Anatomy of $B_s \rightarrow PV$ decays and effects of next-to-leading order contributions in the perturbative QCD factorization approach

Da-Cheng Yan a, Ping Yang a, Xin Liu b, Zhen-Jun Xiao a,c,*

a Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
b School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, PR China
c Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China

Received 3 February 2018; received in revised form 21 March 2018; accepted 10 April 2018
Available online 12 April 2018
Editor: Hong Jian He

Abstract

In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one $\bar{B}_s^0 \rightarrow PV$ decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide $\sim 40\%$ enhancement to the LO PQCD predictions for $\mathcal{B}(\bar{B}_s^0 \rightarrow K^0 \bar{K}^{*0})$ and $\mathcal{B}(\bar{B}_s^0 \rightarrow K^+ K^{*-})$, or a $\sim 37\%$ reduction to $\mathcal{B}(\bar{B}_s^0 \rightarrow \pi^- K^{*+})$; and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements; (b) the total effects on the PQCD predictions for the relevant $B^0 \rightarrow P$ transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude; less than 10\% enhancement respect to the leading order result; (c) for the “tree” dominated decay $\bar{B}_s^0 \rightarrow K^+ \rho^-$ and the “color-suppressed-tree” decay $\bar{B}_s^0 \rightarrow \pi^0 K^{*0}$, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude $\mathcal{A}_{T,C}$ and \mathcal{A}_P: constructive for the first decay but destructive for the second one; and (d) for $\bar{B}_s^0 \rightarrow V(\eta, \eta')$ decays, the complex pattern of the PQCD predictions for their branching ratios

* Corresponding author.
E-mail addresses: liuxin@jsnu.edu.cn (X. Liu), xiaozhenjun@njnu.edu.cn (Z.-J. Xiao).

https://doi.org/10.1016/j.nuclphysb.2018.04.007
0550-3213/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
can be understood by rather different topological structures and the interference effects between the decay amplitude $A(V_{Hq})$ and $A(V_{Hq})$ due to the $\eta-\eta'$ mixing.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

During the past two decades, the theoretical studies and experimental measurements for the two-body charmless hadronic decays of B and B_s mesons have played a very important role in testing the Standard Model (SM) and in searching for the possible signals of new physics (NP) beyond SM [1–7]. On the theory side, such decays have been studied systematically by employing rather different factorization approaches at the leading order (LO) or next-to-leading order (NLO), such as the generalized factorization approach [8–10], the QCD factorization (QCDF) approach [11–14] and the perturbative QCD (PQCD) factorization approach [15–19]. The resultant theoretical predictions from different approaches are generally consistent with each other within the errors.

On the experimental side, the early measurements for $B \rightarrow M_2 M_3$ decay modes (here M_i stands for the light pseudo-scalar or vector mesons) mainly come from the BaBar and Belle collaboration in B factory experiments [1,6]. For $B_s \rightarrow M_2 M_3$ decays, however, LHCb Collaboration provides the dominant contribution [2–6]. Although some deviations or puzzles, such as the so-called $(R(D), R(D^*))$ and (R_K, R_{K*}) anomalies, are observed so far, but there is no any solid flavor-related evidence for the existence of the new physics beyond the SM.

In the framework of the PQCD factorization approach, the two-body charmless hadronic decays $B_{s}^{0} \rightarrow M_2 M_3$ have been studied by some authors in recent years:

(1) In 2004, Li et al. studied the pure annihilation $B_s \rightarrow \pi^+\pi^-$ decay [20] and gave a leading order PQCD prediction for a large branching ratio $B(B_{s}^{0} \rightarrow \pi^+\pi^-) \sim 5 \times 10^{-7}$, which has been confirmed by recent CDF and LHCb measurements [21–24].

