NMSSM extended with vectorelike particles and the diphoton excess at the LHC

Yi-Lei Tang

Center for High Energy Physics, Peking University, Beijing 100871, China

Shou-hua Zhu

Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

Collaborative Innovation Center of Quantum Matter, Beijing 100871, China and

Center for High Energy Physics, Peking University, Beijing 100871, China

(Dated: August 10, 2016)

Abstract

We investigate the parameter space of a model which extends next to minimal supersymmetric standard model (NMSSM) with the vectorlike (VL) particles [1]. We find that the $10 + \overline{10}$ model can explain the possible diphoton excess recently revealed by the ATLAS and CMS collaborations, although the predicted signal strength is a little smaller than the observed one.

PACS numbers:
I. INTRODUCTION

Recently, both the ATLAS and CMS collaborations probed the possible diphoton resonance near $m_{\gamma\gamma} = 750$ GeV \[2, 3\]. Regardless of the insufficient significance of the data at present, theoretical efforts have been made \[4–108\] and perhaps the most straightforward approach is to introduce a scalar field together with some additional vectorlike (VL) particles. Just similar to the production of the standard model (SM) like Higgs boson, the exotic scalar particle is produced through gluon-gluon fusion process induced by the vectorlike quark loops, and subsequently decays into gamma-gamma final states induced by the vectorlike particle loops. However, as for many specific models, it is fairly difficult to enhance the signal strength of the diphoton channel up to ~ 10 fb, which competes at least with the di-gluon, $Z\gamma$, and other tree-level ZZ, W^+W^-, $h_SM h_SM$ decay channels. Sometimes other fermionic final state channels, e.g., $t\bar{t}, b\bar{b}$, may also dominate the total width. Symmetries are sometimes utilized in order to forbid some final states. For example, ignoring the CP-violation effects, if the exotic scalar particle A is CP-odd, its decay to $h_SM h_SM$ is forbidden. Furthermore, if A does not carry the $U(1)_Y \times SU(2)_L \times SU(3)_C$ quantum charges, its decays to ZZ, W^+W^- are eliminated at tree level as well. Additionally, decays into standard model fermions need to be further taken care of. However, in some specific models, there are quite a number of exotic fields, which need to be examined carefully.

Rather than building new models specifically for explaining the possible 750 GeV resonance, it is interesting to investigate through the existing models motivated by other problems. Supersymmetric models (For a review, see \[109\]) can solve the hierarchy problem by adding each particle with a super-partner, which cancels the quadratic divergences in the Higgs self-energy diagrams. Unfortunately, within the framework of the minimal supersymmetric standard model (MSSM), explaining the possible 750 GeV resonance is far from possible. However, in the Ref. \[1\], one of the authors has proposed a supersymmetric model which combined the next to minimal supersymmetric standard model (NMSSM) (For reviews, see \[109, 110\]) together with the VL particles (For examples, see \[111–129\]). In this model, VL masses originate from the vacuum expectation value (VEV) of the singlet Higgs field, which offers a possible dynamical explanation to the origin of VL mass terms. Vectorlike particles contribute to the Higgs masses via the loop diagrams. On the other hand, extra Yukawa couplings adjust the trajectories of the renormalization group (RG) flow of
the gauge coupling constants, helping the interactions to unify. In order not to bother the
unification of the gauge coupling constants, which is an important feature of the supersym-
metric models, complete $SU(5)$ multiplets are introduced. In the Ref. [1], we discussed only
the $5+\bar{5}$, $10+\bar{10}$, and $5+\bar{5}+10+\bar{10}$ cases. This model contains exactly an exotic scalar field
together with some VL particles which couple strongly with the scalar field. However, in
order not to counter Landau-pole below the unification scale, values of the Yukawa coupling
constants are limited, resulting in a constraint of the $\gamma\gamma$ signal strength. In the following
text of this paper, we go through the parameter space of this model and show that the
$10+\bar{10}$ case provides a possible explanations to the diphoton excess, although the final sig-
nal strength seems to be a little bit smaller than the observed central value ~ 10 fb. In fact
one needs more data to determine the true value of signal strength. Historically, there are
precedents that the best-fitted experimental diphoton signal strength exceed the predicted
values $[130, 131]$. \[3\]
II. THE MODEL AND SOME CONVENTIONS

