NEUTRINO MIXING IN SO(10)

S. Nandi
Center for Particle Theory, University of Texas, Austin, TX. 78712* and
Department of Physics, The Ohio State University,
Columbus, Oh. 43210

ABSTRACT

We present the calculation of neutrino mixing in SO(10) Grand Unified Theory with three families of fermions. The neutrino mass is assumed to be generated either at the tree level using explicit 126 representation of Higgs (via Gell-Mann-Ramond-Slansky mechanism), or at the two loop level as suggested by Witten. We find only large $\nu_L - \nu_R$ mixing, with all mixing angles given by the up quark mass ratios.

1. INTRODUCTION

A great many experiments are now in progress to measure neutrino masses and oscillations. In addition to non-zero, non-degenerate masses, observation of neutrino oscillations need substantial mixing among the neutrinos. It is interesting to see what the Grand Unified Theories (GUT) can say about the magnitude of this mixing. In this talk, I shall discuss the calculation of neutrino mixing based on the SO(10) GUT. An interesting model of neutrino mixing based on SU(5) GUT is discussed in reference 2. Before we go to the actual calculation of mixing in section 4, we briefly discuss in section 2 and 3, how the neutrinos acquire small masses in SO(10), and the constraints imposed on the Higgs sector by the quark-lepton mass ratios and mixing angles.

2. NEUTRINO MASS IN SO(10)

In SU(5) GUT, the 15 left-handed fermions in each generation are assigned to the representations $\bar{5}$ and 10. If only $2\bar{4}$ and 5 (and/or $4\bar{5}$) representations of Higgs are used to break the symmetry down to $SU(3)_C \times U(1)$, there is a global symmetry, $B-L$ which forbids neutrino mass generation to any order in perturbation theory. Majorana mass can be generated using the Higgs representation, 15. But, in that case, the neutrino mass matrix is not related to the quark mass matrix. Hence, the neutrino mixing angles, expressed in terms of neutrino masses, remain unknown.

In SO(10) GUT, the fermions are assigned in the spinor representation $\bar{16}$ which has the SU(5) decomposition, $16 = 2\bar{4} + 1\bar{0} + 1$. Thus, in addition to the known 15 left-handed fermions, an extra singlet neutral lepton, ν_R ($\nu^c_L \equiv \nu_R$) is introduced. The fermion masses arise from the product, $16 \times 16 = 10 + 126 + 120$. Only the representation 126 contain an SU(5) singlet, and can be used to give large Majorana mass to this neutral singlet lepton. The usual left-handed neutrino acquire a Dirac-type mass equal to the up quark mass from the Higgs representation $10(126)$. Thus, for a single generation, the neutrino mass matrix becomes

$$
\begin{pmatrix}
\nu_L & \nu^c_L \\
\nu^c_L & m_q \\
\nu_L & m_q & m_R \\
\end{pmatrix}
$$

(1)

For $m_q \ll M_R$, the diagonalization of (1) gives $m_{\nu_R} \sim M_R$, $m_{\nu_L} \sim m_q^2/M_R$.

The SO(10) symmetry breaking chain that we consider here is

$$
SO(10) \rightarrow \begin{array}{c}
45_R \\
SU(4) \times SU(2) \times U(1) \\
126_R(1) \\
SU(3)_C \times SU(2) \times U(1)
\end{array}
$$

10_H and/or $126_H \rightarrow SU(3)_C \times U(1)$.

The analysis of $\sin^2 \theta_W$ indicates that the scale of $126_R(1)$ breaking is 10^{12} GeV. Thus, in SO(10), not only the observed left-handed neutrino acquires a small mass, this mechanism explains why it is so small compared to the quark mass.

It has been pointed out that it is not necessary to introduce a non-zero (126_1) to get a small neutrino mass. Consider the SO(10) symmetry breaking chain,

$$
SO(10) \rightarrow \begin{array}{c}
16_R \\
SU(5) \\
45_R \\
SU(3)_C \times SU(2) \times U(1)
\end{array}
$$

10_H and/or $126_H \rightarrow SU(3)_C \times U(1)$.

