Development of two-photon event generators for the KEDR experiment

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/798/1/012153)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.169.5.251
This content was downloaded on 25/03/2017 at 20:42

Please note that terms and conditions apply.

You may also be interested in:

A purity monitor for the KEDR liquid krypton calorimeter

Beam energy spread measurement at the VEPP-4M Electron-Positron Collider
V A Kiselev, N Yu Muchnoi, O I Meshkov et al.

Operation of the triple-GEM detectors in the tagging system of the KEDR experiment on the VEPP-4M collider
V M Aulchenko, O L Beloborodova, A V Bobrov et al.

High resolution tracking detectors with cascaded Gaseous Electron Multipliers
L I Shekhtman, V M Aulchenko, V S Bobrovnikov et al.

GEM-based detectors for SR imaging and particle tracking
L I Shekhtman, V M Aulchenko, A E Bondar et al.

Building a High Performance Computing Infrastructure for Novosibirsk Scientific Center
A Adakin, S Belov, D Chubarov et al.

A scenario for high accuracy mass measurement at BEPC-II
M. N. Achasov, V. E. Blinov, Cai Xiao et al.

Modulation of Attosecond Beating in Resonant Two-Photon Ionization
Álvaro Jiménez-Galán, L Argenti and F Martín

Modulation of Attosecond Beating by Resonant Two-Photon Transition
Álvaro Jiménez Galán, Luca Argenti and Fernando Martín
Development of two-photon event generators for the KEDR experiment

V A Tayursky1,2

1 Budker Institute of Nuclear Physics, Novosibirsk, Russia
2 Novosibirsk State University, Russia
E-mail: tayursky@inp.nsk.su

Abstract. The KEDR experiment, which started in 2002, is dedicated to a study of c- and b-quarks and the two-photon physics at the e^+e^- collider VEPP-4M in the Budker INP. To analyze the 2γ data and estimate contribution of two-photon background events in the 1γ data samples, the event generators $e^+e^-\rightarrow e^+e^- + \text{hadrons}$, $e^+e^-\rightarrow e^+e^- + \pi^+\pi^-$, and $e^+e^-\rightarrow e^+e^- + \text{PS (PS – pseudoscalar meson)}$ have been developed.

1. Introduction
Since the beginning of the 2000s at the e^+e^- collider VEPP-4M (energy $2E_b = 2 - 11$ GeV) experiments with the detector KEDR \cite{1} are carried out at energies $2E_b \lesssim 4$ GeV. To the present time the KEDR performed a series of precision measurements of masses of elementary particles \cite{2}, R \cite{3}, and some others.

For the $\gamma\gamma$ experiments the KEDR detector is equipped with a special system of scattered electron (e^\pm) tagging (TS), consisting of two identical subsystems, each of 4 blocks located on both sides of the interaction point (see figure 1). The TS detects electrons (positrons), scattered in interaction, in the angle range 0-10 mrad with energies 45\%–98\% of the beam energy.

![Drawing of the TS of the KEDR detector.](image)

Figure 1. Drawing of the TS of the KEDR detector.

The accuracy of measurement of the scattered e^\pm energy is about 0.1\% of the beam energy and resolution in the invariant mass of $\gamma\gamma$ system $\Delta W/W \sim 1\%$. When scattered electrons are
detected in the TS, corresponding Q_i of photons are small: $Q_i \ll m_\rho$, mass of ρ-meson.

$$Q_i^2 = |k_i^2| \approx E_b E'_b (\theta_i)^2 \lesssim 10^{-2} \text{ GeV}^2.$$

(Variables are shown in figure 2).

Using TS in the double tag mode, one can define W independent of the central detector:

$$W^2 \approx 4\omega_1\omega_2 = 4(E_b - E'_b)(E_b - E'_2).$$

The main goal of experiments with the KEDR in the $\gamma\gamma$ physics - precision measurement of the total cross section of two-photon hadron production at energies $W \lesssim 4$ GeV and the cross sections of production of pairs $\pi^+\pi^-$ and K^+K^- at $W \lesssim 1.5$ GeV. For this purpose collection of luminosity integral of 100 pb$^{-1}$ or more is planned. There are two measurements of the total cross section $\sigma(\gamma\gamma \rightarrow \text{hadrons})$ at low $\gamma\gamma$ energy W and $Q^2 \approx 0$: by the MD-1 detector and by the TPC/2γ detector [4]. In figure 3 the measurement of the MD-1 is shown. For comparison, the TPC/2γ obtained $\sigma(\gamma\gamma \rightarrow \text{hadrons}) = 471 \pm 12$ and 479 ± 16 nb at $W=2-3$ and 3-4 GeV.