Since this model is based on the NMSSM, we write down the pure NMSSM part of the superpotential and the supersymmetry soft breaking terms

\[W_{\text{NMSSM}} = \lambda H_u H_d S + \frac{\kappa}{3} S^3 + y_t Q_3 H_u U_3, \]
\[V_{\text{soft}}^{\text{NMSSM}} = m^2_{H_u} |\tilde{H}_u|^2 + m^2_{H_d} |\tilde{H}_d|^2 + M^2_S |\tilde{S}|^2
+ (\lambda A^\lambda_H \tilde{H}_u \tilde{H}_d \tilde{S} + \frac{1}{3} \kappa A^\kappa \tilde{S}^3 + y_t A^y_t \tilde{Q}_3 \tilde{H}_u \tilde{U}_3 + \text{h.c.}), \]

where \(H_u,d \) are the up and down type Higgs doublet. \(S \) is the \(U(1)_Y \times SU(2)_L \times SU(3)_C \) singlet Higgs superfield. Here we only show the couplings involving the top quark due to the relatively large coupling constant.

If we extend the NMSSM with the vectorlike particles, we need to introduce pairs of the vectorlike leptonic doublets \(\tilde{L}, \bar{\tilde{L}} \), the vectorlike down-type quark singlets \(\tilde{D}, \bar{\tilde{D}} \), the vectorlike quark doublets \(\tilde{Q}, \bar{\tilde{Q}} \), the vectorlike up-type quark singlets \(\tilde{U}, \bar{\tilde{U}} \), and the vectorlike charged lepton singlet \(\tilde{E}, \bar{\tilde{E}} \). Their quantum numbers are listed in the Tab. I of the Ref. \[1\]. In this paper, we only discuss the 5 + \(\overline{5} \) model and the 10 + \(\overline{10} \) model. Their superpotentials and supersymmetry soft breaking terms are listed below,

\[W_{5+\overline{5}} = \lambda_D \tilde{D} \tilde{D} S + \lambda_L \tilde{L} \tilde{L} S, \]
\[V_{5+\overline{5}}^{\text{soft}} = m^2_D (\tilde{D} \tilde{D}^\dagger + \tilde{D} \tilde{D}) + m^2_L (\tilde{L} \tilde{L}^\dagger + \tilde{L} \tilde{L}) + (\lambda_D A^\lambda_D \tilde{D} \tilde{D} \tilde{S} + \lambda_L A^\lambda_L \tilde{L} \tilde{L} \tilde{S} + \text{h.c.}); \]
\[W_{10+\overline{10}} = \lambda_Q \tilde{Q} \tilde{Q} S + \lambda_U \tilde{U} \tilde{U} S + \lambda_E \tilde{E} \tilde{E} S + y_U Q H_u U + y_{\tilde{U}} \tilde{Q} H_d \tilde{U}. \]
\[V_{10+\overline{10}}^{\text{soft}} = m^2_Q (\tilde{Q} \tilde{Q}^\dagger + \tilde{U} \tilde{U}^\dagger) + m^2_E \tilde{E} \tilde{E}^\dagger + (A_{\lambda_Q} \lambda_Q \tilde{Q} \tilde{Q} \tilde{S} + A_{\lambda_U} \lambda_U \tilde{U} \tilde{U} \tilde{S} + A_{\lambda_E} \lambda_E \tilde{E} \tilde{E} \tilde{S} + A_{y_U} y_U \tilde{Q} \tilde{H}_u \tilde{U} + A_{y_{\tilde{U}}} y_{\tilde{U}} \tilde{Q} \tilde{H}_d \tilde{U} + \text{h.c.}). \]

