Thermodynamic entropy as a Noether invariant

Shin-ichi Sasa
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Yuki Yokokura
International Centre for Theoretical Sciences, Survey No.151,
Shivakote, Hesaraghatta Hobli, Bengaluru North - 560 089, India.

We study a classical many-particle system with an external control represented by a time-dependent extensive parameter in a Lagrangian. We show that thermodynamic entropy of the system is uniquely characterized as the Noether invariant associated with a symmetry for an infinitesimal non-uniform time translation \(t \to t + \eta \hbar \beta \), where \(\eta \) is a small parameter, \(\hbar \) is the Planck constant, \(\beta \) is the inverse temperature that depends on the energy and control parameter, and trajectories in the phase space are restricted to those consistent with quasi-static processes in thermodynamics.

PACS numbers: 05.20.-y, 05.70.-a, 11.30.-j

Introduction.— Entropy is a fundamental concept in physics. It appears in thermodynamics [1, 2], statistical mechanics [3], information theory [4], computation theory [5], quantum information theory [6], and thermodynamics of black holes [7]. Recently, the inter-relation between different types of entropy has been discovered. The second law of thermodynamics has been extended so as to apply systems with a feedback control through exchange of information, not of energy, between the system and the controller [8]. This opens up studies in the intersection of thermodynamics and information theory [9]. As another development, there have been attempts to connect black hole entropy to entanglement entropy [10, 11], and in the AdS/CFT context a novel notion of holographic entropy to entanglement entropy [10, 11], and in development, there have been attempts to connect black hole thermodynamics and information theory [9]. As another controller [8]. This opens up studies in the intersection of information, not of energy, between the system and the environment.

We are then naturally led to ask whether thermodynamic entropy of standard materials is also characterized by a Noether invariant;

Suppose that we have a many-particle isolated system in a box, and that an external controller moves a piston, which may be described by a time-dependent single-body potential. Then, in response to the fact that thermodynamic entropy keeps a constant value in quasi-static adiabatic processes [1], it was proved that along almost all the solution trajectories to the equation of motion with quasi-static change in the volume, the phase space volume enclosed by the energy surface including the phase space point at time \(t \) is invariant [11, 12]. Thus, the logarithm of the phase space volume provides a definition of time-dependent entropy in mechanics. The main result of this Letter is that there exists a symmetry by which the entropy is uniquely characterized as a Noether invariant.

The key step in our theory is to formulate a special class of trajectories that are consistent with quasi-static processes in thermodynamics. By restricting the domain of the action to this class of trajectories, we find a symmetry for an infinitesimal non-uniform time translation \(t \to t + \eta \hbar \beta \), where \(\eta \) is a small parameter, \(\hbar \) is the Planck constant, and \(\beta \) is the inverse temperature determined by applying the thermodynamic relation to the time-dependent entropy. It should be noted that our theory stands on classical mechanics, classical statistical mechanics, and thermodynamics; and thus the Planck constant does not appear. Nevertheless, our theory leads to the existence of a universal constant with the same dimension as the action.

Below, we first describe a setting up of classical mechanics of the particle system, and discuss a generalized Noether theorem associated with a symmetry. We then define trajectories consistent with quasi-static processes based on statistical mechanics. By combining these two concepts, we derive our main result.

Mechanics.— Let \(q(t) \in \mathbb{R}^{3N} \) be a collection of coordinates of \(N \) particles with short-range interaction in a box of volume \(V \). We particularly focus on macroscopic systems where the extensive behavior is observed for large \(N \). We denote the trajectory \((q(t))_{t=t_i}^{t_f} \) by \(\dot{q} \). We also introduce an extensive control parameter \(\alpha \), whose typical example is the volume \(V \). (Formally, \(\alpha \) is a complete set of extensive work variables.) For a fixed protocol of the parameter \(\dot{\alpha} = (\alpha(t))_{t=t_i}^{t_f} \), the action \(\mathcal{I}(\dot{q}, \dot{\alpha}) \) is given by

\[
\mathcal{I}(\dot{q}, \dot{\alpha}) = \int_{t_i}^{t_f} dt L(q(t), \dot{q}(t), \alpha(t)),
\]

where the dot denotes the time derivative. All the mechanical properties are represented by the Lagrangian \(L \). We also assume that there is no conserved quantity other than the total energy for the system with \(\alpha \) fixed, \(E(q, \dot{q}, \alpha) = \dot{q} \partial L / \partial \dot{q} - L(q, \dot{q}, \alpha) \).
We consider a non-uniform time translation: $t \to t' = t + \eta \xi(q, \dot{q}, \alpha)$. Here η is a small parameter, and the functional form of ξ is not specified yet. Then, the transformation $\dot{q} \to \dot{q}'$ is given by $\dot{q}'(t') = q(t)$, because the position of particles is independent of relabeling time coordinate. The transformation $\dot{\alpha} \to \dot{\alpha}'$ corresponds to $\alpha'(t') = \alpha(t)$, because the protocol $\dot{\alpha}$ is fixed. We represent this transformation by index G, and neglect the contribution of $O(\eta^2)$. Then, the change in action $\delta_G I \equiv I(q', \dot{q}', \alpha') - I(q, \dot{q}, \dot{\alpha})$ is expressed as

$$\delta_G I = \int_{t_i}^{t_f} dt \left[\frac{\delta L}{\delta q} \dot{q} + \frac{\partial L}{\partial q} \dot{q} \right],$$

where we have defined $\delta_G L \equiv L(q(t'), \dot{q}(t'), \alpha(t')) - L(q(t), \dot{q}(t), \alpha(t))$. Noting that $\delta_G \dot{q} \equiv \dot{q}'(t) - \dot{q}(t) = -\eta \xi \dot{q}$ and introducing the Euler-Lagrange derivative

$$E \equiv \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}},$$

we express $\delta_G I$ in terms of $\delta_G q$. Thus, we obtain

$$\delta_G I = \eta \int_{t_i}^{t_f} dt \left\{ -E \xi \dot{q} + \frac{d}{dt} \left[\xi \left(L - \frac{\partial L}{\partial \dot{q}} \right) \right] \right\}.$$

Now suppose that, for some $\dot{\alpha}$, there exist $\xi(q, \dot{q}, \alpha)$ and $\psi(q, \dot{q}, \alpha)$ such that [21] [22]

$$\delta_G I = \eta \int_{t_i}^{t_f} dt \frac{d\psi}{dt},$$

for a class of trajectories \dot{q}, which is identified later. Then, [31] is written as

$$\int_{t_i}^{t_f} dt E \xi \dot{q} = - \left. \left(\psi + E \xi \right) \right|_{t_i}^{t_f}.$$

This leads to two important properties. First, because $E = 0$ at any solution \dot{q}_s, we obtain a conservation law

$$(\psi_s + E_s \xi_s)\big|_{t_i}^{t_f} = 0.$$

Here, the subscript of B_s represents the evaluation of a quantity B at a solution trajectory $q_s(t)$. Second, by substituting $q(t) = q_s(t + \eta \xi_s)$ into (9), we have

$$\int_{t_i}^{t_f} dt E \xi \dot{q} \bigg|_{q = q_s(t + \eta \xi_s)} = - (E \xi + \psi)\big|_{t_i}^{t_f},$$

where we have used $q_s(t_i + \eta \xi_s(t_i)) = q_s(t_i')$. Because the conservation law [7] holds for any t_i and t_f, the right-hand side of (8) is equal to zero. Expanding the left-hand side with respect to η, we obtain

$$\int_{t_i}^{t_f} dt \frac{\delta E}{\delta q} \dot{q} \bigg|_{s} = 0,$$

where we have used the equation of motion $E|_{s} = 0$. The relation [9] implies that $q_s + \delta_G q|_{s}$ is a solution of the same equation of motion [21]. That is, the transformation G maps each solution trajectory to another one in the system $I(\dot{q}, \dot{\alpha})$. This property was referred to as a dynamical symmetry [23] [24]. If ψ in [3] represents a symmetry, leading to the dynamical symmetry and the conservation law [7], as we have seen above. This was called a generalized Noether theorem [27]. In this context, $\psi + E \xi$ is the Noether invariant associated with the transformation G.

