A MODEL FOR DIPOLE MODULATION OF CMBR POLARIZATION

Rahul Kothari

Dept. of Physics, Indian Institute of Technology Kanpur, Kanpur - 208016, India

(Dated: 20th July, Monday, 2015)

I propose a model of dipole modulation in Cosmic Background Microwave Radiation (CMBR) polarization fields Q and U. It is shown that the modulation leads to correlations between l and l' multipoles where either $l' = l$ or $l' = l \pm 1$, but the contribution for the case $l' = l$ cancels out after summing over m. We perform a detailed mathematical analysis of the E and B mode correlations and obtain the final result in a closed form.

* Email: rahulko@iitk.ac.in
I. INTRODUCTION

In 2004 a signal of hemispherical power asymmetry \([1-9]\) was found in the CMBR temperature field. This means that the power corresponding to temperature fluctuations is different in opposite hemispheres. Parametrization of this hemispherical power asymmetry can be obtained by a dipole modulation model \([10,13]\) of the following form:

\[
\Delta T(n) = F(n) \left(1 + A \hat{\lambda} \cdot n\right),
\]

where \(F(n)\) is the isotropic field, \(\hat{\lambda}\) is the preferred direction and \(A\) is the amplitude of dipole modulation. It has been shown in the literature \([12,14]\), that this kind of modulation leads to a correlation between the \(l\) and \(l \pm 1\) harmonics. Since the polarization data has been released by PLANCK, it is worthwhile to look for the similar kind of correlations in the polarization fields. This work proposes a modulation in the polarization fields \(Q \pm iU\) and explores its consequences.

In this paper we shall be primarily interested in the \(E\) mode polarization which is expected to be dominant. However for completeness, we also perform the computation for the \(B\) modes. The modulation is introduced in the \(Q \pm iU\) since these are directly related to the scalar \(E\) and \(B\) polarization modes. In particular the harmonic coefficients \(a_{E,lm}\) can be expressed in terms of \(Q \pm iU\) fields.

The article is structured in the following way. In Section (II) I propose a model of dipole modulation in the polarization fields \(Q \pm iU\). This model differs from \([15]\) where the authors have proposed a modulation in the primordial perturbations and \([16]\) where the asymmetry is explained on the basis of inhomogeneous and anisotropic primordial power spectrum. Next I evaluate the correlation between \(a_{E,lm}\) and \(a_{E,lm}'\). This evaluation relies on several mathematical formulae and results which are systematically proved in Section (IV).

II. INTRODUCING THE MODULATION IN POLARIZATION FIELDS

Let \(\hat{Q}(n)\) and \(\hat{U}(n)\) denote the dipole modulated polarization fields and \(n \equiv (\theta, \phi)\). Let us also define

\[
\hat{\alpha}(n) = \hat{Q}(n) + i\hat{U}(n),
\]

\[
\hat{\beta}(n) = \hat{Q}(n) - i\hat{U}(n),
\]

where \(\alpha = Q + iU\) and \(\beta = Q - iU\) are the standard unmodulated fields. I assume that the preferred direction of modulation \(\hat{\lambda}\) is the same for both \(Q\) and \(U\). Let us take this direction to be the \(z\) axis of our coordinate system, in which case \(\hat{\lambda} \cdot n = \cos \theta\).

Hence the modulated fields can be expressed as:

\[
\hat{\alpha}(n) = \alpha(n)(1 + A \cos \theta),
\]

\[
\hat{\beta}(n) = \beta(n)(1 + B \cos \theta),
\]

here we are allowing \(A = A_1 + iA_2\) and \(B = B_1 + iB_2\) to be complex numbers. Since \(\hat{\alpha} = \hat{\beta}^*\), Eqs. (II.2) & (II.1) imply \(A = B^*\). Thus Eq. (II.2) & (II.1) now become

\[
\hat{Q} = Q(1 + A_1 \cos \theta) - UA_2 \cos \theta
\]

\[
\hat{U} = QA_2 \cos \theta + U(1 + A_1 \cos \theta)
\]

Now \(\hat{\alpha}\) and \(\hat{\beta}\) both are fields defined on the surface of a sphere, therefore these are expressible in terms of the modulated harmonic coefficients, \(\hat{a}_{E,lm}\) and \(\hat{a}_{B,lm}\) as follows \([17]\):

\[
\hat{\alpha} = - \sum_{lm} (\hat{a}_{E,lm} + \hat{i} \hat{a}_{B,lm}) Y_{2,lm},
\]

\[
\hat{\beta} = \sum_{lm} (\hat{a}_{E,lm} + \hat{i} \hat{a}_{B,lm}) Y_{-2,lm}.
\]