(2) In 2007, Ali et al. completed the systematic study for the forty-nine $B_{s}^{0} \rightarrow PP, PV, VV$ decays at the LO level, presented their PQCD predictions for the CP-averaged branching ratios, the CP-violating asymmetries and some other physical observables [25]. For $B_s \rightarrow \pi^+\pi^-$, for example, they also found a large theoretical prediction for its decay rate.

(3) In 2014, Qin et al. studied the twenty $B_s \rightarrow PT$ decays (here P and T denote the light pseudo-scalar and tensor mesons) in the PQCD factorization approach at the LO level, and provided their predictions for the decay rates and CP-violating asymmetries of those considered decay modes [26].

(4) Very recently, we studied $B_{s}^{0} \rightarrow (K\pi, KK)$ decays [27] and $B_{s}^{0} \rightarrow (\pi\eta^{(')}, \eta^{(')}\eta^{(')})$ decays [28] at the partial NLO level. We found that the currently known NLO contributions from different sources can interfere with the LO part constructively or destructively for different decay modes, while the agreement between the central values of the PQCD predictions for the decay rates and CP violating asymmetries and those currently available experimental measurements are indeed improved effectively after the inclusion of those NLO contributions [27,28].

In this paper, by employing the PQCD factorization approach, we will make a systematic study for all two-body charmless hadronic decays $B_s \rightarrow PV$ (here $P = (\pi, K, \eta, \eta')$ and
$V = (\rho, K^*, \phi, \omega)$, by extending the previous LO studies to the partial NLO level: including all currently known NLO contributions. We will focus on investigating the effects of the NLO contributions, specifically those newly known NLO twist-2 and twist-3 contributions to the form factors of $B \to P$ transitions \cite{29,30} under the approximation of $SU(3)$ flavor symmetry.

This paper is organized as follows. In Sec. 2, we give a brief review about the PQCD factorization approach and we calculate analytically the relevant Feynman diagrams and present the various decay amplitudes for the considered decay modes in the LO and NLO level. We calculate and show the PQCD predictions for the branching ratios and CP violating asymmetries of all twenty-one $B_s \to PV$ decays in Sec 3. The summary and some discussions are included in Sec. 4.

2. Decay amplitudes at LO and NLO level

As usual, we consider the B_s meson at rest and treat it as a heavy-light system. Using the light-cone coordinates, we define the B_s^0 meson with momentum P_1, the emitted meson M_2 and the recoiled meson M_3 with momentum P_2 and P_3 respectively. We also use x_i to denote the momentum fraction of anti-quark in each meson and set the momentum P_i and k_i (the momentum carried by the light anti-quark in B_s and $M_{2,3}$ meson) in the following forms:

$$
P_1 = \frac{m_{B_s}}{\sqrt{2}} (1, 1, \theta_T), \quad P_2 = \frac{m_{M_2}}{\sqrt{2}} (1, 0, \theta_T), \quad P_3 = \frac{m_{M_3}}{\sqrt{2}} (0, 1, \theta_T),$$

$$k_1 = (x_1 P_1^+, 0, k_{1T}), \quad k_2 = (x_2 P_2^+, 0, k_{2T}), \quad k_3 = (0, x_3 P_3^-, k_{3T}).$$

The integration over $k_{1,2}^-$ and k_3^+ will lead conceptually to the decay amplitude

$$A \sim \int dx_1 dx_2 dx_3 b_1 b_2 b_3 \cdot \text{Tr} \left[C(t) \Phi_{B_s} (x_1, b_1) \Phi_{M_2} (x_2, b_2) \Phi_{M_3} (x_3, b_3) H (x_i, b_i, t) S_t (x_i) e^{-i S(t)} \right],$$

where b_i is the conjugate space coordinate of k_{iT}, $C(t)$ are the Wilson coefficients evaluated at the scale t, and Φ_{B_s} and Φ_{M_i} are wave functions of the B_s meson and the final state mesons. The hard kernel $H (x_i, b_i, t)$ describes the four-quark operator and the spectator quark connected by a hard gluon. The Sudakov factor $e^{-i S(t)}$ and $S_t (x_i)$ together suppress the soft dynamics effectively \cite{15}.

