The signed permutation group on Feynman graphs

JULIAN PURKART
Institute of Physics, Humboldt University
Newtonstr. 15, D-12489 Berlin, Germany
purkart@physik.hu-berlin.de
February 24, 2016

Abstract

The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter \(L \). Assuming \(L \) for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization scheme and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.

I. Introduction

In physics, the probability amplitude of an interaction process between elementary particles can be calculated as a perturbation series in the scaling. The coefficients in the perturbative expansion of the correlation function (or Green’s function) are integrals which can be interpreted as physical processes. Graphically, these processes can be represented via Feynman diagrams, which are the central objects of perturbative quantum field theory. To treat them in an adequate manner, it will be necessary to get familiar with some fundamental aspects and definitions of graph theory which will be covered in section II.1. Afterwards, in section II.2, we introduce polynomials associated with the respective graphs, the first and second Symanzik polynomial. In section III these polynomials will also show up in the integrand of the parametric Feynman integral which can be obtained by going from momentum to parametric space, using the so-called Schwinger trick. At the end of section II we establish an algebraic structure on the set of Feynman graphs and thereby give a brief insight in the Hopf algebra of rooted trees.

As already mentioned, Feynman diagrams are connected with the integrals in the perturbation series. This connection is given by the Feynman rules under which each graph is mapped to an integral. The problem arising from these rules is that the resulting integrals are not ensured to be convergent and well-defined. Indeed, plenty of them are divergent and therefore we have to renormalize the integrals. In section III this will be done for a scalar quantum field theory. Therefore, we rescale the integral whereby it can be written as a function of a scale \(S \) and dimensionless scattering angles \(\Theta \). Applying kinetic renormalization conditions to the integral and using the forest-formula indicates that the renormalized Feynman-rules can be written as a polynomial in the scaling parameter \(L \) (cf. [4]). The starting point of section IV is to give the notion of flags. Afterwards, the \(L \)-linear term of the renormalized Feynman rules is considered for antisymmetric flags, which are sums over permutations \(\sigma \in S_{n-1}^{\text{signed}} \times S_{n}^{\text{cyclic}} \) of nested graph insertions: with the result that it is independent of the scattering angles.

The results of the preceding section are used in section V to provide a general formula that allows to compute the \(L \)-linear term of the renormalized Feynman rules for antisymmetric flags regardless of the number of graphs inserted into each other. This formula is based on the idea of finding all partitions of a graph’s rooted tree instead of its forest-set. A pictorial approach to manage this task is given in section VI inspired by the notion of Ferrers diagrams (see appendix B).

The article is concluded by an example in which the \(L \)-linear term of the renormalized Feynman rules is computed for an antisymmetric flag of co-radical degree six.
II. Preliminaries

The definitions in subsection II.1 basically follow [4], [8], [20], and [21]. The principal sources of subsection II.2 are [2] and [4]. The subsection II.3 as well as the appendix A is based on [1], [9], [11], and [15].

II.1. Graph theoretical foundations

In this section, we want to acquaint ourselves with some basic definitions of graph theory and a bit of standard graphs. In general, the edges and vertices are labeled, that is assigning information of physical interest to them like the momentum and mass of the particles. Furthermore, Feynman graphs are constructed from a particular set of edges and vertices which we will denote by \(R = R_E \cup R_V \), following [12] and [20]. While \(R_E \) corresponds to the type of quantum particles, \(R_V \) determines the type of interaction between those particles, respectively. Generally, the sets \(R_E \) and \(R_V \) are dictated and restricted by the quantum field theory we are looking at. In some theories the edges also get an orientation, corresponding to the charge flow of the particles. In figure 1 the sets of vertices and edges are given for quantum electrodynamics (QED), quantum chromodynamics (QCD), and \(\phi^4 \)-theory in \(D = 4 \) dimensions of space-time.

\[
R_{QED} = \left\{ \begin{array}{c}
\longrightarrow, \cdots, < \\
\end{array} \right\} \\
R_{QCD} = \left\{ \begin{array}{c}
\longrightarrow, <, \cdot, \cdot, <, \cdot \\
\end{array} \right\} \\
R_{\phi^4} = \left\{ , \times \right\}
\]

Figure 1: Sets of allowed vertices and edges for QED, QCD, and \(\phi^4 \).

In the following we will denote such Feynman graphs by \(\Gamma \) with vertex set \(\Gamma^{[0]} \) and edge set \(\Gamma^{[1]} \). In contrast to standard graph theory, we have to distinguish between internal and external edges. An edge is called internal if it connects two vertices whereas an external edge connects only to one vertex, that is to say it has only one endpoint. The set of edges then is given by the union \(\Gamma^{[1]} = \Gamma^{[1]}_{\text{int}} \cup \Gamma^{[1]}_{\text{ext}} \).

Definition 2. (Feynman graphs)

A Feynman graph \(\Gamma = (G, \text{res}) \) is given by a graph \(G \) and a map \(\text{res} : \Gamma^{[0]} \cup \Gamma^{[1]} \rightarrow R_V \cup R_E \) (1) which assigns to each vertex and edge in \(\Gamma \) an element from a set of allowed types of edges and vertices. The elements \(r \in R \) are called the allowed residues of the theory. For any connected Feynman graph \(\Gamma \) we let \(\text{res}(\Gamma) \) be the graph \(\Gamma \) when all its internal edges shrink to one point. Then, \(\text{res}(\Gamma) \) is just the residue of the graph, defining its external structure.

In addition to the graph theoretical definition given above, there are some features that come up when treating Feynman graphs instead of standard graphs. In general, the edges and vertices of a Feynman graph are labeled, that is assigning information of physical interest to them like the momentum and mass of the particles. Furthermore, Feynman graphs are constructed from a particular kind of elementary graphs.

1\(\phi^4 \)-theories are scalar field theories treating only one kind of particles with spin zero represented by the one-component scalar field \(\phi \). Those particles self-interact in groups of \(k \) which means that all vertices are \(k \)-valent.
Definition 3. (One-particle irreducible graphs)
A connected Feynman graph Γ is said to be one-particle irreducible (1PI) if it is still connected after removing one of its internal edges. Depending on the number of external edges, there are several kinds of 1PI graphs:

- If Γ has no external edges, it is called a vacuum graph or vacuum bubble.
- For $|\Gamma^{[1]}| = 1$ the graph is called tadpole.
- If $|\Gamma^{[1]}| = 2$, we call Γ a propagator or self-energy graph.
- All other graphs with $|\Gamma^{[1]}| \geq 3$ are said to be vertex graphs.

Definition 4. (Sub- and cographs)
A graph $\gamma \subseteq \Gamma$ is called subgraph of Γ if $\gamma^{[0]} \subseteq \Gamma^{[0]}$, $\gamma^{[1]} \subseteq \Gamma^{[1]}$, and the assignment of endpoints to edges in γ and Γ is the same. In the case that γ contains all vertices of Γ, i.e. $\gamma^{[0]} = \Gamma^{[0]}$, γ is said to be a spanning subgraph of Γ.

The cograph Γ/γ is obtained from Γ by shrinking all internal edges of γ in Γ to length zero, i.e. to a single point, such that the external leg structure is not affected, $\text{res} (\Gamma/\gamma) = \text{res} (\Gamma)$. The operation "/" is called contraction. Using this notion, the map res acting on a connected graph Γ, can be seen as the maximal contraction Γ/Γ.

An example for a sub- and cograph is given in figure 2.

$\Gamma = \begin{array}{c}
\begin{array}{c}
\cdot \\
\cdot \\
\cdot
\end{array}
\end{array}$

$\gamma = \begin{array}{c}
\begin{array}{c}
\cdot \\
\cdot
\end{array}
\end{array}$

$\Gamma/\gamma = \begin{array}{c}
\begin{array}{c}
\cdot \\
\cdot
\end{array}
\end{array}$

Figure 2: Example for a subgraph γ and the corresponding cograph Γ/γ of the three-loop graph Γ.

Note that contracting a 2-point (also propagator or self-energy) graph leads to two different kinds of 2-point vertices related to the mass and the momentum of the propagating particle. A detailed discussion on this topic is given in [2]. Before the Feynman graph polynomials are invented in the next subsection, we will need two special types of graphs.

Definition 5. (Tree)
A connected and simply connected (no cycles) graph is called a tree T with vertex set $T^{[0]}$ and edge set $T^{[1]}$.

- A rooted tree is a tree T with a distinguished vertex $r \in T^{[0]}$, which is called the root, such that all edges are oriented away from it.
- The weight $|T|$ of a tree is given by its number of vertices.
- Let T_r be the set of all rooted trees and $T_r^{(i)}$ the subset of all rooted trees with weight $|T| = i$, $\forall T \in T_r^{(i)}$, then we can write $T_r = \bigcup_i T_r^{(i)}$.
- A rooted tree is said to be decorated if there exists a finite set D of decorations and a surjective map $c : D \to T^{[0]}$, which assigns to each vertex $v \in T^{[0]}$ an element $d \in D$.

Definition 6. (Forest)
Let Γ be a Feynman graph and $f = \{\gamma_i\}$ a subset of divergent 1PI proper subgraphs $\gamma_i \subseteq \Gamma$ such that for any $\gamma, \gamma' \in f$ one of the following conditions is fulfilled:

$$\gamma \subseteq \gamma', \quad \gamma' \subseteq \gamma, \quad \text{or} \quad \gamma \cap \gamma' = \emptyset. \quad (2)$$

That is, the elements of f are either disjoint or contained in each other. Then, f is called a forest and $F(\Gamma)$ denotes the set of all forests of the graph.

- A forest f of a Feynman graph Γ is said to be maximal if and only if the cograph $\Gamma/f = \Gamma/\bigcup_{\gamma \in f} \gamma$ is a 1PI graph, not containing any divergent proper 1PI subgraphs. Such graphs are called primitive.
- A maximal forest f of Γ is complete if any $\gamma \in f$ is either primitive or there exists a proper subgraph $\gamma' \in f$ of γ such that the cograph γ/γ' is primitive.
- If f consists of k connected components, it is called a k-forest. A 1-forest is a tree.
- The union of rooted trees gives a rooted forest and its set is denoted by F_r.

Hereafter, we will often restrict ourselves to trees and forests which are spanning subgraphs of the considered graph. In this case, we call them spanning trees and spanning forests respectively. It is also important not to confuse spanning and

[2]It should be pointed out that there are two different definitions of the notion of a forest. In the present case we define the forest (of subdivergences) in the context of renormalization and Hopf algebra. This definition is also in accordance with the forest formula introduced in section [11]. Within the framework of graph polynomials (cf. subsection [11.2] the forest (or k-forest) is defined as a graph without cycles/loops consisting of k connected components. That is, a k-forest is given by the disjoint union of k trees. For example, the forest set in figure [3] follows this definition.
rooted trees and forests. While the sets of spanning
trees and forests of a graph will be used to define
the graph polynomials in section 11.2, the sets of
rooted trees and forests do not correspond to a
specific graph even though one or more elements
of T_r can be associated to a graph, representing its
subgraph structure, as we will see. Moreover, we
will set up a Hopf algebra structure on the set of
rooted trees in section 11.3.

