Entanglement Entropy of Eigenstates of Quadratic Fermionic Hamiltonians
Mar 8, 2017
6 pages
Published in:
- Phys.Rev.Lett. 119 (2017) 2, 020601
- Published: Jul 11, 2017
e-Print:
- 1703.02979 [cond-mat.stat-mech]
View in:
Citations per year
Abstract: (APS)
In a seminal paper [D. N. Page, Phys. Rev. Lett. 71, 1291 (1993)PRLTAO0031-900710.1103/PhysRevLett.71.1291], Page proved that the average entanglement entropy of subsystems of random pure states is Save≃lnDA-(1/2)DA2/D for 1≪DA≤D, where DA and D are the Hilbert space dimensions of the subsystem and the system, respectively. Hence, typical pure states are (nearly) maximally entangled. We develop tools to compute the average entanglement entropy ⟨S⟩ of all eigenstates of quadratic fermionic Hamiltonians. In particular, we derive exact bounds for the most general translationally invariant models lnDA-(lnDA)2/lnD≤⟨S⟩≤lnDA-[1/(2ln2)](lnDA)2/lnD. Consequently, we prove that (i) if the subsystem size is a finite fraction of the system size, then ⟨S⟩Note:
- 4+6 pages, 3+2 figures, as published
- entropy: entanglement
- dimension: 1
- fermion: many-body problem
- Hilbert space: dimension
- Hamiltonian
References(35)
Figures(5)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]