Here \(Y_{\pm 2,lm}(n)\) are the spin \(\pm 2\) spherical harmonics. Above equations can be inverted using the orthogonality properties \([18]\) of spin spherical harmonics to obtain

\[
-(\hat{a}_{E,lm} + \hat{i} \hat{a}_{B,lm}) = \int \hat{\alpha}(n) Y_{2,lm}^*(n) d\Omega,
\]

\[
-\hat{a}_{E,lm} + \hat{i} \hat{a}_{B,lm} = \int \hat{\beta}(n) Y_{-2,lm}^*(n) d\Omega.
\]
Adding both of these equations we obtain

\[
\tilde{a}_{E,lm} = -\frac{1}{2} \int \left(\tilde{\alpha}(n) Y_{2,lm}^*(n) + \tilde{\beta}(n) Y_{-2,lm}^*(n) \right) d\Omega,
\]

which on account of Eqs. (II.1) and (II.2) given above can be converted into the following form

\[
\tilde{a}_{E,lm} = -\frac{1}{2} \int \left[\alpha(n) (1 + A \cos \theta) Y_{2,lm}^*(n) + \beta(n) (1 + B \cos \theta) Y_{-2,lm}^*(n) \right] d\Omega,
\]

and similarly

\[
\tilde{a}_{E,l'm'} = -\frac{1}{2} \int \left[\alpha^*(n') (1 + A^* \cos \theta') Y_{2,l'm'}^*(n') + \beta^*(n') (1 + B^* \cos \theta') Y_{-2,l'm'}^*(n') \right] d\Omega'.
\]

Using these two equations I can now calculate the two point correlations of spherical harmonic coefficients corresponding to the modulated fields.

III. CALCULATION OF THE CORRELATIONS

We are interested in calculating the correlations of the form:

\[
\langle \tilde{a}_{E,lm} \tilde{a}_{E,l'm'}^* \rangle = \frac{1}{4} \sum_{l} I_{l}
\]

where the integrals \(I_{l}\) are defined as follows:

\[
I_{1} = \int \left(\alpha(n) \alpha^*(n') \right) (1 + A \cos \theta) (1 + A^* \cos \theta') Y_{2,lm}^*(n) Y_{2,l'm'}^*(n') d\Omega d\Omega',
\]

\[
I_{2} = \int \left(\alpha(n) \beta^*(n') \right) (1 + A \cos \theta) (1 + B^* \cos \theta') Y_{2,lm}^*(n) Y_{-2,l'm'}^*(n') d\Omega d\Omega',
\]

\[
I_{3} = \int \left(\beta(n) \alpha^*(n') \right) (1 + B \cos \theta) (1 + A^* \cos \theta') Y_{-2,lm}^*(n) Y_{2,l'm'}^*(n') d\Omega d\Omega',
\]

\[
I_{4} = \int \left(\beta(n) \beta^*(n') \right) (1 + B \cos \theta) (1 + B^* \cos \theta') Y_{-2,lm}^*(n) Y_{-2,l'm'}^*(n') d\Omega d\Omega'.
\]

Now with the aid of the facts that

1. The unmodulated \(E\) and \(B\) mode spherical harmonic coefficients are uncorrelated, i.e. \(\langle a_{E,lm} a_{B,l'm'}^* \rangle = 0\).

2. Due to rotational symmetry \(\langle a_{X,lm} a_{X,l'm'}^* \rangle = C_{l}^{X} \delta_{ll'} \delta_{mm'}\), where \(X\) can be either \(E\) or \(B\) mode harmonic coefficients & \(C_{l}^{X}\) is the isotropic power spectrum corresponding to \(E\) or \(B\) mode.

3. Symmetry property of spin spherical harmonics \([18]\) implies \(Y_{-2,lm}^* = (-1)^{m} Y_{2,l(-m)}\),

the two point correlations can be written as:

\[
\langle \alpha(n) \alpha^*(n') \rangle = \sum_{l''m''} (C_{l''m''}^{EE} + C_{l''m''}^{BB}) Y_{2,l''m''}^*(n) Y_{2,l''m''}^*(n'),
\]

\[
\langle \alpha(n) \beta^*(n') \rangle = (-1)^{m''} \sum_{l''m''} (C_{l''m''}^{EE} - C_{l''m''}^{BB}) Y_{2,l''m''}^*(n) Y_{2,l''m''}^*(n'),
\]

\[
\langle \beta(n) \alpha^*(n') \rangle = (-1)^{m''} \sum_{l''m''} (C_{l''m''}^{EE} + C_{l''m''}^{BB}) Y_{-2,l''m''}^*(n) Y_{2,l''m''}^*(n'),
\]

\[
\langle \beta(n) \beta^*(n') \rangle = \sum_{l''m''} (C_{l''m''}^{EE} + C_{l''m''}^{BB}) Y_{2,l''m''}^*(-m') Y_{2,l''m''}^*(-m').
\]
Using all this information integrals \(I_i \) take the form:

\[
I_1 = M_1 + \sum_{l'r'm'} \int \left(C_{l'}^{EE} + C_{l'}^{BB} \right) Y_{l'r'm'}(n) Y_{l'r'm'}(n') Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega',
\]