2.1. Wave functions and decay amplitudes

For the considered $B_s^0 \to PV$ decays with a quark level transition $b \to q$ with $q = (d, s)$, the weak effective Hamiltonian H_{eff} can be written as \cite{31}

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left\{ V_{ub} V_{uq}^* \left[C_1 (\mu) O_1^q (\mu) + C_2 (\mu) O_2^q (\mu) \right] - V_{tb} V_{tq}^* \sum_{i=3}^{10} C_i (\mu) O_i (\mu) \right\} + \text{h.c.}$$

where $G_F = 1.16639 \times 10^{-5}$ GeV$^{-2}$ is the Fermi constant, and V_{ij} is the Cabibbo–Kobayashi–Maskawa (CKM) matrix element, $C_i (\mu)$ are the Wilson coefficients and $O_i (\mu)$ are the four-fermion operators.
For B_s^0 meson, we consider only the contribution of Lorentz structure

$$\Phi_{B_s} = \frac{1}{\sqrt{6}} (\bar{p} B_s + m_{B_s}) \gamma_5 \phi_{B_s}(k_1),$$

(4)

and adopt the distribution amplitude ϕ_{B_s} as in Refs. [20,25,27].

$$\phi_{B_s}(x, b) = N_{B_s} x^2 (1 - x)^2 \exp \left[- \frac{m_{B_s}^2 x^2}{2 \omega_{B_s}^2} - \frac{1}{2} (\omega_{B_s} b)^2 \right].$$

(5)

We also take $\omega_{B_s} = 0.50 \pm 0.05$ GeV in numerical calculations. The normalization factor N_{B_s} will be determined through the normalization condition: $\int_0^1 dx \phi_{B_s}(x, b = 0) = f_{B_s}/(2\sqrt{2}N_c)$.

For $\eta - \eta'$ mixing, we also use the quark-flavor basis: $\eta_q = (u\bar{u} + d\bar{d})/\sqrt{2}$ and $\eta_s = s\bar{s}$ [32,33]. The physical η and η' can then be written in the form of

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \end{pmatrix},$$

(6)

where ϕ is the mixing angle. The relation between the decay constants ($f_{\eta}^q, f_{\eta}^s, f_{\eta'}^q, f_{\eta'}^s$) and ($f_q, f_s$) can be found for example in Ref. [33]. The chiral enhancements $m_{\eta q}^n$ and $m_{\eta s}^n$ have been defined in Ref. [34] by assuming the exact isospin symmetry $m_q = m_u = m_d$. The three input parameters f_q, f_s, and ϕ in Eq. (6) have been extracted from the data [32]

$$f_q = (1.07 \pm 0.02) f_\pi, \quad f_s = (1.34 \pm 0.06) f_\pi, \quad \phi = 39.3^\circ \pm 1.0^\circ.$$

(7)

With $f_\pi = 0.13$ GeV, the chiral enhancements $m_{\eta q}^0$ and $m_{\eta s}^0$ consequently take the values of $m_{\eta q}^0 = 1.07$ GeV and $m_{\eta s}^0 = 1.92$ GeV [34].

For the final state pseudo-scalar mesons $M = (\pi, K, \eta_q, \eta_s)$, their wave functions are the same ones as those in Refs. [35–38]:

$$\Phi_M(p_i, x_i) \equiv \frac{1}{\sqrt{6}} \gamma_5 \left[\bar{p}_i \phi_{M_i}^A(x_i) + m_{0i} \phi_{M_i}^P(x_i) + \zeta m_{0i} (\bar{q} q - 1) \phi_{M_i}^T(x_i) \right].$$