Figure 2. Variables of process $e^+e^- \rightarrow e^+e^- + \text{hadrons}$.

Figure 3. Cross section $\gamma\gamma \rightarrow \text{hadrons}$ measured by the MD-1 detector [4].

2. Lowest-order cross section

For a description of the $\gamma\gamma$ process $e^+e^- \rightarrow e^+e^- + f$, variables shown in figure 2, and invariants: $t_1 = -Q_2^2 = k_1^2$, $t_2 = -Q_2^2 = k_2^2$, $s_1 = (p_1^2 + k^2)^2$, $s_2 = (p_2^2 + k^2)^2$, $s = (p_1 + p_2)^2$, $W^2 = k^2 = (k_1 + k_2)^2$ are used.

The differential cross section for the unpolarized beams in the lowest order of QED is [5]:

$$d\sigma = \frac{\alpha^2}{16\pi^4 t_1 t_2} \sqrt{(k_1 k_2)^2 - t_1 t_2} \sum \frac{d^3p_1'}{E_1'} \frac{d^3p_2'}{E_2'},$$

(1)

where the function \sum contains sum of 6 hadron $\gamma\gamma$ cross sections with calculated in QED factors.

The simulation can be divided into two stages: (i) $e^+e^- \rightarrow e^+e^- + f$ (reaction 2 \rightarrow 3) and (ii) $f \rightarrow n$ particles. The phase space of $n + 2$ particles can be represented as [6]:

$$R_{n+2} = \int dW^2 R_3 R_n, \quad dR_n = \prod_i \frac{d^3q_i}{2E_i} \delta^4(k - \sum_{j=1}^n q_j),$$

(2)

where R_3 - the phase space of the final state of the 2 \rightarrow 3 reaction [6], R_n - phase space of n particles with 4-moments q_i from decay of the system f. The 3-particle phase volume R_3 as a function of variables s, s_1, s_2, t_1, t_2, W after integration over the azimuthal angle φ [6].

The energy-momentum conservation is fulfilled exactly in the generators described below.
3. Event generator $e^+e^- \rightarrow e^+e^- + hadrons$

For small $Q^2 \rightarrow 0$ all hadron cross sections in σ_{TT} (equation (1)), except $\sigma_{TT} - cross section for transverse photons, tend to 0, and $\sigma_{TT} \rightarrow \sigma_{\gamma\gamma}$, where $\sigma_{\gamma\gamma} - cross section for real transverse photons $[5]$. From formulas (1) and (2) one obtains

$$d\sigma = \frac{2\alpha^2 \sqrt{X} K_{TT} \cdot \sigma_{TT}}{32\pi^3 s(4m_e^2)t_1t_2\sqrt{-\Delta_4}} dW^2 dt_1 dt_2 ds_1 ds_2. \tag{3}$$

Here $\sigma_{TT} = |F(t_1,t_2)/F(0,0)|^2 \sigma_{\gamma\gamma}$, transition form factors are included in σ_{TT}. Δ_4 – Gram determinant $[6]$. The formulas for the X and K_{TT} can be found in $[5]$. For the $F(t_1,t_2)$ two options can be used: $|F(t_1,t_2)|^2 = |F(0,0)|^2$ and the vector dominance model (VDM): $|F|^2 = (1-t_1^2/m_\rho^2)^{-2}(1-t_2^2/m_\rho^2)^{-2}$.

In the generator the hadron system consists of pions with uniform distribution in phase space $[7]$. This follows from the e^+e^- data at energy of several GeV. Simulation $e^+e^- \rightarrow e^+e^- + hadrons$ includes simulation of invariant W in the range of $W_{min} - W_{max}$, invariants t_1, t_2, s_1, s_2 in the kinematics limits of the problem $[7]$, $[8]$, as well as rotation angle φ of the whole system. From these values one obtains laboratory 4-moments of scattered e^\pm and of the $\gamma\gamma$ system. 4-moments of pions from decay of the system f are simulated according to $[9]$.

In figure 4 the distribution in n_c – number of π^\pm, obtained in this model at $W=3$ GeV. is compared with one measured in the $e^+e^- \rightarrow hadrons$ experiment at $\sqrt{s} = 3$ GeV $[10]$.