In this case, there will be a trilinear coupling of the form $16q 16q 16q$, unless forbidden by imposing a discrete symmetry. Let us write the trilinear coupling as $g \lambda (15 \times 10 \times 15)$, where g is the gauge coupling, and M is the mass scale associated with the symmetry breaking by 16_q. Then, since $10 \times 45 \times 45$ contains 126, the right-handed neutrino, ν_R acquires a mass at the two loop level. The mass is estimated to be

$$
M_R = \epsilon \left(\frac{M}{\Lambda} \right)^2 \left(\frac{m^2}{\Lambda} \right) M
$$

(2)

M is expected to lie between $10^{14} - 10^{19}$ GeV.

We point out that the relation $m_{\nu_L} \sim m_q^2/M_R$ follows from fairly general grounds that the lowest dimensional SU(3)$_C \times SU(2) \times U(1)$-invariant operator that violate lepton number conservation is of
The quark-lepton mass relations which seem to work experimentally are

$$\begin{align*}
\frac{m_u}{m_e} &= 9 \frac{m_u}{m_d} , \\
\frac{m_t}{m_b} &= \frac{m_t}{m_b} \text{ at } M \sim 10^{15} \text{ GeV} .
\end{align*}$$

(3)

To derive (3), it is necessary to use both 5 and 45 representations of Higgs fields in SU(5), and both 10 and 126 representations in SO(10). In SO(10), the relations (3) can be obtained from the following Yukawa interactions:

$$L_y = (a \ 16_1 \ 16_2 + b \ 16_3 \ 16_3) 10 + (e \ 16_2 \ 16_2 \ 126_2)$$

(4)

where 16_i represent the left-handed fermions in the i^{th} generation, Σ, 126_2 and 126_3 represent different Higgs scalars, and a, b, c, e are real coupling constants. It is assumed that 126_2 and 126_3 have vacuum expectation values along 45 and $\frac{5}{3}$ of SU(5). (4) can be obtained by writing down the most general Yukawa couplings for the above fermions and the Higgs scalars, and then imposing the invariance under the following discrete symmetry:

$$16_1 = \eta^a 16_1 , \ 16_2 = \eta^b 16_2 , \ 16_3 = \eta^{(a+b)} 16_3$$

(5)

$$10 + \eta^{-(a+b)} 10 + \eta^{2b} 126_2 + \eta^{2b} 126_2 + \eta^{-(a+b)} 126_3 .$$

The up-quark, down-quark and lepton mass matrices obtained from (4) are

$$N_u = \begin{bmatrix} a & 0 & 0 \\ 0 & d & 0 \\ 0 & b & f \end{bmatrix} , \ \ N_d = \begin{bmatrix} d & 0 & 0 \\ d & 0 & 0 \\ d & 0 & 0 \end{bmatrix} , \ \ N_l = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \eta^{2e} 126_2 .$$

(6)

The parameters a, b, c, d, e and f in (6) are defined to be the parameters appearing in (4) times the vacuum expectation values of the corresponding Higgs fields. The mass relations (3) follows from (6). The predictions for the Kobayashi-Maskawa mixing angles are $a_1 = -(m_d/m_u)^{\frac{1}{2}} , \ a_2 = -(m_c/m_u)^{\frac{1}{2}} , \ a_3 = -(m_t/m_u)^{\frac{1}{2}} a_1$.

(7)

In our calculation of neutrino mixing in SO(10), we shall assume that the Yukawa couplings for the quark and the leptonic sector are given by (4).

4. NEUTRINO MIXING

For three families, the 6×6 neutrino mass matrix can be expressed as

$$\begin{bmatrix} L & v \\ v^T & R \end{bmatrix}$$

which refers to the neutrino fields written as $\psi = (\nu_e, \nu_u, \nu_d, \nu_c, \nu_l)$ where c means change conjugate. L and R are 3×3 Majorana mass matrices for the light and heavy neutrinos, and V contains Dirac type mass terms. The Yukawa interaction (4) gives

$$L = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} , \ \ v = \begin{bmatrix} a & 0 & 0 \\ 0 & a & -3c \\ 0 & 0 & b \end{bmatrix} , \ \ R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} .$$