(8)

where m_{0i} is the chiral mass of the meson M_i, p_i are the momentum of the meson M_i. The parameter $\zeta = 1$ or -1 when the momentum fraction of the quark (anti-quark) of the meson is set to be x. The distribution amplitudes (DA’s) of the meson M can be found easily in Refs. [20, 38]:

$$\phi_{M_i}^A(x) = \frac{3 f_M}{\sqrt{6}} x (1 - x) \left[1 + a_1 M C_{12}^{3/2}(t) + a_2 M C_{24}^{3/2}(t) + a_4 M C_{4}^{3/2}(t) \right],$$

(9)

$$\phi_{M_i}^P(x) = \frac{f_M}{2 \sqrt{6}} \left[1 + \left(30 \eta_3 - \frac{5}{2} \rho_2 M \right) C_{12}^{1/2}(t) - 3 \left(\eta_3 \omega_3 + \frac{3}{20} \rho_2 M C_{4}^{1/2}(t) \right) \right],$$

(10)

$$\phi_{M_i}^T(x) = \frac{f_M (1 - 2x)}{2 \sqrt{6}} \left[1 + \left[5 \eta_3 - \frac{7}{20} \eta_3 \omega_3 - \frac{3}{5} \rho_2 M C_{42}^{1/2}(t) \right] \right] \left(1 - 10x + 10x^2 \right).$$

(11)

where $t = 2x - 1$, f_M and ρ_M are the decay constant and the mass ratio with the definition of $\rho_M = (m_\pi/m_\pi^2, m_K/m_K^2, m_{qq}/m_{qq}^2, m_{ss}/m_{ss}^2)$. The parameter m_{qq} and m_{ss} have been defined in Ref. [34]:
\[m_{qq}^2 = m_q^2 \cos^2 \phi + m_{q'}^2 \sin^2 \phi - \frac{\sqrt{2} f_q}{f_q} (m_{q'}^2 - m_q^2) \cos \phi \sin \phi, \]
\[m_{ss}^2 = m_{q}^2 \sin^2 \phi + m_{q'}^2 \cos^2 \phi - \frac{\sqrt{2} f_q}{f_q} (m_{q'}^2 - m_q^2) \cos \phi \sin \phi, \]

with the assumption of exact isospin symmetry \(m_q = m_u = m_d \). The explicit expressions of those Gegenbauer polynomials \(C_{1/2}^{3/2}(t) \) and \(C_{2,4}^{1/2,3/2}(t) \) can be found for example in Eq. (20) of Ref. [33]. The Gegenbauer moments \(a_i^M \) and other input parameters are the same as those in Ref. [35].

\[a_1^{\pi, \eta_q, \eta_s} = 0, \quad a_2^K = 0.06, \quad a_2^{\pi, K} = 0.25 \pm 0.15, \quad a_2^{\eta_q, \eta_s} = 0.115, \]
\[a_4^{\pi, K, \eta_q, \eta_s} = -0.015, \quad \eta_3 = 0.015, \quad \omega_3 = -3.0. \] (13)

For the \(\bar{B}_s^0 \rightarrow PV \) decays, only the longitudinal polarization component of the involved vector mesons contributes to the decay amplitude. Therefore we choose the wave functions of the vector mesons as in Ref. [25]:

\[\Phi_{\parallel}^V(p, \epsilon_L) = \frac{1}{\sqrt{6}} \left[\epsilon_L m_V \phi_V(x) + \epsilon_L p \phi_V(x) + m_V \phi_V^H(x) \right], \] (14)

where \(p \) and \(m_V \) are the momentum and the mass of the light vector mesons, and \(\epsilon_L \) is the longitudinal polarization vector of the vector mesons. The twist-2 distribution amplitudes \(\phi_V(x) \) in Eq. (14) can be written in the following form [25]