Thermodynamics.— Let us briefly review statistical mechanics. We introduce a phase space coordinate $\Gamma = (q, p)$ with the momentum $p \equiv \partial L/\partial \dot{q} \in \mathbb{R}^{2N}$, and assume that \dot{q} can be uniquely determined for (q, p). Then, $H(\Gamma, \alpha) = E(q, \dot{q}(q, p), \alpha)$ is the Hamiltonian. The expectation of any quantity $A(\Gamma)$ with respect to the microcanonical ensemble of (E, α) is defined as

$$(A)_{E, \alpha}^{mc} \equiv \frac{1}{\Sigma(E, \alpha)} \int d\Gamma \delta(E - H(\Gamma, \alpha)) A(\Gamma),$$

where $\Sigma(E, \alpha) \equiv \int d\Gamma \delta(E - H(\Gamma, \alpha))$ is the normalization constant. Throughout this Letter, the Boltzmann constant is set to unity. According to the formula in statistical mechanics, the entropy S is defined as

$$S(E, \alpha) \equiv \log \frac{\Omega(E, \alpha)}{N!},$$

with $\Omega(E, \alpha) \equiv \int d\Gamma \delta(E - H(\Gamma, \alpha))$, where $\theta(x) = 1$ for $x \geq 0$ and $\theta(x) = 0$ for $x < 0$ [29]. We can then confirm the fundamental relation in thermodynamics [30],

$$dS = \beta dE - \beta \left(\frac{\partial H}{\partial \alpha} \right)_{E, \alpha}^{mc} d\alpha,$$

with the definition of the inverse temperature

$$\beta \equiv \frac{\Sigma(E, \alpha)}{\Omega(E, \alpha)}.$$

When α represents the volume V, the second term of the right-hand side of (12) becomes $\beta P dV$ with the pressure $P = - \langle \partial H/\partial V \rangle_{E, \alpha}^{mc}$. In general, the relation (12) guarantees the consistency with thermodynamics.

In the following argument, we consider the quasi-static change in α. This is realized by choosing $\alpha(t) = \alpha(\epsilon t)$, where the functional form of α is independent of ϵ, introducing $\tau = \epsilon t$ and taking the quasi-static limit $\epsilon \to 0$ with $\tau_1 = \epsilon t_1$ and $\tau_2 = \epsilon t_2$ fixed. Indeed, $d\alpha/d\tau = e \partial \alpha / \partial \tau = O(\epsilon)$. Now, we take a solution trajectory $\Gamma_*(t)$, which is realized in the ideally isolated mechanical system. Then, it determines the time evolution of the energy as $E_*(t) = H(\Gamma_*(t), \alpha(t))$. As the result, the time evolution of the entropy and inverse temperature is also obtained by $S(E_*(t), \alpha(t))$ and $\beta(E_*(t), \alpha(t))$, respectively.
The adiabatic theorem tells us that \(S(E_t, \alpha(t)) \) keeps a constant value along almost all solution trajectories in the quasi-static limit [14–19, 31]. This means that in the quasi-static limit, almost all solution trajectories with the same initial energy give the same adiabatic curve in the thermodynamic state space \((E, \alpha)\). On the basis of the ideally isolated mechanical system, thus we have a mechanical description consistent with thermodynamics.

Let us now consider a more realistic situation in which our \(N \)-particle system enclosed by adiabatic walls is not completely isolated. Then, trajectories of the particles are not solutions to the equation of motion for the Lagrangian (1), because the constituents of the walls may influence the motion of the particles. Even for this case, however, it can be assumed ideally that the \(N \)-particle system is thermally isolated (which means adiabatic in thermodynamics) and that the entropy keeps a constant value in quasi-static processes. Motivated by this fact, we try to characterize such phase-space trajectories.

We first identify the condition of phase space trajectories consistent with quasi-static processes in thermodynamics, which are not necessarily solution trajectories for our Lagrangian (1). We refer to such trajectories as thermodynamically consistent trajectories. Suppose a curve \((\bar{E}(\tau), \bar{\alpha}(\tau))\), \(\tau_i \leq \tau \leq \tau_f\), in the thermodynamic state space, which corresponds to a quasi-static process in thermodynamics. Here \(E(\tau)\) is obtained by \(E(t) = E(\tau t)\), which follows the change of \(\bar{\alpha}(\tau)\). Then, for thermodynamically consistent trajectories, the mechanical work \(\int dt (\partial H / \partial \alpha)\) is expected to be equal to the thermodynamic work \(\int dt (\partial H / \partial \alpha)\) as those satisfying

\[
\lim_{\epsilon \to 0} \int_{\tau_i}^{\tau_f} \frac{d\tau}{dt} \frac{\partial H}{\partial \alpha} \left[\frac{\partial H}{\partial \alpha} - \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E(\tau), \bar{\alpha}(\tau)} \right] = 0 \tag{14}
\]

for any time interval \([\tau_i', \tau_f']\) such that \(\tau_i \leq \tau_i' < \tau_f' \leq \tau_f\). Here, it should be noted that \(\partial H / \partial \alpha\) is a rapidly varying function of \(\tau\) because it depends on \(\Gamma(\tau / \epsilon)\) [22].

Next, we determine the adiabatic condition. Let us fix an adiabatic curve and consider phase space trajectories that yield the adiabatic curve. From the expression \(E(t) = H(\Gamma(t), \alpha(t))\) for any \(\Gamma(t)\), we have

\[
\frac{dE}{dt} = \frac{\partial H}{\partial \Gamma} \Gamma + \frac{\partial H}{\partial \alpha} \dot{\alpha}. \tag{15}
\]

If the trajectory describes the behavior of a thermally isolated system, the energy changes only through the external control. This property can be represented by

\[
\frac{\partial H}{\partial \Gamma} \Gamma = 0. \tag{16}
\]

This is the condition of the idealized adiabatic wall, which solution trajectories satisfy, of course.