(9)

It is clear that L_y in (4) must be modified in such a way that the right-handed Majorana sector, R must be non-zero, and all three right-handed neutrinos acquire superheavy masses. We would like to keep $L = 0$ in order not to lose the prediction for the light neutrino masses and their mixing. Since all three right-handed Majorana neutrinos have to be superheavy, we need at least two parameters in R, and the two possible forms of R are

$$R_1 = \begin{bmatrix} 0 & A & 0 \\ A & 0 & 0 \\ 0 & 0 & B \end{bmatrix} , \ \ R_2 = \begin{bmatrix} 0 & 0 & A \\ 0 & B & 0 \\ A & 0 & 0 \end{bmatrix} .$$

(10)

Both R_1 and R_2 gives eigenvalues $(-A, A, B)$. Now, we discuss how such R's can be generated naturally using 1) explicit $126(1)$ coupling in L_y, or 2) via radiative correction.
CASE I. R GENERATED BY EXPLICIT $126(1)$ COUPLING

Majorana sector R_1 is generated by adding L_Y' to the L_Y in (4).\(^{13}\)

$$L_Y = (A 16_L 16_2 + B 16_3 16_3) 126_1. \quad (11)$$

126, transform like 10 under the discrete symmetry in (5), and has non-zero vacuum expectation value only along the I-direction in SU(5). Then, the mass matrices M^U, M^D and M^ν obtained from $L_Y + L_Y'$ are the same as in (6). The 6×6 neutrino mass matrix now becomes\(^{13,14}\)

$$M^\nu = \begin{pmatrix} 0 & \nu \\ \nu & R_1 \end{pmatrix}$$

(12)

where ν is given in (9) and R_1 in (10). The parameters a, b and c are determined by the up quark masses,

$$a = (m_u m_c)^{1/2}, \quad b = m_t, \quad c = (m_c m_t)^{1/2}. \quad (13)$$

The only unknown parameters are A and B. The neutrino masses and mixing angles are obtained by diagonalizing M^ν in (12). The eigenvalues,\(^{14}\) with the assumption $A > B$, are approximately

$$\lambda_1 = -\frac{a b}{18 c^2} A, \quad \lambda_2 = 18 a b c^2 / (b^2 + 9 c^2) A, \quad \lambda_3 = -(b^2 + 9 c^2) / B,$$

$$\lambda_4 = -A, \quad \lambda_5 = A, \quad \lambda_6 = B. \quad (14)$$

Using the values of a, b and c from (13), the three light neutrino masses are,

$$m_{\nu_1} = -\lambda_1 = m_u (m_u m_c)^{1/2} / 18 A$$

$$m_{\nu_2} = \lambda_2 = 18 m_c (m_u m_c)^{1/2} / (1 + 9 m_c / m_t)$$

$$m_{\nu_3} = -\lambda_3 = m_t (1 + 9 m_c / m_t) / B. \quad (15)$$

For $A > B$, we have the hierarchy of neutrino masses.

The mixing among the light neutrinos is given by $\nu = U_{\nu_3}^\dagger \nu_3$ where ν_3, $e = e_t, \mu_t, \tau_t$ correspond to the eigenstates of weak currents, and U_{ν_3}, $1, 2, 3$ correspond to the mass eigenstates. Expressed in Kobayashi-Maskawa form,\(^{16}\) with CP-violating phase δ put = 0, we obtain\(^{12}\) from (12) - (15),

$$U = \begin{pmatrix} 1 & \theta_1 & 0 \\ -c_2 \theta_1 & c_2 & s_2 \\ c_2 & -c_1 & s_2 \end{pmatrix}$$

(16)

where

$$\begin{align*}
\theta_1 &= -\left(\frac{m_u}{m_c}\right)^{1/2} \left(1 + 9 \frac{m_u}{m_t}\right)^{1/2} / 18 \\
\tan \theta_2 &= 3 \left(\frac{m_c}{m_t}\right)^{1/2}, \quad \theta_3 = 0 \quad .
\end{align*} \quad (17)$$

Thus the mixing between ν_T and ν_τ could be large, whereas all other mixing angles are very small.

