WKB and Resurgence in the Mathieu Equation

Mar 15, 2016
28 pages
e-Print:

Citations per year

2016201820202022202402468
Abstract: (arXiv)
In this paper, based on lectures by the authors at the May 2015 workshop {\it Resurgence, Physics and Numbers}, at the Centro di Ricerca Matematica Ennio De Giorgio of the Scuola Normale Superiore in Pisa, we explain the origin of resurgent trans-series in the Mathieu equation spectral problem, using uniform WKB and all-orders (exact) WKB. Exact quantization conditions naturally arise, and their expansion in the weak coupling regime produces resurgent trans-series expressions which exhibit precise relations between different instanton sectors. Indeed, the perturbative expansion encodes all orders of the multi-instanton expansion, an explicit realization of the general concept of "resurgence". We also discuss the transition from weak to strong coupling, an explicit realization of "instanton condensation".
Note:
  • 28 pp, 2 figures, Lectures at Scuola Normale Superiore, Pisa
  • WKB approximation
  • field equations: Mathieu
  • spectral
  • quantization
  • weak coupling
  • instanton
  • condensation
  • strong coupling
  • [1]
    Les Fonctions Resurgentes, Vols. I / - III, (Publ. Math. Orsay,)
    • J. calle
  • [2]

    Resurgent Functions and Splitting Problems

    • D. Sauzin
  • [3]
    Asymptotics and Borel Summability, (Chapman & Hall/CRC,)
    • O. Costin
  • [4]

    Introduction to the Ecalle theory

    • E. Delabaere
      • Diff.Eq. 193 (1994) 59
  • [5]
    Borel-Laplace Transform and Asymptotic Theory: Introduction to Resurgent Analysis, (CRC,)
    • B.Y. Sternin
      ,
    • V.E. Shatalov
  • [6]
    A Course of Modern / Analysis, (Cambridge Univ. Press,)
    • E.T. Whittaker
      ,
    • G.N. Watson
  • [7]

    Mathieu functions

    • S. Goldstein
  • [8]
    Theory and Application of Mathieu Functions / Press, Oxford,)
    • N.W. McLachlan
  • [9]
    Mathieusche Funktionen und Sphäroidfunktionen / -Verlag, Berlin,)
    • J. Meixner
      ,
    • F.W. Schäfke
  • [10]
    Hill’s Equation, (John / & Sons, New York,)
    • W. Magnus
      ,
    • S. Winkler
  • [11]
    Mathieu Functions and Hill’s Equation, Chapter 28 of NIST Digital Library of Mathematical Functions
    • G. Wolf
  • [12]

    Discrepancies from Asymptotic Series and Their Relation to Complex Classical Trajectories

    • R. Balian
      ,
    • G. Parisi
      ,
    • A. Voros
      • Phys.Rev.Lett. 41 (1978) 1141
  • [12]

    Quartic Oscillator

  • [13]

      • Phys.Lett.B 91 (1980) 431-435,
      • In *Le Guillou, J.C. (ed.), Zinn-Justin, J. (ed.): Large-order behaviour of perturbation theory* 175-179. (Phys. Lett. B91 (1980) 431-435). (see Book Index)
  • [14]

      • Nucl.Phys.B 192 (1981) 125-140,
      • In *Le Guillou, J.C. (ed.), Zinn-Justin, J. (ed.): Large-order behaviour of perturbation theory* 190-205. (Nucl. Phys. B192 (1981) 125-140) and Saclay CEN - D.PH.T-81-034 (81,rec.Jul.) 22 p. (see Book Index)
  • [15]

    The return of the quartic oscillator. The complex WKB method

    • A. Voros
  • [16]

  • [17]
    Quantum field theory and critical phenomena, (Oxford,)
    • J. Zinn-Justin
  • [18]

    Large order behavior of perturbation theory

    • J.C. Le Guillou
      ,
    • J. Zinn-Justin
  • [19]

    Hyperasymptotics

    • M.V. Berry
      ,
    • C.J. Howls
      • Proc.Roy.Soc.Lond.A 430 (1990) 653
  • [19]

    Hyperasymptotics for integrals with saddles

      • Proc.Roy.Soc.Lond.A 434 (1991) 657
  • [19]

    Asymptotics, Superasymptotics, Hyperasymptotics...

    • M.V. Berry
  • [20]

    Series Divergentes et Theories Asymptotiques

    • Ramis
      ,
    • J-P.
  • [21]

    Spectre de l’opérateur de Schrödinger stationnaire unidimensionnel à potentiel polynˆ ome trigonométrique

    • E. Delabaere
      • Compt.Rend.Hebd.Seances Acad.Sci. 314 (1992) 807