Finally, we check that \(S(t_i) = S(t_f)\) holds for thermodynamically consistent trajectories satisfying (16). Here, \(S(t) \equiv S(H(\Gamma(t), \alpha(t)), \alpha(t))\) for (11). By using (12) and noting that \(dE/d\tau = (\partial H / \partial \alpha)(\dot{\alpha})/d\tau\) under (16), we express \(S(t_i) - S(t_f)\) as

\[
\int_{\tau_i}^{\tau_f} d\tau \beta \frac{d\dot{\alpha}}{d\tau} \left[\frac{\partial H}{\partial \alpha} - \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E(\tau), \bar{\alpha}(\tau)} \right]. \tag{17}
\]

Because \(\beta(\tau) = \beta(E(\tau), \bar{\alpha}(\tau))\) is a slowly varying function of \(\tau\), using (12) and noting that \(\dot{\alpha}(\tau)\) is a rapidly varying function of \(\tau\), we have

\[
\sum_{k=1}^{K} \frac{d\alpha}{d\tau} \left[\frac{\partial H}{\partial \alpha} - \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E(\tau), \bar{\alpha}(\tau)} \right] \tag{18}
\]

with an accuracy of \(O(1/K)\). Then, (18) tends to zero as \(\epsilon \to 0\) due to (14), and (17) is estimated as zero for infinitely large \(K\). In the following, this invariance is expressed by the generalized Noether theorem.

Main result. — We now derive the thermodynamic entropy (11) as the Noether invariant \(\psi + E\psi\) associated with a transformation \(G\). First, we recall that the symmetry exists only if there are \(\xi, \psi\) satisfying (9). For the general Lagrangian we study, there are no such \(\xi, \psi\) for arbitrary \(\xi, \psi\) which is consistent with a fact that the entropy is invariant only in quasi-static adiabatic processes. When we attempt to understand thermodynamic properties, we have to study thermodynamically consistent trajectories. Hence, we can expect that for them there exist \(\xi, \psi\) satisfying (9). We shall show this from now. By using the identity

\[
\frac{dE}{dt} = -\dot{\psi} + \frac{\partial E}{\partial \alpha} \dot{\alpha}, \tag{19}
\]

we rewrite (11) as

\[
\int_{\tau_i}^{\tau_f} d\tau \xi \left[\frac{dE}{dt} - \frac{\partial E}{\partial \alpha} \dot{\alpha} \right] = \int_{\tau_i}^{\tau_f} d\tau \frac{d(\psi + \xi E)}{dt}. \tag{20}
\]

Suppose that \(\xi = \Xi(E(q, \dot{q}, \alpha), \alpha)\) and \(\psi = \Psi(E(q, \dot{q}, \alpha), \alpha)\) satisfy (20). Then, in the quasi-static limit, (20) becomes

\[
\Xi \left[d\dot{\alpha} - \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E(\tau), \bar{\alpha}(\tau)} d\beta \right] = \int_{\tau_i}^{\tau_f} d\tau \frac{d(\psi + \Xi E)}{d\tau}. \tag{21}
\]

for thermodynamically consistent trajectories [32]. When there exist \(\Xi, \Psi\) satisfying this equation, it should hold for any \(\tau_i\). This means that the integrand in (21) itself vanishes for each \(\tau\), and hence we have

\[
\Xi \left[d\dot{\alpha} - \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E(\tau), \bar{\alpha}(\tau)} d\beta \right] = d(\psi + \Xi E). \tag{22}
\]

Let us solve (22). Because the right-hand side is a total derivative of a function of \((E, \alpha)\) [33], the necessary and
sufficient condition for the existence of $\Psi(E,\alpha)$ in (22) is given by the integrability condition:

$$\left(\frac{\partial \Xi}{\partial \alpha}\right)_E + \frac{\partial}{\partial E} \left(\Xi \left(\frac{\partial H}{\partial \alpha} \right)_{E,\alpha} \right) = 0.$$ (23)

By using (12), we express the left-hand side as

$$\frac{\partial}{\partial \alpha} \left(\Xi \beta^{-1} \left(\frac{\partial S}{\partial \alpha} \right)_E \right) - \frac{\partial}{\partial E} \left(\Xi \beta^{-1} \left(\frac{\partial S}{\partial \alpha} \right)_E \right).$$ (24)

Then, we find that the functional determinant $|\partial(\Xi \beta^{-1}, S)/\partial(\alpha, E)|$ vanishes. This means that $\Xi = \beta F(S)$, where F is an arbitrary function of S [30]. By substituting this into (22), employing (12), and integrating it, we obtain the Noether invariant:

$$\Psi + E \Xi = \int S' F(S').$$ (25)

Note that this is conserved even for thermodynamically consistent adiabatic non-solution trajectories because the left-hand side of (25) vanishes due to (16).

In particular, we study the Noether invariant $\Psi + E \Xi$ described by an extensive variable for a macroscopic equilibrium system. In this case, the transformation of $\Psi + E \Xi$ for size scaling leads to the result that Ψ is extensive and Ξ is intensive. Because β is intensive, $\Xi \beta^{-1} = F(S)$ becomes a special intensive variable that does not depend explicitly on the extensive work variable α such as the volume V.

Let us determine the functional form of $F(S; M, N)$, where we explicitly write the dependence on the type of material M and the particle number N. The most important property of macroscopic systems is the additivity. As an example, we consider a composite system that consists of two macroscopic subsystems A and B in thermal contact. In the following, we denote physical quantities Q and the type of material M in the subsystem X by Q_X and M_X, respectively, where $X = A$ or B.

Now, the time translation $t \to t + \eta \Xi$ is applied to the composite system. Because the time coordinate is common to both subsystems, we have $\Xi_A = \Xi_B$, which is consistent to the intensive nature of Ξ. We also have $\beta_A = \beta_B$ in equilibrium states. These qualities lead to

$$F(S_A; M_A, N_A) = F(S_B; M_B, N_B).$$ (26)

From the special property that $F(S_X; M_X, N_X)$ is intensive and independent of V_X, we can write $F(S_X; M_X, N_X) = F(s_X; M_X)$ with $s_X \equiv S_X/N_X$. Here, if $M_A = M_B = M$, (26) becomes $F(s_A; M) = F(s_B; M)$. Because this holds any s_A and s_B, we conclude that $F(s; M) = c(M)$, where the constant $c(M)$ depends not on s but on the type of material M. Thus, $F(S; M, N) = c(M)$ holds generally.

Further, considering a general case $M_A \neq M_B$ for (26), we have $c(M_A) = c(M_B)$ for any M_A and M_B. That is, $F = c_*$ is a universal constant independent of the type of material. From $c_* = \beta^{-1} \Xi$, the universal constant c_* has the same dimension as the action, which is known as the Planck constant \hbar. Thus, our framework based on classical theory has led to the existence of the Planck constant. Then, we can write $\Xi = \hbar \beta$ and $F = \hbar$, where a dimensionless proportionality constant has been chosen to be unity without loss of generality.

Finally, (25) leads to $\Psi + E \Xi = \hbar S + \hbar b N$, where b is a dimensionless constant. We thus conclude that the thermodynamic entropy S is uniquely characterized as the Noether invariant associated with the transformation $t \to t + \eta \hbar \beta$ for thermodynamically consistent trajectories [37]. This is the main result of the present Letter.

Concluding remarks.— First of all, we do not have a physical explanation of the symmetry for the real time transformation $t \to t + \eta \hbar \beta$ yet. It is interesting to find some relation with the fact that the complex time $t + i \hbar \beta$ naturally appears in quantum dynamics with finite temperature. An important point here is that the symmetry is an emergent property in thermodynamic behavior of macroscopic systems, which can build a new bridge between microscopic and macroscopic physics as follows.

