GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
- LIGO Scientific and
- Virgo
14 pages
Published in:
- Phys.Rev.Lett. 116 (2016) 24, 241103
- Published: Jun 15, 2016
e-Print:
- 1606.04855 [gr-qc]
Report number:
- LIGO-P151226
View in:
Citations per year
Abstract:
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙, and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift of 0.09+0.03−0.04. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.Note:
- 14 pages, 5 figures
- black hole: mass
- black hole: binary: coalescence
- gravitational radiation: emission
- gravitational radiation: direct detection
- gravitational radiation detector
- LIGO
- general relativity
- gravitation
- spin
References(91)
Figures(0)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]