Assume that $f = \{\gamma, \gamma'\}$ is a complete forest of Γ
with primitive elements γ/γ' and γ'. Then, we can
write f as a sequence of subsets
\[\gamma' \subseteq \gamma \subseteq \Gamma \]
to show how the graph and the subgraphs are
nested. Using the notion of forests and trees, we
associate a decorated rooted tree to each complete
forest of a graph Γ. Taking the complete
forest in equation (3), the corresponding decorated
rooted tree is given by
\[\begin{array}{c}
\text{\Gamma} \\
\gamma \\
\gamma' \\
\text{or} \\
\Gamma/\gamma \\
\gamma/\gamma' \\
\end{array} \]

It becomes apparent that each Feynman diagram Γ
finishes a tree whose decorations are the elements
of the complete forest. The rooted tree of a graph
can also be read off from the box system as one
can see in figure 3, in which each box contains a
divergent subgraph of the graph and corresponds
to a leaf of the tree. The root is given by the whole
graph (the outermost box). Like the elements in
the complete forest, the boxes are not allowed to
overlap, but rather are nested or disjoint.

\[\begin{array}{c}
\text{\Gamma} \\
\gamma \\
\gamma' \\
\end{array} \]

Figure 3: Example from ϕ^4-theory for a rooted tree of
a graph associated with its subgraph structure.

The case of overlapping subdivergences is
treated in 3 where their structure is analyzed
using algebraic lattice theory.

II.2. Feynman graph polynomials

Using the preceding notion of spanning trees and
forests, we want to introduce the Feynman graph
polynomials. These polynomials, known as the
first and second Symanzik polynomial, have many
special properties and can be read off directly from
the corresponding graph. Also, they play a crucial
role in the computation of Feynman loop integrals
since they are directly related to the integrand of
such integrals. From the variety of methods to
determine the graph polynomials, we will only con-
sider one by interpreting the polynomials in terms
of spanning trees and spanning forests. Likewise,
it is also possible to compute them with the aid of
matrices, associated to the graph. This approach
suits well when performing computer algebra since,
after the particular matrices are known, the only
ting left to do is computing the determinant of a
matrix. The basic principle of this approach is the
matrix-tree theorem, invented by Gustav Kirch-
hoff, which exhibits the possibility to compute the
number of a graph’s spanning trees as the deter-
minant of a matrix derived from the graph (see 2
for example). In addition to his contributions to
the fundamental understanding of electric circuits
and spectroscopy, Kirchhoff was also the one who
invented the notion of graph polynomials.

Moreover, it is also possible to use graph homology
instead of the matrix-tree theorem to derive the
graph polynomials.

Instead of the matrix-tree theorem one can also
use graph homology to derive the polynomials.

Throughout this article let Γ be a connected graph
with $E_\Gamma := |\Gamma^{(i)}|$ internal edges, $V_\Gamma := |\Gamma^{(0)}|$ ver-
tices, and loop number $L(\Gamma)$ defined by
\[L(\Gamma) = E_\Gamma - V_\Gamma + 1. \]

This number is also called the first Betti number
or the cyclomatic number of the graph. For discon-
ected graphs we have to replace 1 by k, with k
the number of connected components of the graph.
Furthermore, let $F_s^{(k)}$ be the set of all spanning
k-forests (see definition 3) and F_s be the set of all
spanning forests of the graph Γ, given by
\[F_s = \bigcup_k F_s^{(k)}. \]

Then $f \in F_s^{(k)}$ can be obtained from Γ by deleting
$L + k - 1$ of its internal edges. The elements of a
spanning k-forest are composed of the connected
components T_i of $F_s^{(k)}$, which are necessary trees,
and will be denoted by
\[\bigcup_{i=1}^k T_i = (T_1, T_2, \ldots, T_k) \in F_s^{(k)}. \]

From now on we will only consider scalar Feynman
graphs in D dimensions of spacetime. The edges
of the graph are associated with particles of mass
m_e. The momenta of the particles will be denoted
The two Symanzik polynomials of a graph \(\Gamma \) are defined by deleting \(\mu \) internal edges. We introduce parameters \(\alpha_e \in \mathbb{R}_+ \) such that

\[
\psi_t = \sum_{T \in \mathcal{F}_s^{(1)}} \prod_{e \notin T^{[1]}} \alpha_e \quad (8)
\]

where the sum is over all spanning trees of \(\Gamma \) and \(T^{[1]} \) denotes the edge set of \(T \).

The parameters \(\alpha_e \) are the so-called Schwinger parameters, which will also show up in the parametric representation of Feynman integrals in section III.

Definition 7. (First Symanzik polynomial)

Let \(\mathcal{F}_s^{(1)} \) be the set of all spanning trees of \(\Gamma \), such that \(T \in \mathcal{F}_s^{(1)} \) is obtained from \(\Gamma \) by deleting \(L \) of its internal edges. We introduce parameters \(\alpha_e \in \mathbb{R}_+ \) associated to the internal edges \(e \in \Gamma^{[1]} \) of the graph \(\Gamma \). Then, the first Symanzik polynomial is defined by

\[
\psi_T = \sum_{T \in \mathcal{F}_s^{(1)}} \prod_{e \notin T^{[1]}} \alpha_e \quad (8)
\]

where the sum is over all spanning trees of \(\Gamma \) and \(T^{[1]} \) denotes the edge set of \(T \).

Example 1.

As an example, we consider the two-loop graph

\[
\begin{align*}
\text{Figure 4: Set of spanning trees } & \mathcal{F}_s^{(1)} \text{ for the two-loop graph in (12).}
\end{align*}
\]
The edges are labeled as in the diagram (I) and carry momentum \(q_e \) and mass \(m_e \). We impose momentum conservation at each vertex, and the momenta are assumed to flow from left to the right. The first Symanzik polynomial (cf. eq. (9)) with respect to the set of spanning trees of the graph (figure 4) is given by

\[
\psi_{\mathcal{I}} = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3) + \alpha_5(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4).
\]

(13)

The single terms in the upper sum are composed of the parameters \(\alpha_i \) corresponding to the edges we have to delete to get one of the spanning trees of the graph. Obviously, there are two possible ways to construct a spanning tree out of the graph: Either we delete one edge on the left (1 or 4) and on the right (2 or 3) side, respectively, or we delete the fifth and any of the other edges. The second Symanzik polynomial (defined in eq. (5)) is based on the spanning 2-forests of the graph given in figure 4. There are ten spanning 2-forests, though only eight of them contribute to \(\psi_{\mathcal{I}} \). The last two of them do not show up in the polynomial since the sum of the momenta flowing from one tree to the other is zero. Thus,

\[
\phi_{\mathcal{I}} = [(\alpha_1 + \alpha_4)\alpha_2\alpha_3 + (\alpha_2 + \alpha_3)\alpha_1\alpha_4 + (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4)\alpha_5] s + \psi_{\mathcal{I}} \sum_{c=1}^{5} \alpha_c m_c^2,
\]

(14)

where we used \(q_1 + q_4 = -(q_2 + q_3) \) (momentum conservation), and \(s = (q_1 + q_4)^2 = (q_2 + q_3)^2 \) denotes the center of mass energy.

II.3. The Hopf algebra of rooted trees

The aim of this section is to establish an algebra on the set of Feynman graphs. It was discovered in [14] that the fundamental mathematical structure on which perturbative renormalization is based on is a Hopf algebra.

For the reader not acquainted with the notion of (co-, bi-, Hopf) algebras, some basic definitions are given in appendix A.

In section II.1 we already introduced the concept of rooted trees and denoted its set by \(\mathcal{T}_r \), while \(\mathcal{F}_r \) is the set of all rooted forests, i.e. the set of all disjoint unions of rooted trees. The empty tree \(\hat{I} \) (or empty forest) is denoted by \(\hat{I} := \emptyset \) and has weight zero \(|\hat{I}| = 0\). We consider a Hopf algebra \(H_r \) over \(\mathbb{Q} \) generated by the elements of \(\mathcal{T}_r \) (including the empty tree \(\hat{I} \)) and define its Hopf algebra structure \(\left(H, m, \cdot, \Delta, \hat{I}, S \right) \) as follows:

- For \(T_1, T_2 \in \mathcal{T}_r \) the product \(m(T_1 \otimes T_2) = T_1 \cup T_2 \) is given by the forest \(T_1 \cup T_2 \), that is the disjoint union of the graphs.
- The unit map \(1 : \mathbb{Q} \to H^{(0)} \) sends \(q \in \mathbb{Q} \) to \(q \cdot \hat{I} \in H^{(0)} \).
- The coproduct on a tree \(T \in \mathcal{T}_r \) is defined through

\[
\Delta(T) = \hat{I} \otimes T + T \otimes \hat{I} + \sum_{c \in C(T)} P^c(T) \otimes R^c(T)
\]

(15)

where the sum runs over all admissible cuts \(c \) of the tree, whose set \(C \) is given by [15]

\[
C(T) = \left\{ c \subseteq E(T) : |c \cap (r, v)| \leq 1 \quad \forall v \in V(T), c \neq \emptyset \right\}.
\]

(16)

By making a cut \(c \), one or more edges of \(T \) are removed and the tree decomposes in a pruned part and a part still containing the root, denoted by \(P^c(T) \) and \(R^c(T) \), respectively (see example 2 below). For a product of trees, i.e. a forest \(f = \cup_i T_i \), we have \(\Delta(f) = \prod_i \Delta(T_i) \).

The coassociativity of \(\Delta \) was shown in [13].

- The counit map \(\hat{\iota} : H_r \to \mathbb{Q} \), defined by

\[
\hat{\iota}(T) = \begin{cases} 0, & T \neq \hat{I} \\ 1, & T = \hat{I} \end{cases},
\]

sends everything that is not the empty tree to zero.