4. Event generator $e^+e^- \rightarrow e^+e^- + \pi^+\pi^-$

This generator is based on the formula (3) and the simple model $[11]$, which includes interference of the Born amplitude for helicity $\lambda=2$ in the continuum with the amplitude of the resonance $f_2(1270)$ with spin 2. The cross section $\sigma_{\gamma\gamma}$ in (3) equals $\sigma_{\gamma\gamma} = \int (d\sigma/d\Omega) d\Omega$, where, in the $\gamma\gamma$ system,

$$\frac{d\sigma}{d\Omega} = \left| \left(\frac{d\sigma}{d\Omega} \right)_B^{\lambda=0} \right|^2 + \left| \left(\frac{d\sigma}{d\Omega} \right)_B^{\lambda=2} \right|^2 + \left| \left(\frac{d\sigma}{d\Omega} \right)_R^{\lambda=2} \right|^2. \tag{4}$$

The calculated Born, resonance and total $\gamma\gamma$ cross sections are shown in figure 5 (left panel). The cross section $\sigma(e^+e^- \rightarrow e^+e^- + \pi^+\pi^-)$ (integral of (4) for $W = 2m_\pi - 1.5$ GeV) as a function of beam energy is shown in figure 5 (right panel). Integral of (4) at $W = 0.8-1.5$ GeV for $|\cos \vartheta^*| < 0.6$ is consistent within a factor of 2 with the measurement of the Belle detector $[12]$.

5. Event generator $e^+e^- \rightarrow e^+e^- + PS$ (PS – pseudoscalar meson)

This generator for simulation two photon production of pseudoscalar mesons is described in detail $[13]$. In the generator an option for account radiative corrections in the single tag mode is included.

The differential production cross section of narrow pseudoscalar meson with mass M_R and $\gamma\gamma$ width $\Gamma_{\gamma\gamma}$ can be written as $[13]$

$$d\sigma = \frac{4\alpha^2 \Gamma_{\gamma\gamma}}{\pi s^2 t_1^2 t_2^2 M_R^3} \left| \frac{F(t_1,t_2)}{F(0,0)} \right|^2 B \frac{dt_1 dt_2 ds_1 ds_2}{\sqrt{-\Delta_4}}. \tag{5}$$
Function B was calculated in [14] and is given by

$$B = 0.25 t_1 t_2 B_1 - 4 B_2^2 + m_e^2 B_3,$$

where

$$B_1 = (4p_1 p_2 - 2p_1 k_2 - 2p_2 k_1 + k_1 k_2)^2 + (k_1 k_2)^2 - 16 t_1 t_2 - 16 m_e^4,$$

$$B_2 = (p_1 p_2)(k_1 k_2) - (p_1 k_2)(p_2 k_1),$$

$$B_3 = t_1 (2p_1 k_2 - k_1 k_2)^2 + t_2 (2p_2 k_1 - k_1 k_2)^2 + 4 m_e^2 (k_1 k_2)^2.$$

Algorithm of simulation of events $e^+ e^- \rightarrow e^+ e^- + \text{PS}$ is the same as for the modeling of $e^+ e^- \rightarrow e^+ e^- + \text{hadrons}$, only it is not necessary to simulate the energy W, since $W = M_R$.

Measurement of the cross section $\sigma(e^+ e^- \rightarrow e^+ e^- + \eta)$ at $\sqrt{s} = 1$ GeV by the KLOE detector [15] is consistent with the MC calculation with and without VDM within about two errors:

$$\sigma_{exp} = 41.7 \pm 4 \text{ pb [KLOE]}; \sigma_{MC} = 32.4 \text{ pb [with VDM]} \text{ and } \sigma_{MC} = 35.5 \text{ pb [without VDM]}.$$

For experiments on two-photon physics with the KEDR detector at small Q^2, radiative corrections are negligible (see [13]).

Acknowledgments
This work was supported in part by the RFBR grants 15-02-03114-a and 15-02-09016-a.

References

Figure 5. Model [11]: cross sections $\sigma(\gamma \gamma \rightarrow \pi^+ \pi^-)$ as a function of $\pi^+ \pi^-$ mass (left panel) and cross section $\sigma(e^+ e^- \rightarrow e^+ e^- \pi^+ \pi^-)$ as a function of beam energy (right panel).
[15] Nguyen F 2011 Talk at the Int. Workshop on e^+e^- Coll. from ϕ to ψ (Novosibirsk)