(III.2)

\[
I_2 = M_2 + (-1)^{m'm'} \sum_{l'r'm'} \int \left(C_{l'}^{EE} - C_{l'}^{BB} \right) Y_{l'r'm'}(n) Y_{l'r'(-m')} Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega',
\]

(III.3)

\[
I_3 = M_3 + (-1)^{m'm'} \sum_{l'r'm'} \int \left(C_{l'}^{EE} - C_{l'}^{BB} \right) Y^*_{l'r'm'}(n') Y_{l'r'(-m')} Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega',
\]

(III.4)

\[
I_4 = M_4 + (-1)^{m'm'} \sum_{l'r'm'} \int \left(C_{l'}^{EE} + C_{l'}^{BB} \right) Y^*_{l'r'm'}(n') Y_{l'r'(-m')} Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega',
\]

(III.5)

where it has been assumed that real and imaginary parts of the modulation parameters \(A \) and \(B \) are small so that higher order terms (of the form \(A_1A_2, A_1B_2 \) etc.) can be dropped and \(M_i \) is defined to be the anisotropic piece of the integral \(I_i \). The isotropic part, after summing over the integrals \((I_i) \) becomes \(4C_{l'}^{EE} \delta_{l'l'} \delta_{mm'} \) and \(M_i \) are expressed as:

\[
M_1 = \sum_{l'r'm'} \left(C_{l'}^{EE} + C_{l'}^{BB} \right) \int \left(A \cos \theta + A^* \cos \theta' \right) Y_{l'r'm'}(n) Y^*_{l'r'm'}(n') Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega',
\]

\[
M_2 = \sum_{l'r'm'} \left(C_{l'}^{EE} - C_{l'}^{BB} \right) (-1)^{m'm'} \int \left(B \cos \theta + A \cos \theta' \right) Y_{l'r'm'}(n) Y^*_{l'r'(-m')} Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega',
\]

\[
M_3 = \sum_{l'r'm'} \left(C_{l'}^{EE} - C_{l'}^{BB} \right) (-1)^{m'm'} \int \left(B \cos \theta + A^* \cos \theta' \right) Y^*_{l'r'm'}(n') Y_{l'r'(-m')} Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega',
\]

\[
M_4 = \sum_{l'r'm'} \left(C_{l'}^{EE} + C_{l'}^{BB} \right) (-1)^{m'm'} \int \left(B \cos \theta + A^* \cos \theta' \right) Y^*_{l'r'm'}(n') Y_{l'r'(-m')} Y_{l'm}(n) Y_{l'm}(n') \, d\Omega d\Omega'.
\]

In order to evaluate the above integrals, I next define:

\[
\mathbb{I}(l,m,l',m') = \int_0^{2\pi} \int_0^\pi Y_{l'm}(n) Y^*_{l'm'}(n') \cos \theta d\Omega = \delta_{m',m} \mathbb{E}(l,l',m), \quad \text{III.6}
\]

\[
\mathbb{J}(l,m,l',m') = \int_0^{2\pi} \int_0^\pi Y_{l'm}(n) Y^*_{l'm'}(n) \, d\Omega = \delta_{l'l'} \delta_{mm'}. \quad \text{III.7}
\]

Finding the form of the function \(\mathbb{K}(l,l',m) \) is one of the main objectives of this article. Using Theorems (1), (2) and (3), I find that the function \(\mathbb{K}(l,l',m) \):

1. Is zero, when \(l' > l + 1 \) and \(l' < l - 1 \) (Theorem 1)
2. Is non zero, when
 (a) \(l = l' \) (Theorem 2)
 (b) \(l' = l \pm 1 \) (Theorem 3)

Combining all these cases together we find:

\[
\mathbb{K}(l,l',m) = (-1)^{l+l'} \mathbb{H}(l,l',m) \cup (l,l',m), \quad \text{III.8}
\]

where

\[
\mathbb{H}(l,l',m) = \sqrt{\frac{(2l+1)(2l'+1)(l-m)!(l+m)!(l'-m)!(l'+m)!}{(l+1)!(l-1)!(l'+2)!(l'-2)!}},
\]

\[
\text{\cup}(l,l',m) = \left[\frac{2(2l)!(2l'+2)!(l'-2)! \delta_{l,l'}}{(l'+l+2)!(l-m)!(l+m)!} + \frac{4m(2l)!(2l'+2)!(l'-2)! \delta_{l,l'}}{l(l+m)!(l-m)!(l'+l+2)!} + \frac{2(2l')!(l-2)!(l'+2)! \delta_{l,l'}}{(l'+m)!(l'-m)!(l'+l+2)!} \right],
\]