- A recursive relation for the antipode \(S \) acting on a tree can be derived by using \(S(\hat{I}) = \hat{I} \) and equations (A.16) and (15), obtaining

\[
m(S \otimes \text{id}_{H_r}) \Delta(T) = S(\hat{I}) T + TS(T) + \sum_{c \in C(T)} S(P^c(T)) R^c(T)
\]

\[= \hat{I} \left(\hat{\iota}(T) \right) = 0\]
and thus
\[S(T) = -T - \sum_{c \in C(T)} S(P^c(T)) R^c(T) \]
\[= -T - \sum_{c \in C(T)} P^c(T) S(R^c(T)). \quad (18) \]

For a forest \(f \), the antipode is given by
\[S(f) = S(T_1 \ldots T_k) = S(T_k) \ldots S(T_1). \]

Example 2.
Take the tree
\[\begin{array}{c}
\includegraphics{tree1.png}
\end{array} \]
(19)

with edge set \(T^{[0]} = \{a, b, c\} \) and vertex set \(T^{[1]} = \{1, 2, 3, 4\} \). The set of admissible cuts is given by \(C(T) = \{a, b, c, (a, b), (a, c)\} \) or pictorially
\[C(T) = \{\includegraphics{cut1.png}, \includegraphics{cut2.png}, \includegraphics{cut3.png} \}. \quad (20) \]

Therefore, the coproduct of the tree yields
\[\Delta \begin{array}{c}
\includegraphics{tree1.png}
\end{array} = (-\includegraphics{cut1.png} + \includegraphics{cut2.png} + \includegraphics{cut3.png}) \]
\[+ (-\includegraphics{cut2.png} + \includegraphics{cut3.png} + \includegraphics{cut1.png}) \]
\[+ (-\includegraphics{cut3.png} + \includegraphics{cut1.png} + \includegraphics{cut2.png}) \quad (21) \]

and the antipode turns out to be
\[\begin{array}{c}
\includegraphics{tree1.png}
\end{array} = (-\includegraphics{cut1.png} + \includegraphics{cut2.png} + \includegraphics{cut3.png}) \]
\[- (-\includegraphics{cut2.png} + \includegraphics{cut3.png} + \includegraphics{cut1.png}) \]
\[- (-\includegraphics{cut3.png} + \includegraphics{cut1.png} + \includegraphics{cut2.png}) \quad (22) \]

where we used that \(S(T_2 T_1) = S(T_1) S(T_2) \),
\[S(\cdot) = -\cdot \quad \text{and} \quad S \begin{array}{c}
\includegraphics{cut1.png}
\end{array} = -\includegraphics{cut1.png} + \cdots. \]

It was, for example, shown in [17] that the upper definition of \((H, m, I, \Delta, \bar{\Delta}, S) \) gives a commutative, non-cocommutative, connected, and graded Hopf algebra with a natural grading given by the weight (= the node number) of the rooted trees. Taking \(|T|\) to be the weight of the rooted tree \(T \), the weight of a forest is just \(|f| = \sum_i |T_i|\) for \(f = \cup_i T_i \).

Defining subspaces
\[H_r^{(n)} = \text{span}_\mathbb{Q} \left\{ f \in \mathcal{F}_r^{(n)} \right\} \quad (23) \]
with \(\mathcal{F}_r^{(n)} = \{ f \in \mathcal{F}_r : |f| = n \} \quad \forall n \in \mathbb{N}_0 \)

\(H_r \) decomposes as
\[H_r = \bigoplus_{n \in \mathbb{N}_0} H_r^{(n)} \quad (24) \]
which defines a grading on \(H_r \). Another subspace of the Hopf algebra of rooted trees is the augmentation ideal
\[\text{Aug}_{H_r} := \bigoplus_{n \in \mathbb{N}} H_r^{(n)} = \bigoplus_{n=1}^{\infty} H_r^{(n)} = \ker \tilde{I} \quad (25) \]
given by the kernel of the counit. An important endomorphism of \(H_r \) is the grafting operator \(B_+ : H_r \to \text{span}_\mathbb{Q}(T_r) \subset H_r \). This operator creates a new root and joins the roots of its arguments to it, returning a single tree:
\[B_+(I) = \cdot \quad \text{and} \quad (26) \]
\[B_+(T_1 \ldots T_n) = \bigwedge_{r=1}^{n} \bigcup_{r}. \quad (27) \]

The operator \(B_+ \) satisfies the relation
\[\Delta \circ B_+ = B_+ \otimes I + (\text{id} \otimes B_+) \circ \Delta \quad (28) \]
which can be regarded as a recursive definition of the coproduct since every tree can be written as \(T = B_+(X) \) and \(\Delta(\tilde{I}) = I \otimes I \).

Remark II.1. In fact, equation (28) implies that \(B_+ \) is a 1-cocycle in the Hochschild cohomology of \(H_r \), see [8] or [10] for example.

At the end of this section, we want to introduce a sub-Hopf algebra of \(H_r \), namely the Hopf algebra of ladders, we will come back to, later. Generally, a sub-Hopf algebra of a graded Hopf algebra \((H, m, l, \Delta, \bar{\Delta}, S) \) with \(H = \oplus_i H^{(i)} \) is defined as the subspace \(\tilde{H} \subset H \), such that \(\tilde{H} \) has a Hopf algebra structure \(\left(\tilde{H}, m, l, \Delta, \bar{\Delta}, S \right) \) and a grading \(\tilde{H} = \oplus_i \left(\tilde{H} \cap H^{(i)} \right) \). We define a ladder of weight \(k \) by \(\lambda_k = (B_+)^k(I) \), which is the \(k \)-fold application of the grafting operator on the empty tree. Thus, ladders can be generated iteratively through \(\lambda_k = B_+ (\lambda_{k-1}) \) with \(\lambda_0 = I \). Therefore, the diagrams take the form:
\[\lambda_0 = I, \quad \lambda_1 = \cdot, \quad \lambda_2 = \cdots, \quad \lambda_k = \left\{ \begin{array}{c}
\cdot \\
\vdots
\end{array} \right\} k\text{-times.} \]

The sub-Hopf algebra \(H_L \), generated by the ladders, decomposes in the subspaces \(H_L^{(n)} \subset H_r^{(n)} \) which consist of the elements of weight \(n \). The coproduct on \(H_L \) is given by \(\Delta(\lambda_k) = \sum_{j=0}^{k} \lambda_j \otimes \lambda_{k-j} \).
III. Parametric renormalization

We now let Γ be a Feynman graph in a scalar quantum field theory with arbitrary oriented edges. Generally, the Feynman rules of the underlying theory assign an integral to the graph whose parametric representation is given by

$$\Phi(\Gamma) = \prod_{e \in \Gamma} \int_{\mathbb{R}^+} \frac{\alpha_e^{a_e - 1} d \alpha_e}{\Gamma(a_e)} e^{-\phi_T/\psi_T} \psi_T^{D/2}.$$ \hspace{1cm} (29)

and which can be obtained from a Schwinger parametrization of Γ. The exponents a_e are assumed to be equal to 1. Thus, the parametric integral becomes a function of the Schwinger parameters α_e, the squared particle masses m_e^2, and the scale variables of the momenta $p_i, p_j (i, j \in \Gamma)$. Following \cite{4}, we want to rescale the Feynman rules $\Phi(\Gamma)$ by a parameter S. Therefore, we introduce dimensionless scattering angles $\{\Theta\} = \{\Theta_{ij}, \Theta_e\}$ given by the scaled variables

$$\Theta_{ij} = \frac{p_i \cdot p_j}{S} \quad \text{and} \quad \Theta_e = \frac{m_e^2}{S}. \hspace{1cm} (30)$$

The variable S sets the scale of the graph Γ defined by

$$S := \sum_{e \in \Gamma} p_e^2, \hspace{1cm} (31)$$

such that $S > 0$ and $S = 0$ only if all external momenta collectively vanish. The rescaled Feynman rules then can be written as a function of the scale variable and the angles

$$\Phi(\Gamma) \{S \Theta_{ij}, S \Theta_e\} \rightarrow \Phi(\Gamma) \{S, \Theta_{ij}, \Theta_e\} \hspace{1cm} (32)$$

and the integral evaluates to

$$\Phi(\Gamma) \{S, \Theta\} = \prod_{e \in \Gamma} \int_{\mathbb{R}^+} \frac{d \alpha_e}{\Gamma(a_e)} e^{-S \phi_T/\psi_T} \psi_T^{D/2} \hspace{1cm} (33)$$

with

$$\phi_T(\Theta) = \frac{\varphi_T}{S} + \psi_T \sum_{e \in \Gamma} \alpha_e m_e^2 \frac{S}{S}$$

$$= \varphi_T(\Theta) + \psi_T \sum_{e \in \Gamma} \alpha_e \Theta_e. \hspace{1cm} (34)$$

Since ψ_T is independent of physical quantities it is not affected by the rescaling.

To carry out one of the integrations we insert

$$1 = \int_0^\infty dt \delta(t - \sum_e \lambda_e \alpha_e) \text{ with } \lambda_e \geq 0 \text{ not all zero into (33)}$$

and substitute $\alpha \rightarrow t \alpha$, which leads to $\prod_{e \in \Gamma} d \alpha_e = t^{D - 1} d t \wedge \Omega_T$ where \wedge denotes the exterior product (or wedge product) and the $(D - 1)$-form Ω_T defines the volume form

$$\Omega_T := \sum_{i=1}^{D - 1} \alpha_i d \alpha_1 \wedge \cdots \wedge d \alpha_i \wedge \cdots d \alpha_{D-1}$$

in projective space $\mathbb{P}_T := \mathbb{P}^{D - 1}(\mathbb{R}^+)$ (cf. 4 and 16). The circumflex accent $\hat{}$ means that the argument is omitted. The projective integral finally takes the form

$$\Phi(\Gamma) \{S, \Theta\} = \int_{\mathbb{R}^+} \int_{\mathbb{P}_T} \frac{d t}{t} \wedge e^{-\hat{\Theta} \phi_T(\Theta)} \psi_T^{D/2} \Omega_T \hspace{1cm} (35)$$

with ω_D the superficial degree of divergence. Now we want to perform the t-integration to get rid of the exponential. Therefore, we have to distinguish between the case $\omega_D > 0$, where the integral converges, and the case of ultraviolet divergence, i.e. $\omega_D \leq 0$. We are only interested in the latter case, thus we have to renormalize the integral. We apply kinetic renormalization conditions to $\Phi(\Gamma)$, that is to say that the renormalized amplitude of the graph Γ vanishes at a chosen reference or renormalization point $\{S_0, \Theta_0\}$, as well as all of its first ω_D derivatives in the Taylor expansion around that point.