After the Higgs fields acquire VEVs,

\[H_u^0 = v_u + \frac{H_{uR} + i H_{uI}}{\sqrt{2}}, \]
\[H_d^0 = v_d + \frac{H_{dR} + i H_{dI}}{\sqrt{2}}, \]
\[S = v_s + \frac{S_R + i S_I}{\sqrt{2}}, \]
we acquire three CP-even Higgs fields

\[h_i = S_{i1}H_{uR} + S_{i2}H_{dR} + S_{i3}S_R, \]

\[(8) \]

together with the CP-odd Higgs fields

\[A = \cos \beta H_{uI} + \sin \beta H_{dI} \]
\[G = -\sin \beta H_{uI} + \cos \beta H_{dI}, \]

\[(9) \]

and

\[a_1 = P_{11}A + P_{12}S_I \]
\[a_2 = P_{21}A + P_{22}S_I, \]

\[(10) \]

where \(S_{ij}, P_{ij} \) are the mixing matrix elements, \(\tan \beta = \frac{v_u}{v_d} \), and \(G \) is the goldstone state to be rotated away.

III. THE LHC DIPHOTON EXCESS IN THE MODEL

In this model, it is mainly the extra quarks which contribute to the production and the decay of the 750 GeV scalar particle. The unwanted decay modes of this scalar particle should be avoided. If one of the CP-even Higgs field, say \(h_2 \) is the 750 GeV resonance, it is difficult to avoid large branching ratio of \(h_2 \rightarrow h_{SM} + h_{SM} \), thus the diphoton rate is severely suppressed. As a result, we need to choose between \(a_1 \) and \(a_2 \). Without loss of generality, we adopt the convention that \(P_{12} > P_{11} \). From (1) and (9) we know that the \(A \) couples with the top quark, and in fact, it also couples with other SM fermions, then we need to choose the singlet-like CP-odd Higgs boson in order to eliminate large branching ratios to the SM fermions. That is to say, without loss of generality, we can choose \(a_1 \) when \(|P_{12}| \) approaches 1.

Unfortunately, the CP-odd scalar particles does not couple with the squarks, which lowers the signal strength. After integrating out all the particles in the loop, we acquire the effective operators

\[\mathcal{L}_{\text{eff}} \supset \frac{e^2}{2 \Lambda_\gamma} a_1 F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_3^2}{2 \Lambda_g} a_1 G_{\mu\nu} \tilde{G}^{\mu\nu}, \]

\[(11) \]
where \(e \) and \(g_3 \) are the electro-magnetic and the QCD coupling constants. \(\tilde{F}, \tilde{G}_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\lambda\rho}F, G^{\lambda\rho} \). To calculate the \(\Lambda_g \) and the \(\Lambda_\gamma \), we use the following formulae \([132, 133]\),

\[
\frac{1}{\Lambda_g} = \frac{1}{4\pi^2 M_{a_1}} \sum_i \frac{1}{2} \sqrt{\tau_i} y_{f_i} \arcsin^2(\sqrt{\tau_i}),
\]

\[
\frac{1}{\Lambda_\gamma} = \frac{1}{4\pi^2 M_{a_1}} \sum_i N_{c_i} Q_{f_i}^2 \frac{1}{\sqrt{\tau_i}} y_{f_i} \arcsin^2(\sqrt{\tau_i}),
\]

(12)

where \(N_{c_i} \) equals 1 or 3 for the \(SU(3)_c \) singlet or triplet of the Dirac particle \(i \), \(Q_{f_i} \) is the charge number, and \(\tau_i = \frac{M_i^2}{4M_i^2} \) where \(M_i \) is the mass of the Dirac particle \(i \). The branching widths of the \(a_1 \to gg \) and the \(a_1 \to \gamma\gamma \) are given by

\[
\Gamma(a_1 \to gg) = 8\pi\alpha_3^2 \frac{M_{a_1}^3}{\Lambda_g^2},
\]

\[
\Gamma(a_1 \to \gamma\gamma) = \pi\alpha^2 \frac{M_{a_1}^3}{\Lambda_g^2},
\]

(13)

where \(\alpha_3 = \frac{g_3^2}{4\pi} \), and \(\alpha = \frac{e^2}{4\pi} \) is the fine-structure constant.