We point out that our charged lepton mass matrix, M^L in (6) is not diagonal. If we consider the mixing matrix for the coupling of the neutrinos to charged leptons, then this produces an additional mixing of $-(m_\mu / m_\tau)^{1/2}$ between ν_μ and ν_τ.

The Majorana sector, R_2 can be obtained naturally by adding $L_Y'' = A 16_1 16_2 126_2, + B 16_2 16_2 126_4$ to L_Y in (4). Here both 126_1 and 126_2 are assumed to have non-zero vacuum expectation values only along I of SU(5). In this case, all mixing angles among the light neutrinos come out to be small, of the order of $(m_\mu / m_\tau)^{1/2}$ and $(m_\mu / m_\tau)^{1/2}$.

CASE II. RIGHT-HANDED MAJORANA SECTOR, R GENERATED BY RADIATIVE CORRECTION

Here we do not introduce any explicit $126(1)$ Higgs representation. So the right-handed neutrinos do not acquire any mass at the tree level. However, they acquire masses at the tree level,\(^7\) due to trilinear couplings of 16_H with 10_H and/or 126_H, as discussed in section 2. The Yukawa couplings, L_Y are taken to be the same as given in (4). Since we have one 10 and two 126 in (4), the most general trilinear Higgs couplings with 16_H are

$$L_Y = g M 16_H (e_1 10_H + e_2 126_2 + e_3 126_3) 16_H. \quad (18)$$

However 10, 126_2 and 126_3 transform differently under discrete symmetry, (5). So only one of e_1, e_2 and e_3 can be non-zero. It is easy to see that if e_2 or e_3 is non-zero, the Majorana sector, R generated does not give superheavy masses to all three right-handed neutrinos. So we choose the transformation of 16_H under the discrete symmetry, (5) such that only the e_1-term in (18) survives. Then, the right-handed Majorana sector, R generated at the two loop level is

$$R = K \begin{pmatrix} 0 & a & 0 \\ a & 0 & 0 \\ 0 & 0 & b \end{pmatrix} \quad (19)$$

where $K = e_1^2 / M^2$.\(^{17}\)

We see that except for the overall scale, K, the Majorana sector, R gets determined in terms of the parameters of the up quark mass matrix, (6). The ratio A/B for R_1 in (10), which was arbitrary in case I, is now determined, $A/B = a/b = (m_u m_c)^{1/2} / m_t$.\(^{17}\)

The radiative correction at the two loop level also give direct contribution to the light neutrino masses. These contributions have been estimated,\(^{17}\) and are found to be suppressed by the factor a/b.
relative to the right-handed masses. For the present case, these give

\[
L = K' \begin{pmatrix}
0 & a & 0 \\
0 & 0 & b \\
a & 0 & 0
\end{pmatrix}
\]

(20)

where \(K' = (m_\nu/m_\chi)^2 K \).

A detail account of our results for the neutrino mixing via Witten's mechanism \(^{17}\) will be presented elsewhere. \(^{18}\) Here, we give the results for the present model taking \(L = 0 \).

For the light neutrino masses, we obtain,

\[
m_\nu = \frac{a b}{27 K c^2},
\]

\[
m_\nu = \frac{(b^2 + 9c^2)\{1 + (1 + 108b^2c^2/(b^2 + 9c^2)^2)^1/2 \}}{2Kb}.
\]

(21)

where \(a, b, \) and \(c \) are given in (13). Thus light neutrino masses are completely determined in terms of up quark masses, except for the overall scale, \(K \). There is a hierarchy between \(m_\nu_1 \) and \(m_\nu_2 \); however \(m_\nu_2 \) and \(m_\nu_3 \) could be comparable. If the factor \(108b^2c^2/(b^2 + 9c^2)^2 \) is \(\ll 1 \), then we get complete hierarchy, \(m_\nu_1 : m_\nu_2 : m_\nu_3 = m_u : m_c : m_t \).

