Hadronic contributions to electroweak observables
in the framework of DPT

A.V. Nesterenko

BLTPh, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation

Abstract

The hadronic contributions to the muon anomalous magnetic moment and to the shift of the electromagnetic fine structure constant at the scale of Z boson mass are evaluated within dispersively improved perturbation theory (DPT). The latter merges the corresponding perturbative input with intrinsically nonperturbative constraints, which originate in the respective kinematic restrictions. The obtained results conform with recent assessments of the quantities on hand.

Certain nonperturbative information on the low–energy hadron dynamics is embodied within dispersion relations. In particular, the latter render the kinematic restrictions on the relevant physical processes into the mathematical form and impose intrinsically nonperturbative constraints on such quantities as the hadronic vacuum polarization function $\Pi(q^2)$, R–ratio of electron–positron annihilation into hadrons $R(s)$, and the Adler function $D(Q^2)$. These constraints have been merged with corresponding perturbative input within dispersive approach to QCD [1–3] (its preliminary formulation was discussed in Refs. [4, 5]), which provides the unified integral representations for the functions on hand:

$$\Delta \Pi(q^2, q_0^2) = \Delta \Pi^{(0)}(q^2, q_0^2) + \int_{m^2}^\infty \rho(\sigma) \ln\frac{\sigma - q^2 m^2 - q_0^2}{\sigma - q_0^2 m^2 - q^2} d\sigma,$$

$$R(s) = R^{(0)}(s) + \theta(s - m^2) \int_s^\infty \rho(\sigma) \frac{d\sigma}{\sigma},$$

$$D(Q^2) = D^{(0)}(Q^2) + \frac{Q^2}{Q^2 + m^2} \int_{m^2}^\infty \rho(\sigma) \frac{\sigma - m^2 d\sigma}{\sigma + Q^2}. $$

Here $\Delta \Pi(q^2, q_0^2) = \Pi(q^2) - \Pi(q_0^2)$, $m^2 = 4m^2$, $\theta(x)$ is the unit step–function [$\theta(x) = 1$ if $x \geq 0$ and $\theta(x) = 0$ otherwise], the leading–order terms read [6, 7]

$$\Delta \Pi^{(0)}(q^2, q_0^2) = 2 \frac{\varphi - \tan \varphi}{\tan^3 \varphi} - 2 \frac{\varphi_0 - \tan \varphi_0}{\tan^3 \varphi_0},$$

$$R^{(0)}(s) = \theta(s - m^2)[1 - (m^2/s)]^{3/2},$$

$$D^{(0)}(Q^2) = 1 + 3[1 - \sqrt{1 + \xi^{-1}} \sinh^{-1}(\xi^{1/2})] \xi^{-1},$$

$\sin^2 \varphi = q^2/m^2$, $\sin^2 \varphi_0 = q_0^2/m^2$, $\xi = Q^2/m^2$, see Refs. [1–3] for the details. The perturbative part of the spectral density $\rho(\sigma)$ entering Eqs. (1)–(3) can be expressed in terms of the strong correction to the Adler function

$$\rho_{\text{pert}}(\sigma) = \lim_{\varepsilon \to 0^+} \frac{d_{\text{pert}}(-\sigma - i\varepsilon) - d_{\text{pert}}(-\sigma + i\varepsilon)}{(2\pi i)},$$

as well as in terms of the strong corrections to the functions $\Pi(q^2)$ and $R(s)$. The integral representations (1)–(3) contain no unphysical singularities and substantially
extend the range of applicability of QCD perturbation theory towards the infrared domain.

In particular, the dispersive approach to QCD enables one to describe OPAL (update 2012, Ref. [8]) and ALEPH (update 2014, Ref. [9]) experimental data on inclusive \(\tau \) lepton hadronic decay in vector and axial–vector channels in a self–consistent way [2, 10] (see also Refs. [11, 12]). Additionally, the representations (1)–(3) conform with the results of Bethe–Salpeter calculations [13] as well as of lattice simulations [14]. The Adler function (3) agrees with its experimental prediction in the entire energy range [1, 15, 16].

The integral representations (1)–(3) along with the respective perturbative input (7) constitute the “dispersively improved perturbation theory” (DPT) expressions for the functions on hand. At the one–loop level the spectral function (7) assumes a simple form, specifically,

\[
\rho_{\text{pert}}^{(1)}(\sigma) = \frac{4}{\beta_0} \left[\ln \left(\frac{\sigma}{\Lambda^2} \right) + \pi^2 \right]^{-1} \quad (\beta_0 = 11 - 2n_f/3, \ n_f \text{ is the number of active flavors, and } \Lambda \text{ is the QCD scale parameter}),
\]

whereas at the higher loop levels Eq. (7) becomes rather cumbersome, see Refs. [17–19] for the details.