In the logarithmic divergent case ($\omega_D = 0$), this condition can be implemented by modifying $\Phi(\Gamma)$ as follows

$$\Phi(\Gamma) \{S, \Theta\} \rightarrow \Phi(\Gamma) \{S, \Theta\} - \Phi(\Gamma) \{S_0, \Theta_0\}. \hspace{1cm} (36)$$

Hence, the overall divergence can be cured by a subtraction at the reference point. As it was shown in 4, the renormalized integral decomposes into angle- and scale-dependent parts. In particular, the renormalized Feynman rules can be written as a polynomial in the scaling parameter $L = \ln(S/S_0)$

$$\Phi_R(\Gamma) = \sum_{j=0}^{\text{cor}(\Gamma)} c_j(\Theta, \Theta_0) L^j. \hspace{1cm} (37)$$

The integer $\text{cor}(\Gamma)$ is called the co-radical degree of Γ defined as the maximal integer $j_{\text{max}} \in \mathbb{N}$, such that

$$\hat{\Delta}^{j_{\text{max}} - 1} \Gamma \neq 0 \quad \text{and} \quad \hat{\Delta}^j \Gamma = 0, \; \forall j \geq j_{\text{max}} \hspace{1cm} (38)$$

in which $\hat{\Delta}^j$ is the iterated reduced coproduct (see equations (A.13) and (A.15)). Therefore, $\text{cor}(\Gamma)$ equals the weight $|\Gamma|$ of the rooted tree T associated with the subgraph-structure of the graph Γ and in principle indicates how many divergent subgraphs are nested in Γ.

\footnote{Here and throughout this article we explicitly exclude lightlike particles.}

\footnote{In ϕ^4-theory, the superficial degree of divergence is given by $\omega_D = 2 \cdot E_T - D \cdot L$ since the weight of the edges and vertices is $\omega(v) = 2$ and $\omega(e) = 0$, respectively.}
The coefficients \(c_j^\Gamma \) can be determined by calculating the renormalized Feynman integral. In the case of Feynman diagrams with more than one independent loop we have to proceed recursively in order to eliminate all possible subdивergences. Of course, this recursion rapidly becomes more complicated. But in the case of momentum subtraction schemes there is an elegant solution to the recursion problem provided by Zimmermann, the so-called forest formula. Applying this formula to the graph \(\Gamma \) and expanding the resulting integral as a power series in the scaling parameter \(L \) allows us to determine the coefficients \(c_j^\Gamma \).

Assuming that \(\Gamma \) has not only logarithmic subdивergences but is additionally overall divergent, the forest formula yields \([18]\)

\[
\Phi_R(\Gamma) \{ S, S_0, \Theta, \Theta_0 \} = \sum_{f \in F(\Gamma)} (-1)^#f \left[\Phi(f) \{ S_0, \Theta_0 \} \Phi(\Gamma/f) \{ S, \Theta \} - \Phi(f) \{ S_0, \Theta_0 \} \Phi(\Gamma/f) \{ S_0, \Theta_0 \} \right] \quad (39)
\]

for the renormalized integrand, where the sum is over all forests \(f \) of the graph \(\Gamma \), also including the empty \(\emptyset \) but excluding the forest containing \(\Gamma \) itself, and \(#f \) denotes the number of connected components of \(f \).

If we plug \((35)\) in our formula \((39)\), we see that the resulting expression is singular at \(t = 0 \) due to the \(\frac{dt}{t} \) integration over \(R_+ \). Nevertheless, it can be regularized by introducing a regulator \(c \), using that, for sufficiently small \(c > 0 \),

\[
\int_c^\infty e^{-tX} \frac{dt}{t} = -\ln c - \ln X - \gamma_E + \mathcal{O}(c \ln c) \quad (40)
\]

with \(X > 0 \) fixed and \(\gamma_E \) the Euler-Mascheroni constant. To take the limit \(c \to 0 \), we have to subtract the integral at \(X_0 \) which yields

\[
\lim_{c \to 0} \int_c^\infty e^{-tX} - tX \frac{dt}{t} = -\ln(X/X_0). \quad (41)
\]

Therefore, we found a way to carry out the \(t \)-integration. Applying the formula above to the integral \((39)\) with \((35)\) plugged in finally delivers

\[
\Phi_R(\Gamma) = -\int_{\mathcal{F}_R} \sum_{f \in F(\Gamma)} \left[(-1)^#f \frac{1}{\psi^f_1 \ldots \psi^f_J} \times \ln \left(\frac{S\psi^f_1 \psi^f_J + S_0\psi_0^f \psi^f_J}{S_0\psi_0^f \psi^f_J + S_0\psi_0^f \psi^f_J} \right) \right] \quad (42)
\]

for the renormalized Feynman rules in projective form.

IV. The \(L \)-linear term of signed graph permutations

We are interested in the coefficient \(c_j^\Gamma(\Theta, \Theta_0) \) of the term of \(\Phi_R \) linear in \(L \). Therefore, we first have to differentiate \((12)\) with respect to \(L \) at \(S = S_0 \) (or equivalent \(L = 0 \))

\[
\frac{\partial \Phi_R(\Gamma)}{\partial L} \bigg|_{L=0} = S \frac{\partial \Phi_R(\Gamma)}{\partial S} \bigg|_{S=S_0} \quad (43)
\]

which yields

\[
\Phi^{(1)}_R(\Gamma) = c_j^\Gamma(\Theta, \Theta_0) = \int_{\mathcal{F}_R} \frac{1}{\psi^f_1 \ldots \psi^f_J} \times \frac{\phi_{\psi^f_1 \psi^f_J}}{\phi_{\psi^f_1 \psi^f_J} + \phi_{\psi^f_1 \psi^f_J}} \Omega_\Gamma. \quad (44)
\]

Without loss of generality we set the dimension of spacetime equal to four, \(D = 4 \). If we assume that \(L \) is very small, this term gives us the main contribution to \(\Phi_R \) together with the \(L \)-independent term. In \([1]\), the upper term was also derived and discussed in great detail.

For symmetric sums over permutations of graph insertions (symmetric flags) it was already shown in \([14]\) that the angle-dependence drops out in the \(L \)-linear term of the renormalized Feynman rules, and we will prove that this is also true in the case of antisymmetric flags. Moreover, we present a formula which allows us to compute all (angle-independent) terms surviving in the sum. Thereby, the problem of finding all forests of a graph is boiled down to the much more simple task of figuring out all possible decomposition of the co-radical degree of the graph into positive integers.

Analogous to \([14]\) we, therefore, define:

Definition 9. (Flag)

A Hopf algebra element \(\Gamma \) of co-radical degree \(\text{cor}(\Gamma) = r_\Gamma \) is said to be a flag if there exists a sequence of primitive graphs \(\gamma_i \) with \(1 \leq i \leq r_\Gamma \) such that

\[
\hat{\Delta}^{r_\Gamma-1} \Gamma = \gamma_1 \otimes \cdots \otimes \gamma_{r_\Gamma}. \quad (45)
\]

If \(\Gamma \) is a flag, the corresponding rooted tree is given by the (decorated) ladder

\[
λ_{r_\Gamma}^{r_\Gamma-1} = \begin{cases} \gamma_1^{r_\Gamma-1} \\ \vdots \\ \gamma_1^{r_\Gamma-1} \end{cases} \quad (46)
\]

Note that for the empty forest \(f = \emptyset \), the graph polynomials are defined as \(\psi_0 = 1 \) and \(\phi_0(\Theta) = 0 \).
of weight \(t \). The expression \(\gamma_{r_{1} \ldots 1} \) is shorthand for the successive nested insertion \(\gamma_{r_{1}} \leftarrow (\cdots \leftarrow \gamma_{1}) \), meaning that we start with \(\gamma_{1} \), insert it into \(\gamma_{2} \), insert the resulting graph \(\gamma_{21} \) into \(\gamma_{3} \), and so on until we end up with inserting \(\gamma_{r_{1} \ldots 1} \) into \(\gamma_{r} \), receiving the graph \(\Gamma = \gamma_{r_{1} \ldots 1} \). In the following it will prove beneficial to label the vertices of the ladder only by the leading index of the subgraph associated with it, i.e.

\[
\begin{align*}
\gamma_{i_{1} \ldots i} & \quad \iff \quad \gamma_{i_{1} \ldots i} - 1 \\
\gamma_{i_{1} \ldots i} & \quad \iff \quad \gamma_{i_{2} \ldots i} \\
\gamma_{i} & \quad \iff \quad \gamma_{i_{1} \ldots i} 1
\end{align*}
\]

(47)

Let \(\Lambda_{r_{T}} \) be a sum of \(r_{T} \) flags \(\Lambda^{(i)} \)
\[
\Lambda_{r_{T}} = \sum_{i=1}^{r_{T}} \Lambda^{(i)}.
\]

(48)

This sum is called a symmetric flag \(\Lambda_{r_{T}}^{+} \) if
\[
\tilde{\Delta}_{r_{T} r_{T}}^{-1} \Lambda_{r_{T}}^{+} = \sum_{\sigma} \gamma_{\sigma(1)} \otimes \cdots \otimes \gamma_{\sigma(r_{T})}
\]

(49)

where the sum is over all \(r_{T} \) ! permutations of the primitive graphs \(\gamma_{i} \). Accordingly, we say that \(\Lambda_{r_{T}}^{+} \) is an antisymmetric flag if the \(r_{T} - 1 \)-fold application of the reduced coproduct gives
\[
\tilde{\Delta}_{r_{T} r_{T}}^{-1} \Lambda_{r_{T}}^{+} = \sum_{\sigma \in \text{cyclic} \, i_{1} \ldots i_{r_{T} - 1}} \epsilon_{\sigma} \gamma_{\sigma(1)} \otimes \cdots \otimes \gamma_{\sigma(i_{r_{T} - 1})} \otimes \gamma_{\sigma(r_{T})}
\]

(50)

for a sequence of primitive graphs \(\gamma_{i} \) with \(1 \leq i \leq r_{T} \) where the sum is over all permutations within the group \((\text{signed } S_{r_{T} - 1}) \times (\text{cyclic } S_{r_{T}})\). By analogy with the Levi-Cevita-symbol we introduce the tensor
\[
\tilde{\epsilon}_{i_{1} \ldots i_{r_{T}}} = \begin{cases} +1 & \text{if } (i_{1}, \ldots, i_{r_{T}}) \text{ is a cyclic permutation of } (1, k_{2}, \ldots, k_{r_{T}}), \\ -1 & \text{if } (i_{1}, \ldots, i_{r_{T}}) \text{ is a cyclic permutation of } (1, k_{2}, \ldots, k_{r_{T}}), \\ 0 & \text{if at least two indices of the set } (i_{1}, \ldots, i_{r_{T}}) \text{ are equal}
\end{cases}
\]

(51)

defined from the sign of a permutation \(\sigma \in S_{r_{T} - 1}^{\text{signed}} \times S_{r_{T}}^{\text{cyclic}} \). The chosen permutation group ensures that cyclic permutations of the indices \((i_{1}, \ldots, i_{r_{T}}) \) conserve the sign, as can be seen from the tensor \(\tilde{\epsilon} \) defined above. For \(r_{T} \) odd we need an even number of transpositions to perform a cyclic permutation and therefore \(\sigma \in S_{r_{T} - 1}^{\text{signed}} \times S_{r_{T}}^{\text{cyclic}} \) preserves the sign. Thus
\[
S_{r_{T} - 1}^{\text{signed}} \times S_{r_{T}}^{\text{cyclic}} \mid \Gamma_{\text{r_{T} odd}} = S_{r_{T} - 1}^{\text{signed}} \text{ and }
\]
\[
\tilde{\epsilon}_{i_{1} \ldots i_{r_{T}}} \Gamma_{\text{r_{T} odd}} = \delta_{i_{1} \ldots i_{r_{T}}}.
\]

(52)

In terms of ladders, \(\Lambda_{r_{T}}^{+} \) can then be written as
\[
\Lambda_{r_{T}}^{-} = \sum_{i_{1}, \ldots, i_{r_{T}}=1}^{r_{T}} \tilde{\epsilon}_{i_{1} \ldots i_{r_{T}}} \gamma_{\left((i_{1}, \ldots, i_{r_{T}}) \right)}
\]

(53)

and analogously \(\Lambda_{r_{T}}^{+} \).