A. The 5 + 5 Model

For the 5 + 5 model, the loop diagrams involve \(H_{u,d}, L, \bar{L}, D, \) and \(\bar{D} \). In order to avoid the Landau pole before the grand unification scale, the value of the Yukawa coupling constants are limited. We adopt the benchmark point

\[
\lambda_D(Q_{GUT}) = 3, \quad \lambda_L(Q_{GUT}) = 1.7, \quad \lambda(Q_{GUT}) = 3.0, \quad Q_{GUT} = 1.8 \times 10^{16},
\]

(14)

as the boundary condition, and do the renormalization group (RG) running down to the scale \(Q = 1 \) TeV with the formula listed in the appendix of the Ref. \([1]\), then

\[
\lambda_D(1 \text{ TeV}) = 0.91, \quad \lambda_L(1 \text{ TeV}) = 0.44, \quad \lambda(1 \text{ TeV}) = 0.59.
\]

(15)

We calculate the cross sections and the decay widths by the MadGraph5_aMC@NLO v2.3.3. We adopt \(v_s = 0.9 \) TeV during the numerical calculation, and then we obtain \(\sigma_{pp \to a_1} = 17.7 \) fb, \(\Gamma(a_1 \to gg) = 2.47 \times 10^{-3} \) GeV, and \(\Gamma(a_1 \to \gamma\gamma) = 8.84 \times 10^{-5} \) GeV. Even if there is no other decay modes, the signal strength \(\sigma_{pp \to a_1} \times \text{Br}(a_1 \to \gamma\gamma) = 0.63 \) fb, which is far from explaining the observed excess.
One might think about adding several more copies of the $5 + \overline{5}$ multiplets. In order not to encounter the Landau-pole until the gauge coupling constants unify, only limited number of copies can be added. From the Ref. [134], we learn that

$$N_{5+\overline{5}} \lesssim 4.$$

(16)

For example, naively speaking, three copies of $D + \overline{D}$ might enhance the signal strength by a factor of about 9. However, due to the interaction terms between different couplings in the β-function, generally the Yukawa coupling constants near the TeV scale are further lowered, and what is worse, the λ_L usually becomes so small that it is difficult to keep the masses of the vectorlike leptons above $\sim (750/2)$ GeV, which will open the $a_1 \to T\ell$ channel and severely suppresses the branching ratio of the $a_1 \to \gamma\gamma$ channel.

B. The $10 + \overline{10}$ Model

For the $10 + \overline{10}$ model, the loop diagrams involve $Q, \overline{Q}, U, \overline{U}, E, \overline{E}$, and $H_{a,d}$. We adopt the boundary condition

$$\lambda_Q(Q_{GUT}) = 0.5, \quad \lambda_U(Q_{GUT}) = 0.52, \quad \lambda_E(Q_{GUT}) = 1.1, \quad \lambda(Q_{GUT}) = 1.6,$$

$$\kappa(Q_{GUT}) = 3.5, \quad Q_{GUT} = 3.6 \times 10^{16}.$$

(17)

as our benchmark point, then at $Q = 1$ TeV,

$$\lambda_Q(1\text{TeV}) = 0.73, \quad \lambda_U(1\text{TeV}) = 0.58, \quad \lambda_E(1\text{TeV}) = 0.46, \quad \lambda(1\text{TeV}) = 0.56,$$

$$\kappa(Q_{1\text{TeV}}) = 0.30$$

(18)

Again, we adopt $v_s = 0.9$ TeV, then $\sigma_{pp \to a_1} = 186$ fb, $\Gamma(a_1 \to gg) = 0.0261$ GeV, and $\Gamma(a_1 \to \gamma\gamma) = 0.000327$ GeV. If there is no other decay mode, the signal strength $\sigma_{pp \to a_1} \times \text{Br}(a_1 \to \gamma\gamma) = 2.31$ fb.