One fascinating approach is to generalize this formulation to perfect fluids for interacting particles or relativistic fields, which could provide a more clear view to the symmetry. By restricting the spacetime configurations to those consistent with a local Gibbs distribution at any time, we can find a symmetry leading to the local conservation of the entropy as the Noether charge. It seems reasonable to conjecture that this symmetry is explicitly observed in action functionals for perfect fluids, although the action functionals are not uniquely determined so far [38]. With regard to this point, we also mention a symmetry property announced in Ref. [39, 40], which may have some relevance with our theory.

Although our study was motivated by the black hole entropy as the Noether charge [13], it is not clear yet how the present analysis is related to that. Nevertheless, the symmetry for $t \to t + \eta \hbar \beta$ may correspond to that for the Killing parameter translation $v \to v + \eta \hbar \beta$, where β is the inverse Hawking temperature [13]. It would be interesting to investigate connection of our theory with a real-time and micro-canonical approach to thermodynamics of gravitational systems [41].

Finally, we have studied the invariant property of the entropy in quasi-static processes. More important is the non-decreasing property of entropy for general time dependent operations. If an initial phase space point is sampled according to the equilibrium ensemble, this property can be proved [42, 44]. It is a challenging problem to combine the symmetry property with the second law of thermodynamics, where the notion of thermodynamically consistent trajectories could be useful.

The authors thank A. Dhar, A. Dechant, M. Hongo, M. Hotta, C. Jarzynski, A. Kundu, R. Loganayagam, C.
Maes, and H. Tasaki for helpful discussions. This work was initiated when one of the authors (SS) visited Raman Research Institute (RRI). He thanks the hospitality of RRI and International Centre for Theoretical Sciences. The present study was supported by KAKENHI (Nos. 25103002 and 26610115), and by the JSPS Core-to-Core program “Non-equilibrium dynamics of soft-matter and information”.

[20] See Supplemental Material for an example of $L(q, \dot{q}, \alpha)$.
[22] The original work [22] discussed the case where $\psi = 0$, which was generalized to $\psi \neq 0$ by Ref. [21]. Ref. [21] investigated the generalization precisely and discussed the property that a solution is mapped to another one by such a transformation. This property was referred to as a dynamical symmetry in Refs. [21] and [22].
[27] The symmetry is mathematically expressed as the invariant property of the contact form in the tangent bundle [25, 26, 28]. This symmetry is called the $d\theta$-symmetry [26] or the Cartan symmetry [25].
[29] One might notice the absence of the factor $(2\pi\hbar)^N$ in (11), but this definition is sufficient when we are not concerned with the additive constant of the entropy.
[32] We can check that (14) holds for solution trajectories in the context of the adiabatic theorem. More generally, when the system is considered as a part of a composite system, any quasi-static process can be regarded as the projection of a quasi-static adiabatic process for the composite system to the thermodynamic state space of the system [1]. Then, (14) is satisfied for trajectories of the system. Indeed, we can show this for (non-solution) trajectories consistent with quasi-static isothermal processes. See Supplemental Material.
[33] See Supplemental Material for the derivation of (21).
[34] Ξ in the left-hand side of (22) plays a role of the integrating factor in the Caratheodory theory of thermodynamics [35].
[36] See Supplemental Material for the derivation of general Ξ satisfying (23).
[37] See Supplemental Material for an argument on the special case where the parameter α does not depend on time.
SUPPLEMENTAL MATERIAL

Mechanical description

In order to consider the system concretely, we give an example of a Lagrangian. Let r_i be the position of the i-th particle. We assume the Lagrangian for $q = (r_i)_{i=1}^N$ as

$$L(q, \dot{q}, \alpha) = \sum_{i=1}^N \frac{m}{2} \left(\frac{dr_i}{dt} \right)^2 - \sum_{i<j} U_{\text{int}}(|r_i - r_j|) - \sum_{i=1}^N U_{\text{wall}}(r_i, \alpha),$$ \hspace{1cm} (S1)

where m is the mass of particles, $U_{\text{int}}(r)$ is the interaction potential between two particles, and $U_{\text{wall}}(r, \alpha)$ is the wall potential confining particles. Explicitly, we define the bulk region $D = \{(x, y, z) | 0 \leq x \leq L_x, 0 \leq y \leq L_y, 0 \leq z \leq L_z \}$, and we assume that $U_{\text{wall}}(r, \alpha) = 0$ for $r \in D$ and $U_{\text{wall}}(r, \alpha) = k(d/d_0)^2$ for $r \notin D$. Here d_0 is a positive constant that characterizes the width of the wall region, d is the distance to D from $r \notin D$, and k is a positive constant. In order to represent the control by a piston, we fix L_y and L_z to be L, and set $L_x = \alpha/L^2$. Then, α is the volume of the bulk region, and the time dependence of α corresponds to the change in L_x which is caused by the piston.

When we consider a mechanical description on the basis of a Lagrangian, we implicitly assume that the system is isolated from the other dynamical degrees of freedom. However, it seems impossible to justify this assumption for experiments. For example, we may consider the above wall potential $U_{\text{wall}}(r, \alpha)$ approximately as an effective one-body potential determined from the interaction between the system particles and the atoms constituting the wall. If the approximation were idealized, the dynamical degrees of freedom of the wall would not influence the motion of the particles. In experiments using adiabatic walls, however, the error in this approximation is not well-controlled, while the energy of the system is conserved within a measurement time. Thus, in general, trajectories realized in experiments are not given by solution trajectories of the isolated system. Keeping this in mind, nevertheless, we study the isolated system as one idealization of the system.

Statistical mechanics

We derive the relation (12) in the main text. From the definition

$$\Omega(E, \alpha) \equiv \int d\Gamma \delta(E - H(\Gamma, \alpha)),$$ \hspace{1cm} (S2)

we have

$$\frac{\partial \Omega(E, \alpha)}{\partial \alpha} = - \int d\Gamma \delta(E - H(\Gamma, \alpha)) \frac{\partial H}{\partial \alpha} = -\Sigma(E, \alpha) \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E, \alpha}^{mc},$$ \hspace{1cm} (S3)

where we have used (10) in the main text. Then, from (11) in the main text, we obtain

$$\frac{\partial S(E, \alpha)}{\partial \alpha} = \frac{\partial \log \Omega(E, \alpha)}{\partial \alpha} = -\frac{\Sigma}{\Omega} \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E, \alpha}^{mc} = -\beta \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E, \alpha}^{mc},$$ \hspace{1cm} (S4)

where we have used the definition of β given by (13) in the main text. Finally, by using

$$\frac{\partial \Omega}{\partial E} = \int d\Gamma \delta(E - H(\Gamma, \alpha)) = \Sigma(E, \alpha),$$

we get

$$\frac{\partial \Omega}{\partial E} = \int d\Gamma \delta(E - H(\Gamma, \alpha)) = \Sigma(E, \alpha).$$
we also obtain

\[\beta(E, \alpha) = \frac{\Sigma(E, \alpha)}{\Omega(E, \alpha)} = \frac{\partial \log \Omega(E, \alpha)}{\partial E} = \frac{\partial S(E, \alpha)}{\partial E}. \]

(S6)

Thus, the relations (S5) and (S6) mean (12) in the main text.