Now in terms of the functions \(\mathbb{H}(l,l',m) \) & \(\text{\cup}(l,l',m) \) and employing the following properties:

\[
\mathbb{H}(l,l',m) = \mathbb{H}(l',l,m) = \mathbb{H}(l,l',-m) = \mathbb{H}(l',-m),
\]

\[
\text{\cup}(l,l',m) = \text{\cup}(l,l',m) = \text{\cup}(l,l',-m) = \text{\cup}(l',-m),
\]
the integrals M_i can be written as:

\[
M_1 = (-1)^{l+l'} \delta_{m'm} \mathbb{H} (l', l, m) \cup (l', l, m) \left[A \left(C_p^{EE} + C_p^{BB} \right) + A^* \left(C_p^{EE} + C_p^{BB} \right) \right],
\]

\[
M_2 = (-1)^{l+l'} \delta_{m'm} \left[B^* \mathbb{H} (l', l', -m) \cup (l', l', -m) \left(C_p^{EE} - C_p^{BB} \right) + A \left(C_p^{EE} - C_p^{BB} \right) \mathbb{H} (l', l, m) \cup (l', l, m) \right],
\]

\[
M_3 = (-1)^{l+l'} \delta_{m'm} \left[B \mathbb{H} (l', l', -m) \cup (l', l', -m) \left(C_p^{EE} - C_p^{BB} \right) + A^* \mathbb{H} (l', l, m) \cup (l', l, m) \left(C_p^{EE} - C_p^{BB} \right) \right],
\]

\[
M_4 = (-1)^{l+l'} \delta_{m'm} \mathbb{H} (l', l', -m) \cup (l', l', -m) \left[B \left(C_p^{EE} + C_p^{BB} \right) + B^* \left(C_p^{EE} + C_p^{BB} \right) \right].
\]

Summing over all the integrals, we obtain:

\[
\sum_{i=1}^{4} M_i = 2 \left[\mathbb{K} (l', l', m) \left(AC_p^{EE} + A^* C_p^{EE} \right) \right] + \mathbb{K} (l', l', -m) \left(BC_p^{EE} + B^* C_p^{EE} \right),
\]

and thus finally the two point correlation is given by the following expression:

\[
\left\langle \tilde{a}_{E,E} \right\rangle_{m'm'} = \delta_{m'm} \left[\frac{1}{2} \left[\mathbb{K} (l', l', m) \left(AC_p^{EE} + A^* C_p^{EE} \right) \right] + \mathbb{K} (l', l', -m) \left(A^* C_p^{EE} + AC_p^{EE} \right) \right] + C_p^{EE} \delta_{l'l'}.\]

Similar kind of analysis for B mode polarization gives:

\[
\left\langle \tilde{a}_{B,B} \right\rangle_{m'm'} = \delta_{m'm} \left[\frac{1}{2} \left[\mathbb{K} (l', l', m) \left(AC_p^{BB} + A^* C_p^{BB} \right) \right] + \mathbb{K} (l', l', -m) \left(A^* C_p^{BB} + AC_p^{BB} \right) \right] + C_p^{BB} \delta_{l'l'}.\]

where I’ve used $A = B^*$.

IV. EVALUATION OF THE INTEGRAL

In this section I explicitly evaluate the integral $\mathbb{I} (l, m', l, m')$ defined in Eq. (III.6) for different cases. First note that the form of the spin 2 harmonics is:

\[
Y_{2lm} = (-1)^m e^{i\phi} \sqrt{\frac{(2l+1)(l-m)!}{4\pi (l+2)!(l-2)!}} \sum_{r=0}^{l-2} \binom{l-2}{r} \binom{l+2}{r+2-m} (-1)^{l-r} \left(\sin \frac{\theta}{2} \right)^{2l-2r-2+m} \left(\cos \frac{\theta}{2} \right)^{2r+2-m}.
\]