The mixing angles among the light neutrinos expressed in the Kobayashi-Maskawa form, (16) is obtained to be

\[
\tan \theta_2 = 6c(1 + (b^2 + 9c^2)^2)\{1 + (1 + 108b^2c^2/(b^2 + 9c^2)^2)^1/2 \}/b
\]

\[
\sin \theta_1 = -ab/27 c^2 \cos \theta_2.
\]

(22)

\(\theta_1 \) depends only on the ratio \((m_\nu_2/m_\nu_3) \) which could be determined from the bottom quark decays in our model [see equation (7)]. Mixing of the electron neutrino is again small; while \(\nu_\mu - \nu_\tau \) mixing could be large. For \(m_e = 1.5 \text{ GeV}, m_\nu_2 = 30 \text{ GeV}, m_\nu_1 = 5 \text{ MeV}, \) (22) gives \(\theta_2 = 39^\circ \) and \(\theta_1 = 0.6^\circ \).

CONCLUSION

In the \(SO(10) \) GUT, it is natural for the light neutrinos to have small masses in the range \(10^{-6} \text{ eV} - 10^{-3} \text{ eV} \). A hierarchy of neutrino masses, similar to the hierarchy of quark masses is plausible, though not a must. Assuming a reasonable quark-lepton phenomenology, the mixing of the electron type neutrino is always predicted to be small. The mixing between \(\nu_\mu \) and \(\nu_\tau \) could be large, depending on the yet unknown ratio, \((m_\nu_2/m_\nu_3) \). The present data \(^{19}\) excludes maximal \(\nu_\mu - \nu_\tau \) mixing for \(\Delta m^2 > 3 \text{ eV}^2 \). We encourage the experimentals to push their limits further, which would test this interesting aspect of the \(SO(10) \) theory.

Part of the work, reported here, was done in collaboration with S. Hama, K. Milton and K. Tanaka. I am grateful to them for many valuable discussions. This research was supported in part by the U.S. Department of Energy under contracts EY-76-C-02-1545.$000 and DE-AS05-76ER03992.

REFERENCES

5. We note that this \(B-L \) current is anomaly free, so there is also no neutrino mass generation due to instantons.
18. Because of the large disparity in mass scale between the Dirac sector, \(V \) and the Majorana sector, \(R \), the mass eigenvalues for the light neutrinos and their mixing can be obtained by diagonalizing the \(3 \times 3 \) matrix \(-V^\dagger V\).
18. S. Nandi (in preparation). K. Kanaya in Ref. 14 has discussed neutrino mixing in SO(10) GUT based on Witten model. However, he does not take into account realistic quark-lepton mass relations, (3). Also, he uses two 10 of Higgs representations, both of which cannot couple to ν_{ν} in a natural way. The results on neutrino masses and mixing reported here are very different from that given in Kanaya's paper.

19. See talk by T. Kondo in this conference. For a detailed discussion of the neutrino oscillation phenomenology, see talk by V. Barger in this conference, and also the references cited there.

ABSTRACT

We point out that neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments.

One expects that, in general, neutral-current processes will be completely unaffected by the oscillation of neutrinos among their various possible flavors ($\nu_1, \nu_2, \nu_3, \ldots$). After all, these processes presumably preserve neutrino flavor, and are independent of that flavor. Thus, oscillation of neutrinos from one flavor to another will not change any neutral-current cross sections. Indeed, even if the neutral weak interactions do change neutrinos of one flavor (e.g., ν_e) into those of another, if they do so through amplitudes of the form

$$a(v_f^A + v_f^B) = N_f f^f,$$

where N_f, f is a unitary matrix and f^f is a universal amplitude, neutrino oscillations will still have no effect. (The unitarity of N_f, f guarantees that the interactions remain independent of flavor in the sense that the total cross section for a neutrino v_f to interact, $\sum_f o(v_f^A + v_f^B)$, does not depend on the incoming flavor.)

There is one exception to all this; namely, neutrino- (or antineutrino-) electron scattering. For all neutrino flavors but ν_e, this reaction is a purely neutral-current process. However, for this one flavor, the reaction receives both neutral- and charged-current contributions, as illustrated in Fig. 1. Since the charged-