It is worth noting that in the massless limit (\(m = 0 \)) for the case of perturbative spectral function (7) Eqs. (2) and (3) become identical to those of the “analytic perturbation theory” (APT) [21] (see also Refs. [22–32]). However, the massless limit ignores some of the nonperturbative constraints, which relevant dispersion relations impose on the functions on hand, that appears to be substantial for the studies of hadron dynamics at low energies, see Refs. [1–3, 12, 16].

For practical purposes it is convenient to deal with the subtracted at zero form of Eq. (1), namely

\[
\Pi(Q^2) = \Delta \Pi(0, -Q^2) = \Delta \Pi^{(0)}(0, -Q^2) + \int_{m^2}^{\infty} \rho(\sigma) \ln \left(\frac{1 + Q^2/m^2}{1 + Q^2/\sigma} \right) d\sigma.
\]

As one can infer from Fig. 1 the DPT expression for the hadronic vacuum polarization function (8) contains no unphysical singularities and proves to be in a good agreement with lattice data [20] (the rescaling procedure described in Refs. [33, 34] was applied).

The presented result corresponds to the four–loop level, \(\Lambda = 419 \text{ MeV} \), and \(n_f = 2 \).

Figure 1: Hadronic vacuum polarization function in the framework of various approaches: DPT expression (solid curve), APT prediction (dashed curve), perturbative approximation (dot–dashed curve), and lattice data [20] (circles).
This work

\[\Delta a_\mu = a_\mu - a_0, \quad a_0 = 11659 \times 10^{-7}. \]

hadronic contributions to the shift of electromagnetic fine structure constant at the scale of Z boson mass.

Figure 1 also displays the one-loop Eq. (1) in the massless limit (which corresponds to APT) as well as the one-loop perturbative approximation of \(\Pi(q^2) \). However, the latter is inapplicable at low energies due to unphysical singularities, whereas the APT prediction for \(\Pi(q^2) \) diverges at \(q^2 \rightarrow 0 \), that invalidates it in the infrared domain, too.

The DPT expression for the hadronic vacuum polarization function \(\langle 8 \rangle \), being applicable in the entire energy range, enables one to perform the assessment of the hadronic contributions to electroweak observables without involving experimental data on \(R \)-ratio. In particular, the four-loop DPT prediction of the value of the leading-order hadronic contribution to the muon anomalous magnetic moment \(a_{\mu}^{\text{HLO}} \)

\[a_{\mu}^{\text{HLO}} = \frac{1}{3} \left(\frac{\alpha}{\pi} \right)^2 \int_0^1 (1 - x) \tilde{\Pi} \left(m_\mu^2 \frac{x^2}{1 - x} \right) dx = (696.1 \pm 9.5) \times 10^{-10}, \]

appears to be in a good agreement with its recent estimations \[35-37\]. The complete muon anomalous magnetic moment \(a_\mu \) includes the QED contribution \[38\], the electroweak contribution \[39\], as well as the higher-order \[35\] and light-by-light \[40\] hadronic contributions, that, together with \(a_{\mu}^{\text{HLO}} \) yields \(a_\mu = (11659185.1 \pm 10.3) \times 10^{-10} \). The obtained \(a_\mu \) corresponds to two standard deviations from the experimental measurement \(a_{\mu}^{\exp} = (11659208.9 \pm 6.3) \times 10^{-10} \) \[41\] and, as one can infer from Fig. 2, conforms with its recent evaluations \[35-37\], see Ref. \[3\] for the details.

Another quantity of an apparent interest is the hadronic contribution to the electromagnetic running coupling

\[\Delta \alpha_{\text{had}}(q^2) = -\frac{\alpha}{3\pi} q^2 \mathcal{P} \int_{m^2}^\infty \frac{R(s)}{s - q^2} \frac{ds}{s}. \]

The four-loop DPT prediction for the five-flavor hadronic contribution to the shift of the electromagnetic fine structure constant at the scale of Z boson mass \[3\]

\[\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) = (274.9 \pm 2.2) \times 10^{-4} \]
agrees with its recent evaluations \cite{35,37,42}, see Fig. 2. In turn, Eq. (11) together with leptonic \cite{43} and top quark \cite{44} contributions leads to \(\alpha^{-1}_{em}(M_Z^2) = 128.962 \pm 0.030 \), that also conforms with recent assessments of the quantity on hand \cite{35,37,42}, see Ref. \cite{3} for the details.

References