Adiabatic theorem

In this section, we review the adiabatic theorem. We consider the time evolution of \(S_\ast(t) \equiv S(H(\Gamma_\ast(t), \alpha(t)), \alpha(t)) \) along a solution trajectory \(\Gamma_\ast(t) \) in the quasi-static limit, where \(\Gamma_\ast(t) \) satisfies the Hamiltonian equation

\[\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}. \]

(S7)

Then, the adiabatic condition (16) holds. We start with (17) for \(\Gamma_\ast(t) \):

\[S_\ast(t_i) - S_\ast(t_i) = \int_{t_i}^{t_{i+1}} dt \beta_\ast \dot{\alpha} \left[\frac{\partial H}{\partial \alpha} \right]_\ast - \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E_\ast(t), \alpha(t)}^{mc}. \]

(S8)

The adiabatic theorem claims that \(S_\ast(t_i) = S_\ast(t_i) \) for almost all solution trajectories in the quasi-static limit. That is, the right-hand side of (S8) becomes zero in the quasi-static limit.

First, we explain a physical picture of the theorem. We set \(t_k = k\Delta + t_i \) with \(k = 0, 1, \cdots, K \), where \(t_K = t_i \). We choose \(\epsilon \) satisfying \(\epsilon \Delta \ll 1 \) for a given \(\Delta \). The key claim here is that there exists \(\Delta \) such that

\[\frac{1}{\Delta} \int_{t_k}^{t_{k+1}} dt \frac{\partial H}{\partial \alpha} = \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E_\ast(k), \alpha_k}^{mc} + O(\epsilon \Delta) \]

(S9)

for almost all solution trajectories, where \(E_k = E(t_k) \) and \(\alpha_k = \alpha(t_k) \). First, from \(\alpha_{k+1} - \alpha_k = \int_{t_k}^{t_{k+1}} dt \dot{\alpha}(t)/dt \), we have \(\alpha_{k+1} - \alpha_k = O(\epsilon \Delta) \). Then, by integrating the energy balance equation (15) during the time interval \([t_k, t_{k+1}]\) along a solution trajectory, which satisfies (16), we obtain \((E_{k+1} - E_k) \ast = O(\epsilon \Delta) \), where we have used \(\partial H/\partial \alpha = O(1) \) in the limit \(\epsilon \to 0 \). Thus, we may assume that solution trajectories are in the same energy surface during the time interval \([t_k, t_{k+1}]\) with ignoring \(O(\epsilon \Delta) \) contribution. Now, if a phase space point at time \(t_k \) is selected according to the micro-canonical ensemble, the probability that the value of \(\partial H/\partial \alpha \) is deviated from the typical value that is equal to the expectation value \(\langle \partial H/\partial \alpha \rangle_{E_\ast,k, \alpha_k}^{mc} \) by a distance larger than some positive value, is exponentially small as a function of \(N \). However, a phase space point at \(t = t_k \) may become non-typical by the influence of the operation \(\alpha \) or we may select a non-typical point with our special intention. Even for these cases, \(\partial H/\partial \alpha \) approaches the typical value within a relaxation time \(t_R \) for almost all solution trajectories, because phase space points that take the typical value dominate the energy surface. Although there are still exceptional phase space points that do not exhibit the typical relaxation behavior, the probability of finding such phase space points is expected to be extremely small. Ignoring these exceptional trajectories, we choose \(\Delta \) satisfying \(\Delta \gg t_R \) so that (S9) holds. Finally, summing (S9) for each step \(k \), we have

\[\int_{t_1}^{t_{i+1}} dt \beta_\ast \dot{\alpha} \left[\frac{\partial H}{\partial \alpha} \right]_\ast = \sum_{k=0}^{K} \beta_k \dot{\alpha} \Delta \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E_\ast(k), \alpha_k}^{mc} + O(K \Delta^2 \epsilon^2), \]

(S10)

where we have used \(\dot{\alpha} = O(\epsilon) \) and \(\beta = O(1) \). By considering the limit \(\epsilon \Delta \to 0, K \to \infty, \) and \(t_R^{-1} \Delta \to \infty \) with \(K \epsilon \Delta = \tau_l - \tau_i \) fixed, we obtain

\[\lim_{\epsilon \to 0} \int_{\tau_i/\epsilon}^{\tau_i/\epsilon} dt \beta_\ast \dot{\alpha} \left[\frac{\partial H}{\partial \alpha} \right]_\ast - \left\langle \frac{\partial H}{\partial \alpha} \right\rangle_{E_\ast(t), \alpha(t)}^{mc} = 0. \]

(S11)
Together with (S23), thus this gives an informal proof of the adiabatic theorem.

Next, we give a more formal explanation of the adiabatic theorem by following the method used in Ref. [15]. We define

$$X(\Gamma, \alpha) \equiv \frac{\partial H}{\partial \alpha} - \left(\frac{\partial H}{\partial \alpha} \right)_{H(\Gamma, \alpha), \alpha}^{mc}. \quad (S12)$$

Suppose that there exists a bounded function $\varphi(\Gamma, \alpha)$ satisfying

$$X = \frac{\partial \varphi}{\partial q} \frac{\partial H(\Gamma, \alpha)}{\partial p} - \frac{\partial \varphi H(\Gamma, \alpha)}{\partial p} \frac{\partial H(\Gamma, \alpha)}{\partial q} \quad (S13)$$

for almost all Γ. Then, since the right hand side is evaluated as

$$\left[\frac{d\varphi}{dt} - \frac{d\alpha}{dt} \frac{\partial \varphi}{\partial \alpha} \right]_{*} \quad (S14)$$

along a solution trajectory, we have

$$\int_{t_1}^{t_2} dt X(\Gamma(t), \alpha(t)) = \varphi(\tau_2) - \varphi(\tau_1) - \int_{\tau_1}^{\tau_2} d\tau \frac{d\alpha}{d\tau} \frac{\partial \varphi}{\partial \alpha} \quad (S15)$$

By defining

$$g(\tau) \equiv \beta(\bar{E}(\tau), \bar{\alpha}(\tau)) \frac{d\alpha(\tau)}{d\tau}, \quad (S16)$$

and setting $C_0 = \sup |g(\tau)|$, $C_1 = |\varphi(\tau_2) - \varphi(\tau_1)|$, and $C_2 = \left| \int_{\tau_1}^{\tau_2} d\tau (\frac{d\alpha}{d\tau})(\frac{\partial \varphi}{\partial \alpha}) \right|$, we obtain

$$\epsilon \int_{\tau_1/\epsilon}^{\tau_2/\epsilon} dt g(\tau) X(\Gamma(t), \alpha(t)) \leq \epsilon C_0 (C_1 + C_2). \quad (S17)$$

Since C_0, C_1 and C_2 are independent of ϵ, the adiabatic theorem holds in the quasi-static limit. Thus, we have only to show that there exists φ that satisfies (S13).