It was already shown in \([14]\) that the coefficient \(\Phi_{R}^{(1)}(\Lambda_{r_{T}}^{+}) \) is angle-independent if the renormalization point preserves scattering angles, i.e. \(\Theta \equiv \Theta_{0} \).

What we want to assert is:

Proposition 1.

Let \(\Lambda_{r_{T}}^{+} \) be an antisymmetric flag as defined in \([50]\). Then, the L-linear term \(\Phi_{R}^{(1)}(\Lambda_{r_{T}}^{+}) \) of the renormalized Feynman rules is independent of the second Symonzik polynomial and, therefore, angle-independent under the assumption that the renormalization point preserves scattering angles.

In order to prove the upper proposition, we first want to do an explicit example. We are looking at the graph
\[
\gamma_{i j k} = \gamma_{i} \leftarrow \left(\gamma_{j} \leftarrow \gamma_{k} \right)
\]

(54)

for a sequence of primitive graphs \(\gamma_{i} \) with \(1 \leq i, j, k \leq 3 \) and \(i \neq j \neq k \). The decorated rooted tree associated to the graph is given by \(\gamma_{ij} \), and the forest set deduced from it turns out to be
\[
\mathcal{F}(\gamma_{i j k}) = \{0, \gamma_{ij}, \gamma_{jk}, \gamma_{ij k} \cup \gamma_{jk} \}.
\]

(54)

The coefficient \(\Phi_{R}^{(1)} \) of the L-linear term is (see equation \([14]\)
\[
\Phi_{R}^{(1)}(\gamma_{i j k}) = \int \omega_{\gamma_{i j k}} I(\gamma_{i j k})
\]

(55)

with
\[
I(\gamma_{i j k}) = \frac{1}{\psi_{ij}^{\gamma_{jk}}} - \frac{1}{\psi_{ij}^{\psi_{jk}}} + \psi_{ij}^{\psi_{jk}} \left(\frac{1}{\psi_{ij}^{\gamma_{jk}}} - \frac{1}{\psi_{ij}^{\psi_{jk}}} + \psi_{ij}^{\psi_{jk}} \right)
\]

(56)

if we assume that the renormalization point preserves scattering angles. To make it more compact, we used the shorthand notation \(\psi_{i_{1} \ldots i_{n}} \equiv \psi(\gamma_{i_{1} \ldots i_{n}}) \)
and analogue for ϕ. In the last term of $I(\gamma_{ijk})$, which corresponds to the forest $\gamma_{jk} \cup \gamma_k$, we used the decomposition rules \(11\) for products of graphs to rewrite the Symanzik polynomials. Now we intend to show the angle-independence of the L-linear term for an antisymmetrical field of co-radical degree three. For that purpose we use $\varepsilon_{ijk} = \varepsilon_{ijk} = \frac{1}{3} (\varepsilon_{ijk} + \varepsilon_{kij})$ to get

$$
\varepsilon_{ijk} I(\gamma_{ijk}) = \frac{1}{3} \varepsilon_{ijk} \left\{ \frac{1}{\psi_{ij}^2} \psi_{ik}^2 + \frac{1}{\psi_{jk}^2} + \frac{1}{\psi_{ij}^2} \right\} - \frac{1}{\psi_{ik}^2} \frac{1}{\psi_{jik}^2} - \frac{1}{\psi_{jk}^2} \frac{1}{\psi_{jki}^2} + \frac{1}{\psi_{ij}^2} \frac{1}{\psi_{j}^2},
$$

(57)

As one can see, all ϕ-dependent terms summed up to unity such that the whole expression is independent of the scattering angles. The first and the second three terms in the upper equation are just cyclic permutations of each other. Therefore, they add up to one term if we sum over all indices i, j, and k. The last term in equation (57) cancels in the sum because of the sign change due to the Levi-Cevita-tensor. As a consequence, the antisymmetric sum of the L-linear terms of all graphs γ_{ijk} yields

$$
\Phi^{(1)}_{R}(A_3) = \sum_{i,j,k=1}^{3} \varepsilon_{ijk} \Phi^{(1)}_{R}(\gamma_{ijk})
$$

$$
= \int \mathcal{P} \Omega \sum_{i,j,k=1}^{3} \varepsilon_{ijk} \left\{ \frac{1}{\psi_{ij}^2} - \frac{1}{\psi_{ik}^2} \right\}.
$$

(58)

This expression only depends on the first Symanzik polynomial and is thus independent of the renormalization point.

Since we want to prove that this is always the case for antisymmetric flags, let us do this more general. We consider the graph $\gamma_{r_1 \ldots r_l}$ of co-radical degree r_T and pick a general forest of it, namely $f = \{\gamma_{i_1 \ldots i_j} \cup \gamma_{i_{j+1} \ldots i_k} \cup \gamma_{i_{k+1} \ldots i_{m+1}} \cup \gamma_{i_{m+1} \ldots i_l}\}$ with $r_T > j > k > l > m > 1$ that generates the term

$$
\frac{\phi_{\gamma_{r_1 \ldots i_j+1} \psi_{i_1 \ldots i_j+1} \psi_{i_{j+1} \ldots i_k} \psi_{i_{k+1} \ldots i_{m+1}} \psi_{i_{m+1} \ldots i_l}}{(\prod_{d \in D} \psi_d^2)} \times (\sum_{d' \in D} \phi_{d'} \prod_{d' \neq d} \psi_{d'})
$$

(59)

with $D = \{i_r, \ldots, i_{j+1}, i_j, \ldots, i_{k+1}, i_k, \ldots, i_{l+1}, i_l, \ldots, i_{m+1}, i_m, \ldots, i_1\}$ in $\Phi^{(1)}_{R}$. Now we have to distinguish between two cases:

(1) There are at least two $\psi_{i_s \ldots i_{s+1}}$ with $s = t + 1$.

This means that we have more than one ψ with only one index. Without loss of generality we assume that $k = l + 1$ and $l = m + 1$. Therefore, the numerator in (59) takes the form

$$
\phi_{i_{r_1} \ldots i_{r_{t+1}}} \psi_{i_1 \ldots i_{t+1}} \psi_{i_{t+1} \ldots i_{l}} \psi_{i_{l} \ldots i_{m+1}} \psi_{i_{m+1} \ldots i_l}.
$$

(60)

When changing i_k and i_l, we get a sign flip from the ε-tensor but the whole fraction stays invariant under that permutation and thus these terms cancel in the sum.

(2) There is at most one $\psi_{i_s \ldots i_{s+1}}$ with $s = t + 1$.

In this case, we can find cyclic permutation $i_1 \ldots i_{r_T} \rightarrow i_{j+1} \ldots i_{r_T} i_1 \ldots i_j \rightarrow i_{k+1} \ldots i_{r_T}$

$i_1 \ldots i_k \rightarrow i_{j+1} \ldots i_{r_T} i_1 \ldots i_j \rightarrow i_{m+1} \ldots i_T i_1 \ldots i_m$

that leave the denominator of (59) invariant. If we assume $j = k + 1$ and sum over all cyclic permutations of the indices, we get an expression of the form

$$
\frac{1}{\prod_{d \in D} \psi_d^2} \sum_{d' \in D} \phi_{d'} \prod_{d' \neq d} \psi_{d'}
$$

$$
\times \left[\phi_{i_{r_1} \ldots i_{k+1} \psi_{i_{k+1} \ldots i_{l}} \psi_{i_{l} \ldots i_{m+1}} \psi_{i_{m+1} \ldots i_l}} + \text{(cyclic permutations)} \right].
$$

(61)

Since the denominator of the second factor and the third factor are equal, the whole term turns to unity, and what we get is just the prefactor

$$
\frac{1}{\prod_{d \in D} \psi_d^2}
$$

(62)

which is solely a function of the first Symanzik polynomial and no longer on the scattering angles.

In both cases the angle-dependence drops out and therefore $\Phi^{(1)}_{R}$ is indeed angle-independent for antisymmetric flags.