Compared with the $5 + \overline{5}$ situation, there are more charged heavy quarks running in the loops, resulting in an enhancement of the production rate. The vectorlike D particles take the charge of $\frac{1}{3}$, but in the $10 + \overline{10}$, there are other two $\frac{2}{3}$-charged heavy quarks, which also result in the enhancement of the branching ratio of the $\gamma\gamma$ decay rate. However, due to the too much influence on the trajectories of the running gauge coupling constants, there
leave us no much room to add copies of other SU(5) multiplets to further enhance the signal strength.

We should also note that if v_s is within our typical range of 700-900 GeV, the masses of the exotic quarks we introduce should lie roughly \(\gtrsim 400 \) GeV. According to the Ref. \[135\], the current lower bounds on the exotic t', b' quarks can reach about 700 GeV. However, these constraints are all based on the assumption that the exotic quarks only mix with and then decay into the third generation SM quarks. If we only let the exotic quarks mix with the first two generation SM quarks, the lower bounds can be relaxed into ~ 400 GeV, which is compatible with our needed range. As for the charged exotic leptons, we can easily see that the bounds listed in the Ref. \[135\] are far below our needed range.

IV. THE NMSSM TOLERANCE

More realistically, in the NMSSM, a_1 decays to other particles. As has been mentioned, $a_1 \to h_{SM}h_{SM}$ is forbidden due to the conservation of the CP charge. $a_1 \to a_1 h_{1,2}$ is also forbidden kinematically if $m_{a_1} < m_{a_2}$. a_1 cannot decay into vectorlike particles and the Higgsinos because $2m_{Q,U,D,...} > m_{a_1}$. However, in order to eliminate $a_1 \to W^+W^-$, $a_1 \to ZZ$, $a_1 \to t\bar{t}$, $a_1 \to b\bar{b}$, ..., we can only hope $|P_{11} - 1| \ll 1$ so that these channels are suppressed by the small mixings between the CP-even singlet-like Higgs and the doublet-like Higgs. We define the pure NMSSM width as $\Gamma_{a_1\text{NMSSM}}$, which only sums over all the possible decay channels of a_1 calculated without the effects of the vectorlike sectors. If $\Gamma_{a_1\text{NMSSM}} \gg \Gamma(a_1 \to gg)$, the signal strength will be highly suppressed, which of course should not be the case. In order to have a look at the $\Gamma_{a_1\text{NMSSM}}$, we scan the NMSSM parameter space by the NMSSMTools 4.8.2 \[136,138\] within this area

$$
400 \text{ GeV} < M_{1,2} < 800 \text{ GeV}, \quad M_3 = 3M_{1,2}, \quad 2 < \tan \beta < 15, \quad 0.5 < \lambda < 0.65,
$$

$$
0.05 < \kappa < 0.32, \quad 400 \text{ GeV} < \mu_{\text{eff}} = \lambda v_s < 800 \text{ GeV}, \quad 400 \text{ GeV} < M_A < 1000 \text{ GeV},
$$

$$
700 \text{ GeV} < M_P < 800 \text{ GeV}, \quad \Omega_{\text{DM}} < 0.131,
$$

(19)

where $M_{1,2,3}$ are the soft masses of the gauginos, M_A is the diagonal doublet CP-odd mass matrix element, and M_P is the diagonal singlet CP-odd mass matrix element. In order to forbid $a_1 \to 2h_X$, or $a_1 \to$ doublet-like neutralinos we set the lower limit of these mass parameters as 400 GeV, which is near $\frac{750}{2}\text{ GeV}$. $a_1 \to$ doublet-like neutralino+singlet-like neutralino
can be suppressed if the singlet-doublet neutralino mixings are small. We also set the relic density of the lightest neutralino $\Omega_{\text{DM}} < 0.131$ because the dark matter might not be composed of only one component.