Now the ϕ integration in Eq. (III.6) gives only $2\pi \delta_{m'm}$. To evaluate the θ integral, I use the identity

\[
\int_0^\pi \sin^m \left(\frac{\theta}{2} \right) \cos^n \left(\frac{\theta}{2} \right) \cos \theta \sin \theta d\theta = 2 \left[\frac{\Gamma \left(\frac{m+2}{2} \right) \Gamma \left(\frac{n+2}{2} \right) \Gamma \left(\frac{m+n+2}{2} \right) \Gamma \left(\frac{m+n+4}{2} \right)}{\Gamma \left(\frac{m+4}{2} \right) \Gamma \left(\frac{n+4}{2} \right) \Gamma \left(\frac{m+n+6}{2} \right) \Gamma \left(\frac{m+n+8}{2} \right)} \right].
\]

which can be easily derived by using the standard integral

\[
\int_0^{\pi/2} \sin^m \theta \cos^n \theta d\theta = \frac{\Gamma \left(\frac{m+1}{2} \right) \Gamma \left(\frac{n+1}{2} \right)}{2\Gamma \left(\frac{m+n+2}{2} \right)}.
\]

Thus after performing all these computations, the function $\mathbb{H} (l, m', l', m)$ becomes

\[
\mathbb{H} (l, m', l', m') = (-1)^{l+l'} \delta_{m'm} \mathbb{H} (l', l, m) \cup (l', l, m).
\]

Note that this equation is the same equation that was used in the previous Section [III. Here

\[
\mathbb{I} (l, l', m) = \frac{(l-2)! (l+2)! (l'+2)! (l'-2)!}{(l'+l+2)!} \mathbb{S} (l, l', m)
\]

\[
\mathbb{S} (l, l', m) = \sum_{r=0}^{l-2} \sum_{t=0}^{l'-2} \mathcal{F} (l', l', r, t, m)
\]
\[\mathcal{F}(l', r, t, m) = \frac{(-1)^{l+t}(l + l' - r - t + m - 2)! (r + t - m + 2)! (2r + 2t - 2m + 4 - l - l')}{r! (l - 2)! (l' - 2)! (r + t - m + 2)! (r + t - m + 2)! (l - r + m)! (l' - t + m)!}. \] (IV.4)

The rest of the article will be devoted to evaluating the function \(S(l, l', m) \) in different cases. There are five cases to be considered:

1. When \(l' > l + 1 \) and \(l' < l - 1 \), these two cases are considered in Theorem 1.
2. When \(l = l' \), considered in Theorem 2.
3. When \(l' = l \pm 1 \), these two cases are considered in Theorem 3.

Theorem 1. The function \(S(l, l', m) \) is zero when \(l' > l + 1 \) or \(l' < l - 1 \).

Proof. First of all note that the Eq. (IV.4) can be written as

\[\mathcal{F}(l', r, t, m) = (-1)^{l+t} \binom{l + 2}{l - r + m} \frac{(2r + 2t - 2m + 4 - l')}{(l' - 2)! (l + 2)!} \binom{l' - 2}{t} \frac{(l + l' - r - t + m - 2)!}{(l - r - 2)! (l' - t + m)!} \frac{(r + t - m + 2)!}{r! (t + 2 - m)!}, \]

which after a simplification of the factorial terms in two parenthesis converts to

\[\frac{(-1)^{l+t} \binom{l + 2}{l - r + m} \binom{l' - 2}{r}}{(l' - 2)! (l + 2)! (l' - 2)!} \binom{l' - 2}{t} \left(2r + 2t - 2m + 4 - l' \right) \prod_{i=1}^{l' - 2 - r} \left(l' - t + m + s \right) \prod_{i=1}^{r} \left(t - m + 2 + v \right). \]

The term in the square brackets above is a polynomial of degree \(l - 1 \), so it can be written as \(a_0 l'^{-1} + a_1 l'^{-2} \ldots a_{l-1} \), where \(a_i \) are some constants. The sum over the variable \(t \) (keeping \(r \) fixed) becomes:

\[\sum_{t=0}^{l' - 2} (-1)^t \binom{l' - 2}{t} \left(a_0 l'^{-1} + a_1 l'^{-2} \ldots a_{l-1} \right). \] (IV.5)

Now by the first case of Corollary 5 (to be proved later in this section) this is zero if the highest power of \(t \) i.e. \(l - 1 \) is less than \(l' - 2 \), i.e. when \(l - 1 < l' - 2 \) or when \(l' > l + 1 \). This proves the first part, i.e \(S(l, l', m) = 0 \) when \(l' > l + 1 \).

To prove the other part I first use the symmetry property

\[\mathcal{F}(l', r, t, m) = \mathcal{F}(l', l, t, r, m). \]

This renders the function \(\mathcal{F}(l', l', r, t, m) \) in the following form:

\[\frac{(-1)^{l+t} \binom{l + 2}{l - r + m} \binom{l' - 2}{r}}{(l - 2)! (l' - 2)!} \binom{l' - 2}{t} \left(2r + 2t - 2m + 4 - l' \right) \prod_{i=1}^{l' - 2 - r} \left(l - r + m + s \right) \prod_{i=1}^{r} \left(r - m + 2 + v \right), \]

Finally, in this case, to evaluate \(S(l, l', m) \), I sum over \(r \) first. Carrying out the same reasoning which was used for \(l' > l + 1 \), it can be shown that when summed over \(r \), \(S(l, l', m) \) is zero in case \(l' - 1 < l - 2 \) or \(l' < l - 1 \).