\[\phi_\rho(x) = \frac{3 f_\rho}{\sqrt{6}} \left(1 - x \right) \left[1 + a_{2\rho}^{\parallel} C_{2}^{3/2}(t) \right], \] (15)
\[\phi_\omega(x) = \frac{3 f_\omega}{\sqrt{6}} \left(1 - x \right) \left[1 + a_{2\omega}^{\parallel} C_{2}^{3/2}(t) \right], \] (16)
\[\phi_K^+(x) = \frac{3 f_K^+}{\sqrt{6}} \left(1 - x \right) \left[1 + a_{1K^+}^{\parallel} C_{1}^{3/2}(t) + a_{2K^+}^{\parallel} C_{2}^{3/2}(t) \right], \] (17)
\[\phi_\phi(x) = \frac{3 f_\phi}{\sqrt{6}} \left(1 - x \right) \left[1 + a_{2\phi}^{\parallel} C_{2}^{3/2}(t) \right], \] (18)

where \(C_1^{3/2}(t) = 3t \) and \(C_2^{3/2}(t) = 3(5t^2 - 1)/2 \), while \(f_V \) is the decay constant of the vector meson with longitudinal polarization. The Gegenbauer moments here are the same as those in Ref. [25]:

\[a_{1K^+} = 0.03 \pm 0.02, \quad a_{2\rho} = a_{2\omega}^{\parallel} = 0.15 \pm 0.07, \]
\[a_{2K^+} = 0.11 \pm 0.09, \quad a_{2\phi}^{\parallel} = 0.18 \pm 0.08. \] (19)

For the twist-3 distribution amplitudes \(\phi_V^l(x) \) and \(\phi_V^e(x) \), their asymptotic form as used in Ref. [25] are the form of

\[\phi_V^l(x) = \frac{3 f_V^T}{2 \sqrt{6}} (1 - 2x)^2, \quad \phi_V^e(x) = \frac{3 f_V^T}{2 \sqrt{6}} (1 - 2x), \] (20)

where \(f_V^T \) with \(V = (\rho, \omega, \phi, K^*) \) is the decay constant of the vector meson with transverse polarization.
2.2. Example of the LO decay amplitudes

At the LO level, the twenty one $\bar{B}_s^0 \to PV$ decays have been studied previously in Ref. [25], and the decay amplitudes as presented in Ref. [25] are confirmed by our independent recalculation. In this paper, we focus on the calculations of the effects of all currently known NLO contributions to these decay modes in the PQCD factorization approach. The relevant Feynman diagrams which may contribute to the considered \bar{B}_s^0 decays at the leading order are illustrated in Fig. 1.

Based on the effective Hamiltonian \mathcal{H}_{eff}, each considered decays may receive contributions from one or more terms proportional to different Wilson coefficients $C_i(\mu)$ and/or their combinations a_i.\footnote{For the sake of simplicity, one usually define the combinations of the Wilson coefficient in the form: $a_1 = C_2 + C_1/3$, $a_2 = C_1 + C_2/3$, $a_3 = C_1 + C_{i+1}/3$ and $a_j = C_j + C_{j-1}/3$ for $i = \{3, 5, 7, 9\}$ and $j = \{4, 6, 8, 10\}$. For given $\mu = [2, 5]$ GeV, one found numerically [25,39]: $a_1 \approx C_2 \approx 1.1$ are large quantity, $C_1 \approx -0.2$ and $a_2 = 0.01 \sim 0.1$ are small ones, the QCD-penguins $|a_{3-6}| = 0.01 - 0.001$ are very small, and finally the electroweak-penguins $|a_{7-10}| = 10^{-3} - 10^{-4}$ are indeed tiny.}

According to the topological structure of the relevant Feynman diagrams for a given decay mode, i.e. which diagram provides the dominant contribution, one can classify the decays considered into the following four types:

1. The “color-allowed-tree” (“T”) decay: the dominant contribution comes from the terms proportional to a_1 and/or C_2;
2. The “color-suppressed tree” (“C”) decay: the terms with a_2 and/or C_1 provide the dominant contribution;
3. The “QCD penguin” (“P”) decay and the “Electroweak penguin” (“PEW”) decays: the dominant terms are proportional to C_{3-6} or a_{3-6} and C_{7-10} or a_{7-10}, respectively;
4. The “annihilation” (“Anni”) decays: if only the annihilation diagrams contribute.