Vectorlike particles may modify the masses of the Higgs bosons. In this paper, we do not consider the y_{ν} and y_{τ} and set them as zero for simplicity. Thus, only the mass of the singlet-like Higgs boson receives some loop-corrections. As for the $5 + \overline{5}$ model, these corrections to the mass of the CP-even singlet-like Higgs is given by [1],

$$
\Delta m_S^2 = \lambda^2 \frac{3A_{\lambda}^2 v_s^2 \kappa + 4 v_s^3 \kappa^2 + A_{\lambda} v^2 \sin \beta \cos \lambda}{8\pi^2 v_s} \ln \frac{m_L^2}{Q^2}
+ 3\lambda^2_D \frac{3A_{\lambda D}^2 v_s^2 \kappa + 4 v_s^3 \kappa^2 + A_{\lambda D} v^2 \sin \beta \cos \lambda}{16\pi^2 v_s} \ln \frac{m_D^2}{Q^2}
+ \frac{\lambda^4}{48\pi^2 m^4_L} (-2A_{\lambda}^4 v_s^2 + 24A_{\lambda D}^2 m^2_D v_s^2 - 15A_{\lambda}^3 v_s^3 \kappa + 90A_{\lambda D} m^2_D v_s^3 \kappa - 36A_{\lambda D}^2 v_s^4 \kappa^2)
+ 72m^2_D v_s^3 \kappa^2 - 35A_{\lambda D} v_s^5 \kappa^3 - 12v_s^6 \kappa^4 + 3A_{\lambda D} v_d v_s v_u \lambda - 18A_{\lambda D} m^2_D v_d v_s v_u \lambda
+ 24A_{\lambda D} v_d v_s^2 v_u \kappa \lambda - 48m^2_D v_d v_s^2 v_u \kappa \lambda + 45A_{\lambda D} v_d v_s^3 v_u \kappa^2 \lambda + 24v_d^4 v_s^4 \kappa^3 \lambda
- 9A_{\lambda D} v_d^2 v_s^2 v_u^2 \kappa^2 \lambda^2 - 12v_d^2 v_s^2 v_u^2 \kappa^2 \lambda^2 - A_{\lambda D} v_d^3 v_u^3 \kappa^3 + 24m^4_D v_s^2 \ln \frac{m^2_L}{\lambda^2 v_s^2}) +
$$

(20)

The corrections to the CP-odd singlet-like Higgs boson are calculated as,

$$
\Delta m_A^2 = \frac{1}{4\pi^2} \left[\frac{3}{8} I_{L\overline{D}} (I_{L\overline{D}} - I_0) + \frac{1}{4} I_{L\overline{D}} (I_L - I_0^+ - \frac{3}{4} \lambda^2_D (I_D + I_0^+)) + \frac{3}{2} v_s^2 \lambda_D^3 \right]
- \frac{1}{2} \lambda_L (I_L + I_0^+) + v_s^2 \lambda_D^4 + \frac{3}{8} I_{AD} (I_D^+ \ln \left(\frac{I_D^+}{Q^2} \right) - I_D \ln \left(\frac{I_D}{Q^2} \right))
+ \frac{3}{4} \lambda_D (I_D \ln \left(\frac{I_D}{Q^2} \right) + I_0^+ \ln \left(\frac{I_0^+}{Q^2} \right)) + \frac{1}{4} I_{AD} (I_L^+ \ln \left(\frac{I_L^+}{Q^2} \right) - I_L \ln \left(\frac{I_L}{Q^2} \right))
\frac{1}{2} \lambda_L (I_L \ln \left(\frac{I_L}{Q^2} \right) + I_0^+ \ln \left(\frac{I_0^+}{Q^2} \right)) - \frac{3}{2} v_s \lambda_D^4 \ln \left(\frac{v_s^2 \lambda_D^2}{Q^2} \right) - v_s \lambda_D^4 \ln \left(\frac{v_s^2 \lambda_D^2}{Q^2} \right) \right] (21)
$$
where