Hence we have shown that the correlations between modes corresponding to multipoles \(l \) and \(l' \) such that \(l' \geq l + 2 \) or \(l' \leq l - 2 \) are zero. Next I consider the case \(l' = l \).

Theorem 2. For \(l = l' \),

\[S(l, l', m) = \frac{-4m (2l)!}{l (l + m)! (l - m)! (l + 2)! (l - 2)!}. \] (IV.6)

Proof. Eq. (IV.4) for the case \(l = l' \) can be explicitly written as:

\[\sum_{r=0}^{l-2} \binom{l + 2}{l - r + m} \frac{(-1)^{l+t}}{l - 2)! (l + 2)! (l' - 2)!} \binom{l' - 2}{t} \left(2r + 2t - 2m + 4 - 2l \right) \prod_{i=1}^{l' - 2 - r} \left(l - t + m + s \right) \prod_{i=1}^{r} \left(r - m + 2 + v \right). \] (IV.7)

Now the sum over \(t \), after using

\[\prod_{s=1}^{l-2-r} \left(l - t + m + s \right) \prod_{v=1}^{r} \left(t - m + 2 + v \right) = (-1)^{l-2-r} \left[l'^{-2} + a_1 l'^{-3} + a_2 l'^{-4} + \ldots + a_{l-2} \right], \]
(here a_i are some real constants) becomes the following:

$$(-1)^{l-2-r} \sum_{t=0}^{l-2} (-1)^t \binom{l-2}{t} (2r + 2t - 2m + 4 - 2l) \left[t^{l-2} + a_1 t^{l-3} + a_2 t^{l-4} + \ldots + a_{l-2} \right]. \quad \text{(IV.8)}$$

The quantity in the square brackets above in Eq. (IV.8) is a polynomial of degree $l - 2$ but when it is multiplied with $(2r + 2t - 2m + 4 - 2l)$ only two terms (t^{l-1} and t^{l-2}) contribute. Thus the above equation gets converted into the following (rest other terms, on account of Corollary 5 are zero)

$$(-1)^{l-2-r} \sum_{t=0}^{l-2} (-1)^t \binom{l-2}{t} \left[(2r - 2m + 4 - 2l + 2a_1) t^{l-2} + 2t^{l-1} \right]. \quad \text{(IV.9)}$$

To calculate the t^{l-2} term, I need to know a_1, which can be obtained by noting that if 20

$$\prod_{r=1}^{n} (x + \alpha_r) = x^n + x^{n-1} a_1 + \ldots + a_n \Rightarrow a_1 = \sum_{r=1}^{n} \alpha_r$$

thus

$$a_1 = \sum_{s=1}^{l-2-r} (-l - m - s) + \sum_{v=1}^{r} (-m + 2 + v) = \frac{1}{2} \left[-3l^2 + 7l - 2ml + 4m - 2 + 2r(2l + 1) \right].$$

A straight forward application of Corollary (5) transforms (IV.9) into:

$$(-1)^{-r} (l - 2)! \left[-2l^2 + 2l - 2ml + 2m + 4r(l + 1) \right].$$

Finally I perform a sum over r variable. After simplifications one obtains:

$$\sum_{r=0}^{l-2} \binom{l+2}{l-r+m} \binom{l-2}{r} \left[-2l^2 + 2l - 2ml + 2m + 4r(l + 1) \right] \frac{(l+2)!}{(l-2)!}.$$

This sum can be divided into two parts

$$\frac{(-2l^2 + 2l - 2ml + 2m)}{(l+2)! (l-2)!} \sum_{r=0}^{l-2} \binom{l+2}{l-r+m} \binom{l-2}{r} + \frac{4(l+1)}{(l+2)! (l-2)!} \sum_{r=0}^{l-2} r \binom{l+2}{l-r+m} \binom{l-2}{r},$$

the second sum after using the properties of binomial coefficients becomes

$$\frac{4(l-2)(l+1)}{(l+2)! (l-2)!} \sum_{r=0}^{l-3} \binom{l+2}{l-r-1+m} \binom{l-3}{r}.$$