In the leading order PQCD approach, as illustrated in Fig. 1, there are three types of diagrams contributing to the $\bar{B}_s^0 \to PV$ decays considered in this paper: the factorizable emission diagrams (Fig. 1(a) and 1(b)); the hard-spectator diagrams (Fig. 1(c) and 1(d)); and the annihilation diagrams (Fig. 1(e)–1(h)). From the factorizable emission diagrams Fig. 1(a) and 1(b), the corresponding form factors of $B_s \to M_3$ transition can be extracted by perturbative calculations.

For the sake of completeness and the requirement for later discussions, we show here the total LO decay amplitudes for $\bar{B}_s^0 \to \pi^- K^{*+}, K^+ \rho^-$ and $\pi^0 K^{*0}$ decays. For other eighteen decay modes, one can found the expressions of their LO decay amplitudes easily in Ref. [25].
\[A(\bar{B}_s^0 \to \pi^- K^{*+}) \]
\[
= V_{ub} V_{ud}^* \left\{ f_\pi F_{eK^*} a_1 + M_{eK^*} C_1 \right\} - V_{tb} V_{td}^* \left\{ f_\pi F_{eK^*} [a_4 + a_{10}] \right\} \\
- f_\pi F_{e^2K^*[a_6 + a_8]} + M_{eK^*} [C_3 + C_9] + f_{B_s} F_{aK^*} \left\{ a_4 - \frac{1}{2} a_{10} \right\} \\
- f_{B_s} F_{aK^*[a_6 - \frac{1}{2} a_8]} + M_{aK^*} \left\{ C_3 - \frac{1}{2} C_9 \right\} - M_{aK^*[C_5 - \frac{1}{2} C_7]}, \tag{21}
\]

\[A(\bar{B}_s^0 \to K^+ \rho^-) \]
\[
= V_{ub} V_{ud}^* \left\{ f_\rho F_{eK} a_1 + M_{eK} C_1 \right\} - V_{tb} V_{td}^* \left\{ f_\rho F_{eK} [a_4 + a_{10}] \right\} \\
+ M_{eK} [C_3 + C_9] + M_{eK}^p [C_5 + C_7] + f_{B_s} F_{aK} \left\{ a_4 - \frac{1}{2} a_{10} \right\} \\
+ f_{B_s} F_{aK^*[a_6 - \frac{1}{2} a_8]} + M_{aK} \left\{ C_3 - \frac{1}{2} C_9 \right\} + M_{aK}^p \left\{ C_5 - \frac{1}{2} C_7 \right\}, \tag{22}
\]

\[\sqrt{2} A(\bar{B}_s^0 \to \pi^0 K^{*0}) \]
\[
= V_{ub} V_{ud}^* \left\{ f_\pi F_{eK^*} a_2 + M_{eK^*} C_2 \right\} - V_{tb} V_{td}^* \left\{ f_\pi F_{eK^*} \left\{ a_4 - \frac{3}{2} a_7 + \frac{1}{2} a_{10} + \frac{3}{2} a_9 \right\} \right\} \\
- f_\pi F_{eK^*[a_6 + \frac{1}{2} a_8]} + M_{eK^*} \left\{ -C_3 + \frac{3}{2} C_8 + \frac{1}{2} C_9 + \frac{3}{2} C_{10} \right\} \\
- f_{B_s} F_{aK^*[a_6 + \frac{1}{2} a_8]} + f_{B_s} F_{aK^*} \left\{ a_4 + \frac{1}{2} a_{10} \right\} + M_{aK^*} \left\{ -C_3 + \frac{1}{2} C_9 \right\} \\
- M_{aK^*[C_5 + \frac{1}{2} C_7]}, \tag{23}
\]