V. A general formula

The method we want to present now is in principle based on the idea to figure out all possible combinations of subgraphs building a forest and, afterwards, discard those forests that cancel in the sum. Let us look again at the graph γ_{ijk}. We already considered in section IV the forest-set of the graph is given in (54). The terms generated by the forests are (cf. (56))

$$
\emptyset : 1/\psi_{jk}^2 \leftrightarrow \gamma_{ijk}
$$

$$
\gamma_{k} : \phi_{i_{j} \psi_{k}}/\psi_{jk}^2 \leftrightarrow \gamma_{ijk}
$$

$$
\gamma_{jk} : \phi_{i_{j} \psi_{ik}}/\psi_{i_{j} \psi_{jk}}^2 \leftrightarrow \gamma_{ijk}
$$

$$
\gamma_{ijk} \cup \gamma_{k} : \phi_{i_{j} \psi_{ik}}/\psi_{i_{j} \psi_{jk}}^2 \leftrightarrow \gamma_{ijk}
$$

(63)

where we neglect the denominators of the second factor because they are just the sum of all different permutations of the numerator. If we forget the
forests of the graph for a moment, the upper terms in the forest-sum can be regarded as they would be generated by the graphs on the right. In order to find a connection between the forest-set on the left and the graph-set on the right, we take the rooted tree associated with the graph and draw a box around each forest, giving us

\[\begin{array}{cccc}
\text{i} & \text{j} & \text{j} & \text{i} \\
\text{k} & \text{j} & \text{k} & \text{k} \\
\end{array} \] \text{and} \\
\begin{array}{cccc}
\text{i} & \text{j} & \text{j} & \text{j} \\
\text{k} & \text{k} & \text{i} & \text{i} \\
\end{array} \] \text{with the nested boxes standing for the disjoint union of the graphs within. For reasons that will become clear in a moment, we cut the trees at each edge that is crossed by a box, yielding the graphs}

\[\begin{array}{cccc}
\text{i} & \text{j} & \text{j} & \text{i} \\
\text{k} & \text{j} & \text{k} & \text{k} \\
\end{array} , \text{ and} \\
\begin{array}{cccc}
\text{i} & \text{j} & \text{j} & \text{i} \\
\text{k} & \text{k} & \text{i} & \text{i} \\
\end{array} . \] \hspace{1cm} (64)

But cutting the tree can be understood as a contraction, splitting the graph \(\gamma \) into a product of graphs \((\gamma / \gamma_d) \) \(\gamma_d = \gamma_r \gamma_d \) where the rooted part \(\gamma_r \) is generated by contracting the original graph \(\gamma \) with the dissected graph \(\gamma_d \). Therefore, the upper set of dissected trees \(\{ \text{65} \} \) in terms of graphs is given by

\[\gamma_{ijk}, \gamma_{ij} \gamma_{jk}, \gamma_{i} \gamma_{jk}, \text{ and } \gamma_{i} \gamma_{jk} \] \hspace{1cm} (66)

which is exactly the graph-set on the right in \(\{ \text{63} \} \). Moreover, \(\{ \text{65} \} \) is the set of all partitions of the rooted tree \(\lambda_{ijk}^{(i,j,k)} = \sum_{\gamma_{ijk}} \) associated with the graph \(\gamma_{ijk} \). Thus, we can re-express the integrand \(\{ \text{44} \} \) in terms of partitions of the rooted tree associated with the graph instead of forests.

To see how this can be done, we first want to reformulate the L-linear term of the renormalized Feynman rules \(\{ \text{41} \} \) for ladder graphs. Let \(\mathcal{P} \left(\Lambda_{r_1 \cdots r_T} \right) \) be the set of all partitions of the ladder \(\lambda_{r_1 \cdots r_T} \) into 1 up to \(r_T \) ladders \(\lambda_{d_i}^{(k_i)} \) with weight \(k_i \) and decoration \(d_i \). Of course we have \(|d_i| = k_i \), otherwise this would not make sense. The set \(\{ D, \prec \} \) of all decorations \(D = \{ i_1, \ldots, i_{r_T} \} \) has a strict total ordering \(i_k \prec i_j, \forall j, k \in \mathbb{N} : j < k \) such that the Hasse diagram of \(D \) is given by the decorated rooted tree belonging to it.

We decompose the set \(\mathcal{P} \) into subsets \(\mathcal{P}^{(n)} \) fulfilling

\[
\mathcal{P} = \bigcup_{n=1}^{r_T} \mathcal{P}^{(n)} \quad \text{and} \\
\mathcal{P}^{(n)} = \left\{ p \in \mathcal{P} : p = \bigcup_{i=1}^{n} \lambda_{d_i}^{(k_i)} \wedge \sum_{i=1}^{n} k_i = r_T \right\} \quad (67)
\]

with subsets \(d_i \subseteq D \) such that \(D = \bigcup_{i=1}^{n} d_i \). The ordering condition \(d_i \prec d_i \) means that \(i_k \prec i_j, \forall i_j \in d_i, i_k \in d_i + 1 \) and of course \(i_1 \prec i_j, \forall i_j, i_1 \in d_i : j < l \). Thus, the order of the decorations always has to stay the same no matter how many dissections were performed. For example, the set \(\{ \text{65} \} \) can be written as

\[
\mathcal{P} \left(\lambda_{ijk}^{(i,j,k)} \right) = \mathcal{P}^{(1)} \cup \mathcal{P}^{(2)} \cup \mathcal{P}^{(3)} \quad \text{with} \\
\mathcal{P}^{(1)} = \left\{ \lambda_{ijk}^{(i,j,k)} \right\}, \quad \mathcal{P}^{(2)} = \left\{ \lambda_{ijk}^{(i,j,k)}, \lambda_{ijk}^{(i,j,k)} \right\}, \\
\text{and} \quad \mathcal{P}^{(3)} = \left\{ \lambda_{ijk}^{(i,j,k)} \right\}. \quad (68)
\]

Since each element of \(\mathcal{P} \left(\lambda_{ijk}^{(i,j,k)} \right) \) can be linked to a term in \(\Phi_R^{(1)} \left(\gamma_{D} \right) \) of the graph \(\gamma_D \), whose subgraph structure is visualized through \(\lambda_{ijk}^{(i,j,k)} \), we can reformulate \(\Phi_R^{(1)} \left(\Lambda_{r_1 \cdots r_T} \right) \) in terms of ladders as follows

\[
\Phi_R^{(1)} \left(\gamma_{i_1 \cdots i_{r_T}} \right) \equiv \Phi_R^{(1)} \left(\lambda_{r_1 \cdots r_T} \right) = \\
\sum_{n=1}^{r_T} (-1)^{n+1} \sum_{p \in \mathcal{P}^{(n)} \left(\lambda_{r_1 \cdots r_T} \right)} \frac{1}{\prod_{i=1}^{n} \psi_{d_i}} \times \frac{\phi_{d_i} \prod_{j=2}^{n} \psi_{d_j}}{\sum_{i=1}^{n} \phi_{d_i} \prod_{j=1}^{n} \psi_{d_j}}. \quad (69)
\]

For convenience, we make use of the notation \(\psi_{d_i} = \psi \left(\lambda_{d_i}^{(k_i)} \right) = \psi \left(\gamma_{d_i} \right) \) and analogously \(\phi_{d_i} \).

Now we go one step further and ask for \(\Phi_R^{(1)} \left(\Lambda_{r_1 \cdots r_T} \right) \) in terms of the possible partitions \(p \in \mathcal{P} \). Therefore, we have to recall the cases (1) and (2) from section \text{[IV]} for the integrand of \(\Phi_R^{(1)} \left(\Lambda_{r_1 \cdots r_T} \right) \). From case (1) it follows in terms of partitions that all elements \(p \in \mathcal{P} \) containing more than one ladder of weight 1 do not contribute to the integrand, as we have seen for the fourth forest in \(\{ \text{65} \} \). The second case tells us that the sum of all partitions of a graph consisting of the same number of ladders with fixed weight, contributes only one single term to the integrand (cf. the second and third forest in \(\{ \text{65} \} \)).

To get a more adapted formulation of those two
In some cases, we define a multiplicity \(m_p(k) \) for each element \(p \) in \(\lambda^{(d)}_{k_i=k} \), given by the number of ladders \(\lambda^{(d)}_{k_i=k} \) of weight \(k \) contained in \(p \). Let \(m_p \) be the \(\tau_r \)-tuple of all multiplicities of \(p \), i.e. \(m_p = (m_p(k))_{k=1,\ldots,\tau} = (m_p(1), \ldots, m_p(\tau_r)) \). Then, we claim that two elements \(p \) and \(p' \) of \(P \) are independent of each other if and only if there exists at least one weight \(k \) such that \(m_p(k) \neq m_p'(k) \). That is to say that \(p \) and \(p' \) have not the same tuple of multiplicities. Therefore, it follows that the two forests \(\bigcup_{i}^j \) and \(\bigcup_{i}^k \) are not independent of each other since they have the same multiplicity tuple given by \((m(1) = 1, m(2) = 1, m(3) = 0) \).

Based on the invented notion of the multiplicity tuple, we define

\[
P_{\text{ind}} \left(\lambda_{\tau}^{(D)} \right) := \left\{ p \in P \left(\lambda_{\tau}^{(D)} \right) : m_p \neq m_p' \forall p, p' \in P_{\text{ind}} \left(\lambda_{\tau}^{(D)} \right) \right\} \tag{70}
\]

to be the set of all independent partitions of \(\lambda_{\tau}^{(D)} \), which means that all elements of \(P_{\text{ind}} \) are pairwise independent of each other. Clearly, this set is not unique because out of all partitions in \(P \left(\lambda_{\tau}^{(D)} \right) \) with the same multiplicity tuple we have to choose only one to be contained in \(P_{\text{ind}} \). Nevertheless, this will not bother us since our formula is completely independent of the choice of the specific partition. Consequently, without loss of generality, we will always choose the partition consisting of ladders with equal or decreasing weight for a fixed multiplicity tuple, meaning that \(p = \bigcup_{i}^j \lambda^{(d)}_{k_i=k} \) with \(k_i \geq k_{i+1} \geq 1 \).

This selection rule allows us to write the set of independent partitions of a ladder \(\lambda_{\tau}^{(D)} \) as

\[
P_{\text{ind}} = \bigcup_{n=1}^{\tau_r} P_{\text{ind}}^{(n)} \text{ with } \]

\[
P_{\text{ind}}^{(n)} = \left\{ p \in P_{\text{ind}} : p = \bigcup_{i=1}^{n} \lambda^{(d)}_{k_i=k} \land \sum_{i=1}^{n} k_i = \tau_r \land k_i \geq k_{i+1} \geq 1 \land d_{i+1} < d_i \right\}. \tag{71}
\]

Now we are on the verge of giving a compact formulation of the final integrand \(\psi_{\tau}^{(1)} \left(\Lambda_{\tau_r}^{(1)} \right) \). Calling to mind that all partitions containing more than one ladder of weight 1 do not contribute to the integrand (cf. case (1) in section IV), \(P_{\text{ind}} \left(\lambda_{\tau}^{(D)} \right) \) gives the full set of partitions we need to build up the integrand of \(\Lambda_{\tau_r} \), if we discard all elements \(p \) with \(m_p(1) > 1 \). The only thing we need for the final expression is the numerical prefactor of the terms contributing to the integrand. Let us see how this can be done by giving an example.