Now both of the sums can be evaluated using the Vandermonde Convolution property of binomial coefficients [21] which is:

$$\sum_{k=0}^{m} \binom{m}{k} \binom{p}{n-k} = \binom{m+p}{n}, \quad m+p \geq n \& m, n, p \geq 0,$$

and thus finally one gets the following quantity:

$$\frac{(-2l^2 + 2l - 2ml + 2m + 4)}{(l+m)! (l-m)! (l+2)! (l-2)!} + \frac{4(l+1)(l-2)(2l-1)!}{(l+2)! (l-2)! (l-m)! (l-1+m)!} = \frac{-4m(2l)!}{l(l+m)! (l-m)! (l+2)! (l-2)!}.$$

After multiplying by the prefactor $\frac{(l-2)(l+2)(l+2)!}{(l+2)! (l-2)!}$, we obtain $\mathbb{P}(l, l', m)$ given in Eq. [III.8] for the case $l = l'$.

There is one thing to be noted here is that if I calculate $\sum_{m=-l}^{l} \mathbb{S}(l, l', m)$ then since the denominator of $\mathbb{S}(l, l', m)$ is symmetric with respect to negative or positive m, but numerator gives opposite sign contributions for negative and positive m, therefore $\sum_{m=-l}^{l} \mathbb{S}(l, l', m) = 0$, due to which $\sum_{m=-l}^{l} \mathbb{P}(l, l', m) = 0$.

Theorem 3. The function $S(l, l', m)$ can be evaluated explicitly for $l' = l \pm 1$ and is equal to

$$S(l, l', m) = \begin{cases} \frac{2(2l)!}{(l+m)!(l-m)!(l+2)!} & l' = l + 1 \\ \frac{2(2l')!}{(l'+m)!(l'-m)!(l'+2)!} & l' = l - 1 \end{cases}$$

Proof. First taking the case $l' = l + 1$ and by comparing both sides, a_0 in Eq. (IV.5) can be found to be $2(-1)^l l^{-r}$. Using the second case of Corollary 5, the sum over r in Eq. (IV.5) becomes:

$$-2 (-1)^{-l} (l - 1)! = -2 (-1)^l (l - 1)!$$

Now we can sum over r values. After substituting and simplifying, the sum over r becomes:

$$\frac{-2}{(l + 2)! (l - 2)!} \left[\sum_{r=0}^{l-2} \left(\begin{array}{c} l + 2 \\ l - r + m \end{array} \right) \left(\begin{array}{c} l - 2 \\ r \end{array} \right) \right] = \frac{-2 (2l)!}{(l + 2)! (l - 2)! (l + m)! (l - m)!},$$

where in the final step Vandermonde Convolution property has been used. The case $l' = l - 1$ can be analyzed in a similar fashion and yields:

$$\frac{-2 (2l')!}{(l' + 2)! (l' - 2)! (l' + m)! (l' - m)!}.$$

Again after multiplying by the prefactor $\frac{(l - 2)! (l' + 2)! (l' - 2)!}{(l + m)! (l - m)!}$, we obtain other two cases $l' = l \pm 1$ for $U(l, l', m)$ given in Eq. (III.8).

I next derive the mathematical results which have been used in proving the above Theorems.

Lemma 4. Let $f(n, p)$ be the following function

$$f(n, p) = \sum_{r=0}^{n} r^p \left(\begin{array}{c} n \\ r \end{array} \right)$$

where $n, p \geq 0$, then this function satisfies the following recurrence relation

$$f(n, p + 1) = \begin{cases} (-n) \sum_{q=0}^{p} f(n - 1, q) \left(\begin{array}{c} p \\ q \end{array} \right) & n \neq 0 \\ 0 & n = 0 \end{cases}.

Proof. We consider two cases (i) $n = 0$ (ii) $n > 0$ separately. In $n = 0$ case, the function:

$$f(n, p) = \sum_{r=0}^{n} (-1)^r r^p \frac{n!}{(n-r)! r!}$$

gives

$$f(0, p) = \begin{cases} 0 & p > 0 \\ 1 & p = 0 \end{cases}$$

this can be checked by direct substitution. Now since $p \geq 0$, therefore $p + 1 \geq 1$ in $f(0, p + 1)$, therefore $f(0, p + 1) = 0$ for all $p > 0$.