Let us interpret (S13) as a linear partial differential equation $X = \mathcal{L} \varphi$ for φ. If \mathcal{L}^{-1} exists, φ is given as $\mathcal{L}^{-1} X$. However, \mathcal{L}^{-1} does not exist, since it is obvious that $\mathcal{L} f(H(\Gamma)) = 0$ for any function $f(E)$. From the assumption that there are no conserved quantities other than the energy, we may postulate that there are no other functions f' such that $\mathcal{L} f' = 0$. For any phase space functions g_1 and g_2 in an appropriate function space, we define \mathcal{L}^\dagger as

$$\int d\Gamma g_1(\Gamma) \mathcal{L} g_2(\Gamma) = \int d\Gamma (\mathcal{L}^\dagger g_1(\Gamma)) g_2(\Gamma). \quad (S18)$$

Because $\mathcal{L}^\dagger = -\mathcal{L}$, $\mathcal{L}^\dagger f(H(\Gamma)) = 0$. Thus, the solution to $X = \mathcal{L} \varphi$ exists when the solvability condition

$$\int d\Gamma f(H(\Gamma, \alpha)) X(\Gamma, \alpha) = 0 \quad (S19)$$

holds. See the next paragraph for the explanation of the solvability condition. When the solvability condition (S19) is satisfied for any f, we can say that there exists φ to $X = \mathcal{L} \varphi$. We here simplify the condition (S19). By substituting

$$\int dE \delta(H(\Gamma, \alpha) - E) = 1 \quad (S20)$$

into (S19), we have

$$\int d\Gamma \int dE \delta(H(\Gamma, \alpha) - E) f(H(\Gamma, \alpha)) X(\Gamma, \alpha) = 0, \quad (S21)$$

which is written as

$$\int dE f(E) \Sigma(E, \alpha) \langle X \rangle_{E, \alpha}^{mc} = 0. \quad (S22)$$
Thus, the solvability condition (S19) becomes \((X)_{E,\alpha}^{mc} = 0\) for any \(E\) and \(\alpha\). This is satisfied for \(X(\Gamma,\alpha)\) defined by (S12). Thus, since there exists \(\varphi\) that satisfies (S13), we have reached the adiabatic theorem.

Finally, in order to have a self-contained argument, we here review the solvability condition for a linear algebraic equation for \(x\) in an \(n\)-dimensional vector space. We study

\[Mx = b, \]

where \(M\) is an \(n \times n\) matrix, and \(b\) is a constant vector. When \(M^{-1}\) exists, the solution is obtained as

\[x = M^{-1}b. \]

However, when there exists \(y_0\) such that \(My_0 = 0\), \(M^{-1}\) does not exist. We assume that there are no other zero-eigenvectors. In this case, whether the solution to (S23) exists or not depends on \(b\). Concretely, let \(M^\dagger\) be the adjoint matrix defined by

\[(u, Mv) = (M^\dagger u, v) \]

for any vectors \(u\) and \(v\), where \((\ , \)\) denotes the standard inner product in the vector space. Let \(z_0\) be the left zero-eigenvector defined by \(M^\dagger z_0 = 0\). Then, when \((z_0, b) \neq 0\), there is no solution to (S23). When \((z_0, b) = 0\), we have an infinite number of solutions

\[x = M_{ps}^{-1}b + \chi y_0, \]

where \(\chi\) is an arbitrary number and \(M_{ps}^{-1}\) is the pseudo-inverse matrix of \(M\) such that \(M_{ps}^{-1}M u = MM_{ps}^{-1}u = u\) for any \(u \notin \text{Ker}(M)\). (S26) is referred to as the solvability condition.

It should be noted that the argument presented above is not mathematically rigorous. Even if a systematic approximation of \(\varphi\) in (S13) as a finite dimensional vector \(x\) in (S23) is found, the limit to \(\varphi\) from \(x\) is not obvious at all. For example, Ref. [15] proved that there exists a smooth function \(\varphi\) such that the \(L^2\) norm of \(X - L\varphi\) is less than any positive \(\epsilon\). This weak statement implies that there is no smooth function \(\varphi\) satisfying (S13). From a different viewpoint, it was pointed out that the solution \(\varphi\) in (S13) is not a standard function but should be a distribution [19]. We thank Christopher Jarzyski for these particular comments.

Thermodynamically consistent trajectories

In this section, we demonstrate some examples of thermodynamically consistent trajectories that satisfy the condition (14). First, we check that almost all solution trajectories satisfy (14). The statement is basically equivalent to the adiabatic theorem. Indeed, instead of (S10), we can write

\[\int_{t_i}^{t_f} dt \frac{\partial H}{\partial \alpha} = \sum_{k=0}^{K} \dot{\alpha}_k \langle \frac{\partial H}{\partial \alpha} \rangle_{E_k,\alpha_k}^{mc} + O(K \Delta^2 \epsilon^2) \]

(S28)

By considering the limit \(\epsilon\Delta \to 0\), \(K \to \infty\), and \(t^{-1}_{\alpha} \Delta \to \infty\) with \(K \epsilon \Delta = \tau_i - \tau_f\) fixed, we obtain

\[\lim_{\epsilon \to 0} \int_{\tau_i/\epsilon}^{\tau_f/\epsilon} dt \dot{\alpha} \left[\frac{\partial H}{\partial \alpha} - \left(\frac{\partial H}{\partial \alpha} \right)_{E(t),\alpha(t)}^{mc} \right] = 0. \]

(S29)

This means that the solution trajectories satisfy (14).

Next, we explicitly show that (14) is satisfied for non-solution trajectories consistent with quasi-static isothermal processes. Concretely, suppose that we have a trajectory \(\dot{q}_{\text{tot}}\) for the total system consisting of a system and a heat bath, whose trajectories are given by \(\dot{q}\) and \(\dot{q}_{\text{bath}}\), respectively. Because the total system is ideally isolated, a solution trajectory for the total Lagrangian \(\dot{q}_{\text{tot}}\) is realized. Then, a trajectory \(\dot{q}\) which is obtained by projecting \(\dot{q}_{\text{tot}}\) to the system is not a solution trajectory for the system Lagrangian, because of the interaction with \(\dot{q}_{\text{bath}}\). Nevertheless, when a quasi-static operation is performed to the system, the energy of the system \(E\) is determined from the condition \(\beta(E,\alpha) = \text{const}\) and the trajectory \(\dot{q}\) satisfies the condition (14). We shall prove this claim.
Let $\Gamma_\text{tot} = (\Gamma, \Gamma_B)$ be a phase space point of the composite system, where $\Gamma \in \mathbb{R}^{6N}$ and $\Gamma_B \in \mathbb{R}^{6N_B}$ are for the system and heat bath, respectively, with $N_B \gg N \gg 1$. We assume

$$H_\text{tot}(\Gamma_\text{tot}, \alpha) = H(\Gamma, \alpha) + H_B(\Gamma_B) + H_\text{int}(\Gamma, \Gamma_B) \approx H(\Gamma, \alpha) + H_B(\Gamma_B),$$

(S30)

where H_int can be ignored in the evaluation of the statistical average. Specifically, we consider the statistical average of the thermodynamic quantity

$$Y(\Gamma) = \frac{\partial H(\Gamma, \alpha)}{\partial \alpha}$$

(S31)

with respect to the micro-canonical ensemble of the total system, that is,

$$\langle Y \rangle_{E, \alpha}^{mc:tot} = \frac{1}{\Sigma_{tot}(E, \alpha)} \int d\Gamma_\text{tot} \delta(H(\Gamma_\text{tot}, \alpha) - E) Y(\Gamma).$$

(S32)

We can define $S_\text{tot}, \Omega_\text{tot}, \Sigma_\text{tot}$ and β_tot from H_tot similarly, and also define S_B, Ω_B, Σ_B and β_B from H_B. Note here that for a solution trajectory $\Gamma_\text{tot}_\text{ss}$ of the total system

$$\frac{dH_\text{tot}}{dt} \bigg|_{\Gamma_\text{tot}_\text{ss}} = \frac{\partial H}{\partial \alpha} \bigg|_{\Gamma_\text{tot}_\text{ss}} \dot{\alpha},$$

