\omega)$ [see Fig. 2(b)]. This provides an alternative method of measuring the magneto-roton gap, in addition to earlier attempts using optical methods.[30, 31]

What is more interesting, however, is the long-wavelength mode with $k \to 0$, which is the graviton mode that is of primary interest of the present paper.[32] It is known[12, 23, 33] that $\langle 0|\rho_{\mathbf{k}}\rho_{-\mathbf{k}}|0\rangle \propto (k\ell)^4$ as $k \to 0$, thus it is very difficult to probe the collective mode in this regime using electromagnetic/optical probes that couple to electron density. In particular the mode with $\mathbf{k} = 0$ simply has no coupling to the ground state through the density operator, as the cyclotron mode exhausts the spectral weight of the latter (Kohn’s theorem). Another way to understand this is the graviton has spin-2, and cannot be excited by spin-1 photons. On the other hand the perturbation induced by acoustic/gravitational wave in Eq. (13) is indeed an angular momentum-two operator, and can excite the graviton mode (it is only natural that gravitons are excited by gravitational waves!). We thus expect the graviton shows up as a sharp resonance in the spectral function [13], allowing its energy to be measured spectroscopically [see Fig. 2(b)]. On-going numerical calculation of $I(\omega)$ defined in Eq. (14) indeed finds a pronounced peak corresponding to the graviton, which will be presented elsewhere[33].

Acoustic Wave as Gravitational Wave, and its other Effects – The experimental setup is schematically illustrated in Fig. 4. The acoustic waves propagate either inside the 3D bulk crystal or along its surface, and interact with the mobile electrons that lives in a 2D layer through the lattice distortion or strain they induce. There are several mechanisms for this (electron-phonon) interaction. As discussed above, the strain-induced change of electron effective mass tensor corresponds to a geometric or gravitational interaction, which is the main focus of the present work. The specific geometric perturbation considered above corresponds to the setup of Fig. 4(a), that induces a uniform (but oscillating) strain in the 2D plane[33]. There are, however, two other more familiar sources of coupling between strain and electrons:

- **Elasticity** - The lattice distortion/geometry.
- **Electrostatics** - The electrostatic forces between charged particles.

To account for these effects, one needs to include the relevant interactions in the above formalism. For instance, the electrostatic interaction can be included by adding a term proportional to the electrostatic potential V to the lattice distortion.

In summary, the perturbation induced by a “gravitational wave” can be used to excite gravitons in a FQH state, providing a new experimental method to measure the graviton gap and its properties. This approach is complementary to earlier optical methods and provides a direct probe of the collective mode.

Fig. 2: (a) Illustration of excitation spectrum of Laughlin-type fractional quantum Hall states. Solid line represents the magneto-roton mode, and shaded region represents two-roton continuum. The magneto-roton mode continues into the two-roton continuum with decreasing wave vector k (now represented as dashed line, all the way to $k = 0$, ending at the black dot that is the graviton mode which is the main focus of this paper. (b) Spectral function of \hat{O} defined in Eq. (13), revealing the presence of both the graviton and magneto-roton modes.
which are likely to be more important under generic situations: (i) The strain induces a deformation potential that couples directly to the density of electrons. (ii) For non-centrosymmetric crystals, strain induces an electric polarization and corresponding electric field due to the piezoelectric effect. We argue that the effects (i) and (ii) may be eliminated by using the setup of Fig. 1(a). In this case since the strain is uniform in the 2D plane, the deformation potential is also uniform and thus has no effect. Similarly the piezoelectric effect induces a uniform electric field, which couples to the center-of-mass of the electron gas. Kohn’s theorem guarantees that the dipole coupling of the electron gas to such uniform electric field can only cause inter-Landau level transition, and no absorption will occur through such coupling as long as $\omega < \omega_c$ (cyclotron frequency).

We now briefly consider the more generic case in which the lattice distortion is a function of both time and space, with the latter dictated by a 2D wave vector k_0. Such a distortion is induced by a 3D lattice wave propagating with wave vector K_0, whose 2D projection is k_0 [Fig. 1(b)], or by a surface acoustic wave [Fig. 1(c)]. In the gravity analogy we then have a (2D) “gravitational wave” with wave vector k_0. However in these cases the other effects of (i) and (ii) mentioned in the previous paragraph are generically present [although their effects are expected to vanish as $(k_0/\ell)^4$, and in the case of graphene non-uniform strain can also induce pseudo-gauge field. Thus additional effort is needed to isolate the gravitational response. If this is possible, we can not only measure the graviton energy at zero wave vector, but also its dispersion.

The acoustic wave absorption experiment proposed here has some similarity to earlier phonon absorption experiments. After all, an acoustic wave is made of coherent phonons or a phonon version of laser. But there are a couple of fundamental difference here. (i) In earlier experiments phonons are generated by a heat pulse, thus come with energies following a thermal distribution. This makes it impossible for spectroscopy measurement. (ii) More importantly, since the thermal phonons come with un-controlled momenta and polarizations, their effects are dominated by the deformation potential and piezo-electric polarization induced by the strain. Here the wave vector and polarization of the acoustic wave are carefully controlled so that the dominant effect of the strain is on the electron effective mass tensor or metric.

Summary – In this paper we propose acoustic wave as an alternative probe of fractional quantum Hall liquids, and demonstrate that it contains effects similar to those of gravitational wave. It allows for a direct measurement of graviton energy, which is not possible using electromagnetic probes. While we focused on Laughlin-type of states for their simplicity, the graviton as well as magneto-roton modes are expected to exist in all fractional quantum Hall liquids, and can be probed using the methods described in this paper.

The authors (KY) has benefited from stimulating discussions with Lloyd Engel, Mansour Shayegan and Alexey Souslov, and thanks Hsin-hua Lai and Mohamad Pouranvari for assistance. This work was supported by DOE grant No. de-sc0002140.

References

[13] This is, of course, only an analogy to the quanta of spacetime metric fluctuation in a quantum theory of (real) gravity. The reader is cautioned not to confuse between the two.
[27] For a recent review, see Y. Barlas, Kun Yang, and A. H. MacDonald, Nanotechnology 23, 052001 (2012).
[32] Sometimes the mode in the $k \to 0$ limit is also referred to as magneton-roton mode in the literature. Here we call it the graviton (especially for the case of $k = 0$) to distinguish it from the finite wave vector modes whose nature is quite different (see later).
[35] We expect transverse acoustic wave (which induces in-plane shear strains) to be particularly effective in inducing in-plane effective mass anisotropy. For detailed discussion of relation between strain and band structure in semiconductors, see, e.g., Y. Sun, S. E. Thompson, and T. Nishida, J. Appl. Phys. 101, 104503 (2007).