Next we consider $n > 0$, the function $f(n, p + 1)$ is:

$$f(n, p + 1) = \sum_{r=0}^{n} (-1)^r r^{p+1} \left(\begin{array}{c} n \\ r \end{array} \right) = \sum_{r=0}^{n} (-1)^r r^{p+1} \frac{n!}{(n-r)! r!} = n \sum_{r=0}^{n} (-1)^r r^p \frac{(n-1)!}{(n-r)! (r-1)!}.$$
We notice that because of the presence of \((r - 1)!\) term in the denominator, \(r = 0\) term won’t contribute anything. So I can as well start the sum from \(r = 1\). Also let us take \(r - 1 = t\), which renders the above equation, after an application of binomial theorem in the following form:

\[
f(n, p + 1) = -n \sum_{t=0}^{n-1} (-1)^t (1 + t)^p \frac{(n-1)!}{(n-t-1)!t!} = -n \sum_{q=0}^{p} \binom{p}{q} \sum_{t=0}^{n-1} (-1)^t \binom{n-1}{t} r^q,
\]

but by definition of \(f(n, p)\)

\[
f(n - 1, q) = \sum_{t=0}^{n-1} (-1)^t \binom{n-1}{t} r^q,
\]

and hence

\[
f(n, p + 1) = (-n) \sum_{q=0}^{p} f(n - 1, q) \binom{p}{q}.
\]

Amalgamating the two cases we obtain:

\[
f(n, p + 1) = \begin{cases}
(-n) \sum_{q=0}^{p} f(n - 1, q) \binom{p}{q} & n \neq 0, \\
0 & n = 0.
\end{cases}
\]

Corollary 5. Let \(f(n, p)\) be the function as defined above then

\[
f(n, p) = \begin{cases}
0 & p < n, n \neq 0 \\
(-1)^p n! & p = n, n \geq 0 \\
\frac{n(n+1)}{2} (-1)^n n! & p = n + 1, n \geq 0
\end{cases}
\]

Proof. For the first part I use the Corollary 2 of \([22]\) with \(x = 0\) and \(p = n - j\). Clearly when \(1 \leq j \leq n\), then \(p < n\) and hence the first result follows. Now Theorem 1 of the same reference with \(x = 0\) gives the second part.

Now consider the last part. For this I consider two cases (i) \(n = 0\) (ii) \(n > 0\). In \(n = 0\) case, \(f(0, p) = 0\) because \(p = n + 1\), and it was shown above that \(f(0, n + 1) = 0\) for all \(n > 0\). Next comes the case \(n > 0\). The function \(f(n, n + 1)\) by an application of Lemma 4 becomes:

\[
f(n, n + 1) = -n \sum_{q=0}^{n} f(n - 1, q) \binom{n}{q} = -n \left[f(n - 1, n - 1) \binom{n}{n - 1} + f(n - 1, n) \right].
\]

This sum in all other cases; except \(q = n - 1\) and \(q = n\) has zero terms. This can be further simplified in the following recurrence relation form:

\[
P(n) = -n \left[(-1)^n n! + P(n - 1) \right], \tag{IV.12}
\]

where \(P(n) = f(n, n + 1)\). Now rest of the proof can proceed by induction. For \(n = 1\), we get from [IV.10]

\[
P(1) = f(1, 2) = -1,
\]

which is exactly what above formula gives. Now I assume \(P(k)\) to be true. Next I show that it is true for \(P(k + 1)\). Given that

\[
P(k) = \frac{k(k + 1)}{2} (-1)^k k!
\]

so that using recurrence relation [IV.12] one obtains:

\[
P(k + 1) = - (k + 1) \left((-1)^{k+1} (k + 1)! + \frac{k(k + 1)}{2} (-1)^k k! \right) = \frac{(k + 1)(k + 2)}{2} (-1)^{k+1} (k + 1)!
\]

Hence by induction the third part is also true.
V. CONCLUSION

In this article I’ve proposed a model for dipole modulation of the polarization fields, which is a direct generalization of an analogous model proposed earlier for the temperature field \[10, 11\]. We have also derived expressions for the two point correlations of \(E\) and \(B\) mode harmonic coefficients within the framework of this model. It is found that the model leads to a correlation between the modes corresponding \(l\) and \(l'\) such that \(l' = l \pm 1\), in direct analogy to similar correlations observed in the case of the dipole modulation model for temperature \[12, 14\]. We also show that modes corresponding to \(l' > l + 1\) or \(l' < l - 1\) remain uncorrelated. The model also leads to additional contributions to correlation between modes \(l' = l\) which arise due to the dipole modulation term. However these contributions cancel out after summing over \(m\). Although models based on primordial power spectrum which lead to such correlations between \(l\) and \(l \pm 1\) multipoles exist in the literature \[15, 16\], our model provides a method for a direct parametrization of the dipole modulation or hemispherical anisotropy which might be observed in the polarization field \[23\].

ACKNOWLEDGMENTS

I sincerely acknowledge CSIR, New Delhi for the award of the fellowship during which this work was done. I would like to thank Pankaj Jain for pointing out subtle points missed in Lemma 4 and for useful comments, Shobha Madan for vetting some proofs & Shamik Ghosh for discussions. Finally I thank Navneet Garg for patiently listening to my explanations due to which I was able to refine some of the arguments.