(S33)

holds, and because $S_\text{tot}(E, \alpha) = S_B(E) + O(N)$, we have

$$\beta_\text{tot} = \frac{\partial S_B}{\partial E} + O\left(\frac{N}{N_B} \right),$$

(S34)

which leads to

$$\frac{d}{dt} \beta_\text{tot}(E, \alpha) = \frac{\partial^2 S_B}{\partial E^2} \dot{E} + O\left(\frac{N}{N_B} \right) = \frac{\partial^2 S_B}{\partial E^2} \frac{\partial H}{\partial \alpha} \bigg|_{\Gamma_\text{tot}_\text{ss}} \dot{\alpha} + O\left(\frac{N}{N_B} \right) = O\left(\frac{N}{N_B} \right).$$

(S35)

We thus assume that β_tot is a constant value $\tilde{\beta}$ in the quasi-static limit. Then, as we will show later, there exists E such that

$$\tilde{\beta} = \beta(E, \alpha),$$

(S36)

$$\langle Y \rangle_{E, \alpha}^{mc:tot} = \langle \beta \rangle_{\tilde{\beta}, \alpha},$$

(S37)

$$\langle Y \rangle_{E, \alpha}^{mc} = \langle \beta \rangle_{\tilde{\beta}, \alpha},$$

(S38)

where

$$\langle Y \rangle_{\tilde{\beta}, \alpha}^{\tilde{\beta}, \alpha} = \frac{1}{Z(\tilde{\beta}, \alpha)} \int d\Gamma e^{-\tilde{\beta} H(\Gamma, \alpha)} Y(\Gamma)$$

$$\langle Y \rangle_{E, \alpha}^{mc} = \frac{1}{\Sigma(E, \alpha)} \int d\Gamma \delta(H(\Gamma, \alpha) - E) Y(\Gamma),$$

(S39)

with the normalization constant Z given by

$$Z(\tilde{\beta}, \alpha) = \int d\Gamma e^{-\tilde{\beta} H(\Gamma, \alpha)}.$$

(S40)

The equality $\langle Y \rangle_{E, \alpha}^{mc:tot}$ is called the equivalence of ensembles.

When $\langle S \rangle, \langle S \rangle$ and $\langle S \rangle$ hold, we can show that (14) is satisfied for the system trajectory \tilde{q}, as follows. First, by applying $\langle S \rangle$ to a solution trajectory $\Gamma_\text{tot}_\text{ss}$ of the total system, and employing $\langle S \rangle$, we obtain

$$\int_{t_i}^{t_f} dt \frac{\partial H}{\partial \alpha} \bigg|_{\Gamma_\text{tot}_\text{ss}} - \langle \frac{\partial H}{\partial \alpha} \rangle_{E, \alpha, \alpha(t)}^{mc:tot} = 0$$

(S41)

in the quasi-static limit. Here, the first term in the integral in $\langle S \rangle$ is evaluated at the system trajectory Γ obtained by projecting $\Gamma_\text{tot}_\text{ss}$ to the system, and the second term is rewritten by using $\langle S \rangle$ and $\langle S \rangle$. We then reach (14) for the system trajectory \tilde{q} which is not the solution but consistent with quasi-static isothermal processes.
Equivalence of ensembles

In this section, we derive (S36), (S37) and (S38). As a preliminary, we note the asymptotic behavior

$$\frac{\Omega(E, \alpha)}{N!} = \exp \left[N \omega \left(\frac{E}{N}, \frac{\alpha}{N} \right) + o(N) \right]$$

(S42)

for short-range interacting particles systems, where \(\alpha \) is assumed to be an extensive parameter such as the volume. This gives

$$S(E, \alpha) = \log \frac{\Sigma(E, \alpha)}{N!} + o(N).$$

(S43)

Similarly, we have

$$S_B(E_B) = \log \frac{\Sigma_B(E_B)}{N_B!} + o(N_B).$$

(S44)

For any variable \(A(\Gamma) \), we can write

$$\langle A \rangle_{E_{\text{tot}}, \alpha}^{\text{mc:tot}} = \frac{1}{\Sigma_{\text{tot}}(E_{\text{tot}}, \alpha)} \int d\Gamma A(\Gamma) \Sigma_B(E_{\text{tot}} - H(\Gamma, \alpha)),$$

(S45)

where we have used

$$\Sigma_B(E_B) = \int d\Gamma_B \delta(H_B(\Gamma_B) - E_B).$$

(S46)

We calculate

$$\log \left[\frac{\Sigma_B(E_{\text{tot}} - H(\Gamma, \alpha))}{N_B!} \right]$$

$$= S_B(E_{\text{tot}}) - H(\Gamma, \alpha) + o(N_B)$$

$$= S_B(E_{\text{tot}}) - \beta' H(\Gamma, \alpha) + O \left(\frac{N}{N_B} \right) + o(N_B)$$

(S47)

with

$$\beta' \equiv \frac{d \log \Sigma_B(E)}{dE} \bigg|_{E=E_{\text{tot}}}.$$

(S48)

From \(S_{\text{tot}}(E_{\text{tot}}, \alpha) = S_B(E_{\text{tot}}) + O(N) \), we find that \(\beta' = \tilde{\beta} + O(N/N_B) \). By ignoring the term \(O(N/N_B) \), we obtain \(\beta' = \tilde{\beta} \). The expression (S45) is now rewritten as

$$\langle A \rangle_{E_{\text{tot}}, \alpha}^{\text{mc:tot}} = \frac{\Sigma_B(E_{\text{tot}})}{\Sigma_{\text{tot}}(E_{\text{tot}}, \alpha)} \int d\Gamma A(\Gamma) e^{-\tilde{\beta} H(\Gamma, \alpha) + O(N/N_B)}.$$

(S49)

Hereafter, we ignore the term \(O(N/N_B) \). By setting \(A = 1 \), we find

$$\frac{\Sigma_B(E_{\text{tot}})}{\Sigma_{\text{tot}}(E_{\text{tot}}, \alpha)} = \frac{1}{Z(\tilde{\beta}, \alpha)}.$$

(S50)

We thus obtain

$$\langle A \rangle_{E_{\text{tot}}, \alpha}^{\text{mc:tot}} = \langle A \rangle_{\tilde{\beta}, \alpha}^{\text{c}}.$$

(S51)

By setting \(A = Y \), we thus have obtained (S37).