\[I_D = |\lambda_D (A_{\lambda D} v_s + v_s^2 \kappa - v_u v_d \lambda)|, \]
\[I_L = |\lambda_L (A_{\lambda L} v_s + v_s^2 \kappa - v_u v_d \lambda)|, \]
\[I_D^+ = I_D + m_D^2 + v_s^2 \lambda_D^2, \]
\[I_D^- = -I_D + m_D^2 + v_s^2 \lambda_D^2, \]
\[I_L^+ = I_L + m_L^2 + v_s^2 \lambda_L^2, \]
\[I_L^- = -I_L + m_L^2 + v_s^2 \lambda_L^2, \]
\[I_{AD} = A_{\lambda D}^2 \lambda_D^2 + 2 A_{\lambda D} v_s \kappa \lambda_D^2 + 2 v_s^2 \kappa^2 \lambda_D^2 + 2 v_d v_u \kappa \lambda_D^2, \]
\[I_{AL} = A_{\lambda L}^2 \lambda_L^2 + 2 A_{\lambda L} v_s \kappa \lambda_L^2 + 2 v_s^2 \kappa^2 \lambda_L^2 + 2 v_d v_u \kappa \lambda_L^2. \]

The related formula in the 10+10 case is too complicated to be listed in this paper. However, if we ignore all the vectorlike A-terms \(A_{\lambda D}, A_{\lambda L}, A_{\lambda Q}, A_{\lambda U}, A_{\lambda E} \), the typical corrections to the CP-odd singlet-like Higgs boson is about a few percent, which can be ignored under the current experimental data. Therefore, during the scanning process, we ignore these corrections.

We plot the scanned points in the Fig. 1. We can see that there are at least some points that can reach \(\Gamma_{a_1,NMSSM} \lesssim \Gamma_{10 \rightarrow gg}(a_1 \rightarrow gg), \Gamma_{3 \times 5 \rightarrow gg}(a_1 \rightarrow gg) \), lowering the signal strength a little, so the results in III B are still not severely altered. Here we show a benchmark point,

\[\lambda = 0.5471, \quad \kappa = 0.3190, \quad \mu_{\text{eff}} = 453.9 \text{ GeV}, \quad \tan \beta = 2.060, \]
\[A_\lambda = 589.6 \text{ GeV}, \quad A_\kappa = -664.5 \text{ GeV}, \]
\[m_{a_1} = 728.0 \text{ GeV}, \quad \Gamma_{a_1,NMSSM} = 0.00211 \text{ GeV}. \]

In this point, the values of the \(\lambda \) and the \(\kappa \) approach the values in (18), and the mass CP-odd singlet-like Higgs is near 750 GeV, while its pure NMSSM width is small compared with the vectorlike particle induced one.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we find that the NMSSM with the additional 10 + 10 vectorlike particles can explain the possible diphoton excess recently revealed by the ATLAS and the CMS collaborations. From the aspect of the NMSSM, there is also enough parameter space to
FIG. 1: The scanned points in the NMSSM parameter space, plotted on m_{a_1}-$\Gamma_{a_1\text{NMSSM}}$ plane, and λ-μ_{eff} plane.

acquire a singlet-like CP-odd Higgs with the narrow-enough $\Gamma_{a_1\text{NMSSM}}$, which is the necessary condition to account for the di-photon excess.

In the Ref. [76], the authors discussed the loop induced associated W^+W^-, ZZ, $Z\gamma$ decay modes in the TABLE III, together with the relevant experimental bound on Page 2. In the NMSSM extended with the $10+\overline{10}$ model, Q, \overline{Q}, U, \overline{U} mainly contribute to the loop, roughly succeeded in escaping the experimental bounds. This will be tested as more and more data are collected.

Acknowledgments

We would like to thank Ran Ding, Chen Zhang, Ying-Nan Mao, Yang Zhou, Mengchao Zhang for helpful discussions. This work was supported in part by the Natural Science Foundation of China (Grants No. 11135003 and No. 11375014).

[34] H. Hatanaka (2015), 1512.06595.