Consider the case \(\tau_r = 6 \). The set of partitions \(p \) with multiplicity tuple \(m_p = (1, 1, 1) \) is given by

\[
\begin{align*}
\bigcup_{j}^k \quad \bigcup_{i}^m \quad \bigcup_{j}^n \quad \bigcup_{i}^n \quad \bigcup_{j}^m \quad \bigcup_{i}^m.
\end{align*}
\]

As we already know, those terms will sum up to the single one \(\frac{1}{3!} \) times a numerical prefactor which is composed as follows. The number of partitions with the same multiplicity for \(\tau_r \) fixed is just the number of possibilities to arrange the ladders in the respective partition. If we forget the decorations of the trees for a moment, this number would be just the number of ladders in \(p \) factorial. Since the decorations of the ladders are strictly ordered we do not get a new partition if we interchange ladders of the same weight in the partition. Therefore, the factorial of the number of ladders in \(p \) has to be divided by the multiplicity factorial for each weight. In our example we get \(3! = 6 \) for the number of partitions with multiplicity \(m_p = (1, 1, 1) \). The integrand associated to the first partition in the upper example is (cf. equation (69))

\[
\frac{1}{3!} \times \text{something}. \tag{73}
\]

As one can see, each of those factors will add up in such a way that the angle dependent term turns to unity. More generally, if \(n \) is the number of ladders in the partition, each \(n \) of the partitions will add up to one term in the sum. Therefore, dividing the number of partitions with the same multiplicity by the number of ladders in each partition gives the prefactor in the integrand we are looking for. In the present example this factor is \(\frac{1}{3!} = 2 \). In general, the prefactor can be defined as

\[
\prod_{i=1}^{n_p} \frac{n_p!}{n_p} = \frac{(n_p - 1)!}{\prod_{i=1}^{n_p} m_p(k_i)!} = \frac{(\sum_{i=1}^{\tau_r} m_p(k_i) - 1)!}{\prod_{i=1}^{\tau_r} m_p(k_i)!}. \tag{73}
\]

with \(n_p \) the number of ladders in the partition \(p \). For an example of the prefactor for some partitions see table 4 in which we omitted the factors \(0! \) in the denominators and the decorations of the trees for convenience.
\[
\lambda_2^3 = 2^1 + 1 = 1 + 1 + 1
\]

Table 1: The prefactor from equation (73) for a variety of partitions.

Finally, the linear term of the renormalized Feynman rules for an antisymmetric flag takes the compact form

\[
\Phi_R^{(1)} (\Lambda_{r_T}) = \int_{\gamma} \Omega_{r_T} \sum_{n=1}^{r_T} (-1)^{n+1} \sum_{d \in D} \sum_{d_1=1}^{r_T} (n-1)! \prod_{m=1}^{n} \frac{1}{m!} \psi_{d_1}^{(2)} \prod_{i=1}^{r_T} \lambda_i \]

where \(\xi_{(D)} \) is the tensor defined in (51) indexed by the full decoration set of the corresponding flag and the sum \(\sum_{d \in D} \sum_{d_1=1}^{r_T} \) runs over all elements of the decoration set, each of them taking on values from 1 up to \(r_T \). Note, that \(d \) denotes an element and \(d_1 \) an ordered subset of \(D \) so they should not be confused with each other.

The upper result is very striking since the problem of finding all the forests of a graph is boiled down to the task of finding all partitions of the corresponding ladder graph which is straightforward. A very easy and pictorial way to cope with this task will be given in the following section.

VI. A pictorial approach using flag diagrams

In the last section we presented a formula that allows us to calculate the linear term of the renormalized Feynman rules of an antisymmetric flag by looking at the possible (independent) partitions of the corresponding ladder. There is also a pictorial way to deduce the set \(P_{\text{ind}} (\lambda_{r_T}^{(D)}) \) for a given ladder \(\lambda_{r_T}^{(D)} \), which is based on the idea of Ferrers diagrams (see appendix [3]). Such a pictorial representation of the set of independent partitions of a ladder graph, we will refer to as a flag diagram. To see how these diagrams can be constructed, we first look at the set of all independent partitions of a ladder (see equation (71)). If we ignore the decorations of the ladders for a moment, the partition-set is defined by the condition

\[
r_T = \sum_{i=1}^{n} k_i \quad \text{and} \quad k_i \geq k_{i+1} \geq 1.
\]

Obviously, equation (75) defines the set of all partitions of the co-radical degree \(r_T \) into a sum of \(n \) positive integers \(k_i \). This partition can be illustrated by drawing the corresponding Ferrers diagram.

Consider the case \(r_T = 3 \). The possible decompositions of \(r_T \) are \(r_T = 3 = 2 + 1 = 1 + 1 + 1 \) with the corresponding Ferrers diagrams given in figure 6(a).

Now, the set of independent partitions of the corresponding ladder \(\lambda_{r_T}^{(D)} \) can directly be constructed out of Ferrers diagrams in figure 6(a) by simply drawing edges between the dots in the same column. Afterwards, we can label the dots in each diagram by the elements in the decoration set, going from top to bottom and from left to right, yielding the flag diagram in figure 6(b). The generalization of this construction is straightforward.

Figure 6: Ferrers diagrams of all possible partitions of \(r_T = 3 \) into positive integers and the corresponding flag diagram constructed out of them.

To determine the partitions in the flag diagram
VII. Example: \(r_\Gamma = 6 \)

We consider the case \(r_\Gamma = 6 \). There are 11 different possibilities to decompose 6 into a sum of positive integers, namely

\[
\begin{align*}
6 &= 5 + 1 = 4 + 2 = 4 + 1 + 1 = 3 + 3 \\
&= 3 + 2 + 1 = 3 + 1 + 1 + 1 = 2 + 2 + 2 \\
&= 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 \\
&= 1 + 1 + 1 + 1 + 1 + 1. \quad (76)
\end{align*}
\]

Each of those decompositions can be illustrated by a Ferrers diagram, and from the set of diagrams we can deduce the corresponding flag diagram given in figure 8.

\[
\begin{align*}
\text{(a) Flag diagram for } r_\Gamma &= 4 \\
\text{(b) Flag diagram for } r_\Gamma &= 5
\end{align*}
\]

Figure 7: Flag diagrams for co-radical degree four and five with all partitions that do not contribute to integrand crossed out.

Our goal is to calculate the integrand of the antisymmetric flag. Therefore, we can discard the fourth and seventh partition in the first, and all but the first partition in the second line of the flag diagram. The remaining partitions that contribute to the integrand are

\[
\begin{align*}
\lambda_\Lambda (ijklmn) &= \lambda_\Lambda (ijklm) \lambda_l, \lambda_4 (ijklm) \lambda_4 (mn), \lambda_3 (ijkl) \lambda_3 (lmn), \\
\lambda_3 (ijk) \lambda_2 (lmn), \lambda_2 (ij) \lambda_2 (klm) &\quad (77)
\end{align*}
\]

Thus, the integrand from equation (74) evaluates to

\[
\Phi^{(1)}_R (\Lambda_6) = \int \Omega \sum_{i,j,k,l,m,n=1}^6 \bar{\varepsilon}_{ijklmn} \left[\frac{1}{\psi_{ijklmn}} - \frac{1}{\psi_{ijklmn}} \frac{1}{\psi_{ijklmn}} - \frac{2}{\psi_{ijklmn}} \frac{1}{\psi_{ijklmn}} + \frac{2}{\psi_{ijklmn}} \frac{1}{\psi_{ijklmn}} \right]. \quad (79)
\]

This calculation was done without any great effort and nearly took a half page. In contrast, we can think of the explicit calculation: For the ladder of co-radical degree 6 we would get a total number of 32 forests, each giving us one term in the integrand corresponding to the forest formula in equation (44). To see how the angle-dependence cancels out, we can rewrite the integrand using \(\bar{\varepsilon}_{ijklmn} = \frac{1}{2} [\bar{\varepsilon}_{ijklmn} + \bar{\varepsilon}_{ijklmn} + \ldots] \), giving us a total amount of 32 \times 6 = 192 terms that have to be combined until we end up with the expression (79).

Thus, our formula not only saves a lot of time and paperwork but also is more elegant in a combinatorial sense.

VIII. Conclusion

Within the scope of the present article, we initially considered scalar Feynman integrals in parametric representation. After introducing dimensionless scattering angles and carrying out one of the integrations, it becomes apparent that the renormalized Feynman rules can be written as a polynomial in the scaling parameter \(L = \ln (S/S_0) \). Assuming that \(L \) is very small, the dominant contributions of \(\Phi_R \) arise from the low-order terms in the polynomial. Therefore, we focus on the \(L \)-linear term of the renormalized Feynman rules. In quest of finding combinations of graphs such that the linear term is significantly simplified, we end up at so-called flags. It turned out that in the case of antisymmetric flags (as well as in the case of symmetric flags) the \(\phi \)-dependence and thus the angle-dependence drops out in the linear term of \(\Phi_R \) if we assume that scattering angles are preserved. Based on our discovery,
we thought about a concept how to compute $\Phi_R^{(1)}$ for antisymmetric flags of arbitrary order and developed a formula whereby the calculations are facilitated and shortened. In a concluding example, we showed how advantageous this formula can be. Indeed, the formula can also be used to compute $\Phi_R^{(1)}$ for symmetric flags. The sole difference is that all ladders in the flag-diagram contribute to the integrand. Consequently, the claim $m_p(1) \leq 1$ is dropped (cf. equation (74)). Apart from this, the formula is unchanged such as the computation of the prefactor (cf. equation (73)). Within the context of this article, we also considered combinations of ladder graphs with branched rooted trees for r_T fixed. However, investigations of those combinations of graphs gave no reason to expect the angle-independence of the L-linear term so far.

A. Algebras

In the following we want to give some basic definitions regarding algebras. What we aim at with this appendix is to give a brief overview of this topic and not a full mathematical description.

Let K be a field of characteristic zero, V_1 and V_2 two vector spaces, and $\tau_{V_1,V_2} : V_1 \otimes V_2 \to V_2 \otimes V_1$ the flip map that interchanges the elements in a tensor product $\tau(v_1 \otimes v_2) = v_2 \otimes v_1$.

Definition A.1. (Algebra)

An associative K-algebra (A,m) is a K-vector space A together with a linear map $m : A \otimes A \to A$, called product, such that

$$m \circ (\text{id} \otimes m) = m \circ (m \otimes \text{id}).$$ \hfill (A.1)

If there exists a linear map $I : K \to A$ fulfilling

$$m \circ (\text{id} \otimes I) = \text{id} = m \circ (I \otimes \text{id}),$$ \hfill (A.2)

the algebra (A,m,I) is said to be unital, and I is called the unit map.

For $m \circ \tau = m$ the algebra is commutative.

The conditions (A.1) and (A.2) are the same as demanding that the diagrams

$$\begin{array}{c}
A \otimes A \otimes A \\
\downarrow{\text{id} \otimes m} \\
A \otimes A
\end{array} \xrightarrow{m} \begin{array}{c}
A \otimes A \\
\downarrow{m} \\
A
\end{array}$$ \hfill (A.3)

and

$$\begin{array}{c}
K \otimes A \\
\downarrow{\text{id} \otimes \hat{I}} \\
A \otimes A \\
\downarrow{m} \\
A \\
\downarrow{\hat{I}} \\
A \otimes K
\end{array} \cong \begin{array}{c}
A \otimes A \\
\downarrow{m} \\
A \\
\downarrow{\hat{I}} \\
A \otimes K
\end{array}$$ \hfill (A.4)

 commute. By reversing the arrows of the diagrams, one can derive objects which are somehow dual to algebras, namely coalgebras.