where \(a_i \) are the combinations of the Wilson coefficients \(C_i \) [25]. The individual decay amplitudes appeared in the above equations, such as \(F_{eM3}, F_{e^2M3}, M_{eM3}, F_{aM3} \) and \(M_{aM3} \), are obtained by evaluating the Feynman diagrams in Fig. 1 analytically. The term \(F_{eM3} \) and \(F_{e^2M3} \), for example, comes from the factorizable emission diagrams with \((V - A)(V - A)\) and \((S - P)(S + P) \) current, respectively.

The explicit expressions of \(F_{eM3} \) and other decay amplitudes at the leading order in PQCD approach can be found, for example, in Ref. [25]. For the sake of the convenience of the reader, we show \(F_{eP}, F_{eV} \) and \(F_{e^2P2} \) here explicitly:

\[
F_{eP} = 8\pi C_F m_{B_s}^4 f_{V} \int_{0}^{1} dx_1 dx_3 \int_{0}^{\infty} b_1 db_1 b_3 db_3 \phi_{B_s}(x_1, b_1) \\
\times \left\{ \left((1 + x_3)\phi_p^{A}(x_3) + r_p (1 - 2x_3)(\phi_p^{B}(x_3) + \phi_p^{T}(x_3)) \right) \right\} \\
\cdot \alpha_s(t_a) E_e(t_a) h_e(x_1, x_3, b_1, b_3) \\
+ 2r_p \phi_p^{P}(x_3) \cdot \alpha_s(t_b) E_e(t_b) h_e(x_3, x_1, b_3, b_1), \tag{24}
\]
\[F_{eV} = 8\pi C_F m_{B_s}^4 f_p \int_0^1 dx_1 dx_3 \int_0^\infty b_1 db_1 b_3 db_3 \phi_{B_s}(x_1, b_1) \]
\[\times \left\{ \left[(1 + x_3)\phi_v(x_3) + r_v (1 - 2x_3) \left[\phi_v^0(x_3) + \phi_v^1(x_3) \right] \right] \cdot \alpha_s(t_a) E_e(t_a) h_e(x_1, x_3, b_1, b_3) \right. \]
\[+ 2r_v \phi_v^3(x_3) \cdot \alpha_s(t_b) E_e(t_b) h_e(x_3, x_1, b_3, b_1) \left\}, \quad (25) \]
\[F_{eV}^{P_2} = 16\pi r_p C_F m_{B_s}^4 f_p \int_0^1 dx_1 dx_3 \int_0^\infty b_1 db_1 b_3 db_3 \phi_{B_s}(x_1, b_1) \]
\[\times \left\{ \left[\phi_v(x_3) + r_v (2 + x_3) \phi_v^1(x_3) - r_v x_3 \phi_v^1(x_3) \right] \cdot \alpha_s(t_a) E_e(t_a) h_e(x_1, x_3, b_1, b_3) \right. \]
\[+ 2r_v \phi_v^3(x_3) \cdot \alpha_s(t_b) E_e(t_b) h_e(x_3, x_1, b_3, b_1) \left\}, \quad (26) \]

where \(C_F = 4/3 \) and \(\alpha_s(t_i) \) is the strong coupling constant. In the above functions, \(r_v = m_v / m_{B_s} \) and \(r_p = m_0^P / m_{B_s} \) with \(m_0^P \) the chiral mass of the pseudoscalar meson. The explicit expression of the functions \(E_i(t_j) \), the hard scales \(t_i \), the hard functions \(h_i(x_j, b_j) \) and more details about the LO decay amplitudes can also be found in Ref. [25].