Next, we consider \(\langle Y \rangle_{\tilde{\beta}, \alpha}^{\text{c}} \). By using (S31), (S39) and (S40), we have

$$\frac{\partial \log Z(\tilde{\beta}, \alpha)}{\partial \alpha} = -\tilde{\beta} \langle Y \rangle_{\tilde{\beta}, \alpha}^{\text{c}}.$$

(S52)
We rewrite \(\log Z \) as follows. By substituting

\[
\int dE' \delta(H(\Gamma, \alpha) - E') = 1
\]

(S53)

into (S50), we have

\[
\frac{Z(\tilde{\beta}, \alpha)}{N!} = \frac{1}{N!} \int d\Gamma \int dE' \delta(H(\Gamma, \alpha) - E') e^{-\tilde{\beta}H(\Gamma, \alpha)}
\]

\[
= \int dE' e^{-\tilde{\beta}E'} \frac{\Sigma(E', \alpha)}{N!}
\]

\[
= \int dE' e^{-\tilde{\beta}E' + S(E', \alpha) + o(N)},
\]

(S54)

where we have used (S43). We ignore the term \(o(N) \). The saddle point estimation leads to

\[
\frac{Z(\tilde{\beta}, \alpha)}{N!} = \exp \left[-\inf_{E'} \left[\tilde{\beta}E' - S(E', \alpha) \right] + O(\log N) \right]
\]

(S55)

where \(E(\tilde{\beta}, \alpha) \) is the minimizer of \(\tilde{\beta}E' - S(E', \alpha) \). Therefore, we obtain

\[
\tilde{\beta} = \left(\frac{\partial S}{\partial E} \right)_{\alpha},
\]

(S56)

which is identified as (S36). We also have

\[
\log \frac{Z(\tilde{\beta}, \alpha)}{N!} = -[\tilde{\beta}E(\tilde{\beta}, \alpha) - S(E(\tilde{\beta}, \alpha), \alpha)].
\]

(S57)

By combining this with (S52) and employing (S5), we obtain

\[
\langle Y \rangle^{\xi}_{\tilde{\beta}, \alpha} = \left(\frac{\partial E}{\partial \alpha} \right)_{\tilde{\beta}} - \tilde{\beta}^{-1} \left(\frac{\partial S}{\partial \alpha} \right)_{E=E(\tilde{\beta}, \alpha)} - \tilde{\beta}^{-1} \left(\frac{\partial S}{\partial E} \right)_{\alpha=E(\tilde{\beta}, \alpha)} \left(\frac{\partial E}{\partial \alpha} \right)_{\tilde{\beta}}
\]

\[
= -\tilde{\beta}^{-1} \left(\frac{\partial S}{\partial \alpha} \right)_{E=E(\tilde{\beta}, \alpha)}
\]

\[
= \langle Y \rangle^{mc\xi}_{E(\tilde{\beta}, \alpha)},
\]

(S58)

We have arrived at (S38).

Derivation of (21)

We here derive (21) in the main text. To do that, we first check that

\[
\lim_{\epsilon \to 0} \int_{\tau_1}^{\tau_1+\epsilon} d\tau \frac{d\alpha}{d\tau} = \left[\frac{\partial H}{\partial \alpha} - \langle \frac{\partial H}{\partial \alpha} \rangle_{E(\tau), \tilde{\alpha}(\tau)} \right]^{mc}_{E(\tau), \tilde{\alpha}(\tau)} = 0
\]

(S59)

holds for thermodynamically consistent trajectories. Noting \(\Xi(\tau) = \Xi(\bar{E}(\tau), \bar{\alpha}(\tau)) \) and setting \(\tau_k = \tau_1 + (\tau - \tau_1)k/K \), the left-hand side of (S59) is estimated as

\[
\sum_{k=1}^{K} \Xi(\tau_k) \int_{\tau_{k-1}}^{\tau_k} d\tau \frac{d\alpha}{d\tau} \left[\frac{\partial H}{\partial \alpha} - \langle \frac{\partial H}{\partial \alpha} \rangle_{E(\tau), \tilde{\alpha}(\tau)} \right]^{mc}_{E(\tau), \tilde{\alpha}(\tau)} + O(1/K)
\]

(S60)

for large \(K \) limit. Thus, taking the limit \(\epsilon \to 0 \), the left-hand side of (S59) becomes \(O(1/K) \) due to (14). After that, taking the limit \(K \to \infty \), then we obtain (S59). Now, by using (S59) and (20) for \(\xi = \Xi \) and \(\psi = \Psi \), we have (21).
Derivation of Ξ

In this section, we solve (23) in the main text, which is expressed by

$$\frac{\partial}{\partial \alpha} \left(\Xi^{-1} \left(\frac{\partial S}{\partial E} \right) \right)_E - \frac{\partial}{\partial E} \left(\Xi^{-1} \left(\frac{\partial S}{\partial \alpha} \right) \right)_E = 0,$$

where we have used (24) in the main text. Then, by setting $\Phi = \Xi^{-1}$, we find that the Jacobian determinant $|\frac{\partial \Phi}{\partial (S,E)}| = 0$. We take one curve $\Phi(E,\alpha) = \phi_0$, where ϕ_0 is a constant. Then, the tangent vector at any point (E,α) on the curve are perpendicular to $(\partial E \Phi, \partial \alpha \Phi)$, which is proportional to $(\partial E S, \partial \alpha S)$ because $|\frac{\partial (\Phi,S)}{\partial (\alpha,E)}| = 0$. Thus, there exists a curve $S(E,\alpha) = s_0$ with a constant s_0 whose tangent vector at any point (E,α) on the curve is proportional to that of $\Phi(E,\alpha) = \phi_0$. We thus obtain $\Phi = F(S)$, where F is an arbitrary function.

We can also derive this result without geometrical consideration. We express (S61) as

$$\left(\frac{\partial \Phi}{\partial \alpha} \right)_E \beta + \left(\frac{\partial \Phi}{\partial E} \right)_\alpha \left(\frac{\partial E}{\partial \alpha} \right)_S \beta = 0,$$

where we have used the relation (12)

$$\left(\frac{\partial S}{\partial \alpha} \right)_E = -\left(\frac{\partial E}{\partial \alpha} \right)_S \left(\frac{\partial S}{\partial E} \right)_\alpha.$$

Furthermore, by taking the derivative of $\Phi(E(S,\alpha),\alpha)$ with respect to α, we find that

$$\left(\frac{\partial \Phi}{\partial \alpha} \right)_S = \left(\frac{\partial \Phi}{\partial \alpha} \right)_E + \left(\frac{\partial \Phi}{\partial E} \right)_\alpha \left(\frac{\partial E}{\partial \alpha} \right)_S.$$

From (S62) and (S64), we have

$$\left(\frac{\partial \Phi}{\partial \alpha} \right)_S = 0.$$

This means that $\Phi = F(S)$, where F is an arbitrary function.

Special case

One may consider the special case where the parameter α does not depend on time, $\alpha_0 = \text{const}$. The equation (20) in the main text is then satisfied if we find ξ and ψ such that

$$\frac{d\psi}{dt} + E\xi = 0.$$

Suppose that $\xi = \Xi(E(q,\dot{q},\alpha_0),\alpha_0)$ and $\psi = \Psi(E(q,\dot{q},\alpha_0),\alpha_0)$ satisfy (S66). For any such function $\Xi(E,\alpha_0)$, we obtain the Noether invariant

$$\Psi + E\Xi = \int^{E_0} dE' \Xi(E',\alpha_0).$$

This formula means that there exists a transformation leading to the conservation of any function of energy through the Noether theorem, which includes the special case where the energy E itself is conserved for the uniform time translation $\Xi = \text{const}$. In particular, by choosing $\Xi = \hbar \beta$, we obtain

$$\Psi + E\Xi = \hbar \int^{E_0} dE' \beta(E',\alpha_0) = \hbar S(E,\alpha_0) + S_0(\alpha_0).$$

This is consistent with our result. However, in contrast to the argument in the main text, this consideration cannot lead to the unique characterization of the entropy as the Noether invariant. Thus, the consideration of quasi-static processes with the time-dependent parameter $\alpha(t)$ is inevitable to obtain our main result.