Definition A.2. (Coalgebra)

A coassociative K-coalgebra (C,Δ) consists of a K-vector space C and a linear map $\Delta : C \to C \otimes C$, called coproduct, such that coassociativity is fulfilled

$$(\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta.$$ \hfill (A.5)

If there exists a linear map $\hat{I} : C \to K$ with

$$(\hat{I} \otimes \text{id}) \circ \Delta = \text{id} = (\text{id} \otimes \hat{I}) \circ \Delta,$$ \hfill (A.6)

the coalgebra (C,Δ,\hat{I}) is said to be counital, and \hat{I} is called the counit map.

Clearly, the recursive definition above is invariant under a variation of the order in which the coproduct is applied. This fact follows from the coassociativity of Δ (see equation (A.5)) and therefore

$$\Delta^0 := \text{id} \quad \text{and} \quad \Delta^{n+1} := (\Delta \otimes \text{id}^{(n)}) \circ \Delta^n \quad \text{for} \quad n \in \mathbb{N}_0.$$ \hfill (A.9)

Remark A.1. In literature it is very common to use Sweedler’s notation for the coproduct $\Delta(x) = x' \otimes x''$ with $x \in C$, which is shorthand for $\Delta(x) = \sum_i x'_{(i)} \otimes x''_{(i)}$.

As we mentioned before, the properties (A.5) and (A.6) are equivalent to the commutativity of the diagrams

$$\begin{array}{c}
C \\
\downarrow{\Delta} \\
C \otimes C \\
\downarrow{\Delta \otimes \text{id}} \\
C \otimes C \otimes C
\end{array} \cong \begin{array}{c}
C \\
\downarrow{\Delta} \\
C \otimes C \\
\downarrow{\text{id} \otimes \hat{I}} \\
C \otimes K
\end{array}$$ \hfill (A.7)

and

$$\begin{array}{c}
K \otimes C \\
\downarrow{\text{id} \otimes \hat{I}} \\
C \otimes C \\
\downarrow{\Delta} \\
C
\end{array} \cong \begin{array}{c}
K \otimes C \\
\downarrow{\text{id} \otimes \hat{I}} \\
C \otimes C \\
\downarrow{\Delta} \\
C
\end{array}$$ \hfill (A.8)
Definition A.3. (Algebra and coalgebra morphism)
Consider two algebras \((A_1, m_1)\) and \((A_2, m_2)\). The linear map \(\phi : A_1 \to A_2\) is an algebra morphism if
\[
\phi \circ m_1 = m_2 \circ (\phi \otimes \phi) \quad \text{and} \quad \phi \circ \mathbb{1}_1 = \mathbb{1}_2 \quad (A.11)
\]
in the case of unital algebras.

For coalgebras \((C_1, \Delta_1)\) and \((C_2, \Delta_2)\), the linear map \(\tilde{\phi} : C_1 \to C_2\) is a coalgebra morphism if
\[
\Delta_2 \circ \tilde{\phi} = (\tilde{\phi} \otimes \tilde{\phi}) \circ \Delta_1 \quad \text{and} \quad \mathbb{1}_2 \circ \tilde{\phi} = \mathbb{1}_1 \quad (A.12)
\]
is fulfilled. The latter only holds for the counital case.

Before we come to the notion of Hopf algebras, we first need to merge algebras and coalgebras to bialgebras as described in the following definition.

Definition A.4. (Bialgebra)
A \(\mathbb{K}\)-vector space \(B\) together with a unital \(\mathbb{K}\)-algebra structure \((m, \mathbb{1})\) and a counital \(\mathbb{K}\)-coalgebra structure \((\Delta, \mathbb{1})\) is called a (unital and counital) \(\mathbb{K}\)-bialgebra \((B, m, \mathbb{1}, \Delta, \mathbb{1})\) if one of the following conditions hold:

(i) The linear maps \((m, \mathbb{1})\) are morphisms of coalgebras, or

(ii) the linear maps \((\Delta, \mathbb{1})\) are morphisms of algebras.

Note, that the requirements (i) and (ii) in the definition above are equivalent, as it was proven in [11]. Therefore, it suffices if only one of the conditions is fulfilled.

Since we will always assume (co-)algebras to be (co-)unital and bialgebras to be both of it, we can conveniently waive this prefix and just refer to them as (bi-, co-)algebras. Motivated by the coproduct, there is another coassociative map one can define on bialgebras by
\[
\tilde{\Delta} : B \to B \otimes B \quad \text{and} \quad \tilde{\Delta} := \Delta - (\text{id} \otimes \mathbb{1} + \mathbb{1} \otimes \text{id}) \quad (A.13)
\]
The map \(\tilde{\Delta}\) is called the reduced coproduct, and the space \(\text{Prim}(B)\) of primitive elements is given by the kernel of \(\tilde{\Delta}\)
\[
\text{Prim}(B) := \ker \tilde{\Delta} = \{b \in B : \tilde{\Delta}(b) = b \otimes \mathbb{1} + \mathbb{1} \otimes b\} \quad (A.14)
\]
Analogous to the iterated coproduct in equations (A.9) and (A.10), we define the iterated reduced coproduct recursively by the following definition.
\[
\tilde{\Delta}^0 := \text{id} \quad \text{and} \quad \forall m, n \in \mathbb{N}_0, m \leq n : \tilde{\Delta}^{n+1} := (\text{id} \otimes m \otimes \tilde{\Delta} \otimes \text{id} \otimes (n-m)) \circ \tilde{\Delta}^n \quad (A.15)
\]
since \(\tilde{\Delta}\) itself is coassociative, too. Now we will extend the notion of a bialgebra to that of a Hopf algebra.

Definition A.5. (Hopf algebra)
A Hopf algebra \((H, m, \mathbb{1}, \Delta, \mathbb{1}, S)\) is a \(\mathbb{K}\)-bialgebra together with an endomorphism \(S : H \to H\), called the antipode, satisfying
\[
m \circ (S \otimes \text{id}) \circ \Delta = \mathbb{1} \otimes \mathbb{1} = m \circ (\text{id} \otimes S) \circ \Delta \quad (A.16)
\]

Remark A.2. Consider an algebra \((A, m, \mathbb{1})\) and a coalgebra \((C, \Delta, \mathbb{1})\). Then, one can define an algebra \((\text{Hom}_\mathbb{K}(C, A), *, e)\), consisting of the vector space \(\text{Hom}_\mathbb{K}(C, A)\) of linear maps from \(C\) to \(A\), a unit \(e\), and a bilinear map \(*\), called the convolution product, given by
\[
e = \mathbb{1} \otimes \mathbb{1} \quad \text{and} \quad \forall f, g \in \text{Hom}_\mathbb{K}(C, A) : \quad f * g = m \circ (f \otimes g) \circ \Delta \quad (A.17)
\]
Taking a Hopf algebra \((H, m, \mathbb{1}, \Delta, \mathbb{1}, S)\) the antipode \(S \in \text{Hom}_\mathbb{K}(H, H)\) on \(H\) can be defined by
\[
S \ast \text{id}_H = \text{id}_H \ast S = e \quad (A.18)
\]
Let \(H\) be a bialgebra with antipode \(S\). Then, the requirement for \(H\) being a Hopf algebra can be expressed by the commutativity of the following diagram

\[
\begin{array}{ccc}
\Delta & \xrightarrow{S \otimes \text{id}} & H \otimes H \\
\downarrow m & & \downarrow m \\
H \otimes H & \xrightarrow{\text{id} \otimes S} & H \otimes H
\end{array}
\]

The Hopf algebra of rooted trees, we will introduce soon, has the property to be connected and graded. Therefore, we have to clarify these terms first of all by

Definition A.6. (Connectivity and graduation)
A Hopf algebra \(H\) over a field \(\mathbb{K}\) is graded and
connected if there exist subspaces H_i such that the following conditions hold

$$H = \bigoplus_{n \in \mathbb{N}_0} H_n, \quad H_0 \simeq \mathbb{K}, \quad H_i \equiv 0 \forall i < 0, \quad (A.20)$$

and

$$m(H_n \otimes H_m) = H_n H_m \subseteq H_{n+m},$$

$$\Delta H_n \subseteq \bigoplus_{i+j=n} H_i \otimes H_j = \bigoplus_{i=0}^n H_i \otimes H_{n-i}, \quad (A.21)$$

$$S(H_n) \subseteq H_n$$

for any $n, m \in \mathbb{N}_0$.

B. Ferrers diagram

Based upon [5] and [19], we briefly give an overview on what is called Ferrers diagram, named after the mathematician N. M. Ferrers (1829 - 1903), which can also be connected to Young diagrams.

Consider a partition of an integer n into k parts, given by the k-tuple $n = (y_1, \ldots, y_k)$ of positive integers y_i, with

$$y_1 + y_2 + \cdots + y_k = n \quad (B.22)$$

and $$y_1 \geq y_2 \geq \cdots \geq y_k \geq 1.$$

Alternatively, we can write $n = x_1^{m_1} \cdots x_l^{m_l}$ in terms of the multiplicity m_i of the different integers x_i showing up in the partition, such that $x_1 > x_2 > \cdots > x_l \geq 1$ and $\sum_i m_i = k$. For example, one possibility to decompose $n = 15$ into $k = 7$ parts is $15 = (4, 3, 2, 2, 1, 1)$ or $15 = 4^1 3^2 2^1 1^2$. Note that the ladder one is not a product but a listing of the different elements in the partition and their multiplicity.

A useful way to represent such a partition pictorially as an array of points is Ferrers diagram. This diagram consists of k rows and y_1 columns, where the first row contains y_1 points, the second one y_2 points, and so on, such that the number of points in the columns and rows decreases when going from left to right and top to bottom, respectively. For example, the Ferrers diagram of the partition of 15 into 7 parts, we mentioned above, is shown in figure 9(a).

There is also a conjugate partition if we consider the columns (and not the rows) of the diagram from left to right and link the number of points contained in them to positive integers z_i, such that $n = \sum_i z_i$. Indeed, this partition is obtained from the diagram by interchanging the rows and columns, that is to say taking the transpose of the diagram. For example, the transpose of figure 9(a) leads to the partition $15 = 7 + 5 + 2 + 1 = 7^1 5^1 2^1 1^1$ (see figure 9(b)).

Acknowledgment

I thank Dirk Kreimer for his great supervising, strong support and encouragement.

References