2.3. NLO contributions

During the past two decades, many authors have made great efforts to calculate the NLO contributions to the two-body charmless decays \(B/B_s \rightarrow M_2 M_3 \) in the framework of the PQCD factorization approach. At present, almost all such NLO contributions become available now:

1. The NLO Wilson Coefficients (NLO-WC): which means that the NLO Wilson coefficients \(C_i(m_W) \), the renormalization group running matrix \(U(m_1, m_2, \alpha) \) at NLO level (for details see Eq. (7.22) of Ref. [31]) and the strong coupling constant \(\alpha_s(\mu) \) at two-loop level will be used in the numerical calculations [31], instead of the ones at the LO level.
2. The NLO vertex corrections (VC) as given in Refs. [12,16], and as illustrated in Fig. 2(a)–2(d).
3. The NLO contributions from the quark-loops (QL) as described in Ref. [16], with the relevant Feynman diagrams as shown in Fig. 2(e) and 2(f).
4. The NLO contributions from the chromo-magnetic penguin (MP) operator \(O_{8g} \) [40], as illustrated in Fig. 2(g)–2(h).
5. The NLO twist-2 and twist-3 contributions to the form factors of \(B \rightarrow \pi \) transitions have been completed very recently in Refs. [29,30], the typical Feynman diagrams are those as shown in Fig. 2(i)–2(l). Based on the SU(3) flavor symmetry, we could extend directly the formulas for the NLO contributions to the form factor \(F_{0,1}^{B \rightarrow \pi}(0) \) as given in Refs. [29,30] to the cases for \(B_s \rightarrow (K, \eta_s) \) transitions after making some proper modifications for the relevant masses or decay constants of the mesons involved.
6. In Ref. [41], we made the first calculation for the scalar pion form factors \(F_{0,1}^{(1)} \) up to the NLO level, which describes the LO and NLO \((\mathcal{O}(\alpha_s^2)) \) contributions to the factorizable annihilation diagrams of the considered \(B \rightarrow \pi \pi \) decays. We found numerically that (a) the NLO part of the form factor \(F_{0,1}^{(1)} \), i.e., the NLO annihilation correction, is very small in size, but has a large strong phase around \(-55^0\), and therefore may play an important role in producing
large CP violation for the relevant decay modes; and (b) the NLO annihilation correction can produce only a very small enhancement (less than 3% in magnitude) to their branching ratios for $B \to \pi^+\pi^-$ and $\pi^0\pi^0$ decays [41].

Except for the NLO contributions from Ref. [41], which is not applicable to the PV form factors involved in this paper, we adopt directly the formulas for all other currently known NLO contributions from Refs. [12,16,27–30,38,40] without further discussions about the details.

At present, the calculations for the NLO corrections to the LO hard spectator and the annihilation diagrams have not been completed yet. Although we are working hard in the effort to estimate these still absent NLO pieces, but more time is required. For the two-body charmless hadronic $B_s \to PV$ decays considered in this paper, we generally believe that it is reasonable for us to neglect such kinds of still unknown NLO contributions for the following three reasons:

1. In Refs. [27,28,38,42], we have studied many $B/B_s^0 \to PP$ decays with $P = (\pi, K, \eta(\prime))$ and made the comparative studies for the magnitude of all relevant LO and NLO contributions from different kinds of Feynman diagrams in great details. We do found numerically that the LO contributions from the hard spectator and annihilation diagrams are always much smaller than those dominant contributions from the “tree” emission diagrams. The $B_s \to PV$ decays considered here are very similar in nature with those $B_s \to PP$ decays studied in Refs. [27,28], and may have the similar pattern of relative importance of different sets of Feynman diagrams.

2. For the hard-spectator diagrams as shown in Fig. 1, since the hard gluons are emitted from the upper quark line of Fig. 1(c) and the upper anti-quark line of Fig. 1(d) respectively, the contribution from these two figures will be strongly canceled each other, the remaining contribution should become small in magnitude. In NLO level, another suppression factor $\alpha_s(t)$ will appear, the resultant NLO contribution from hard-spectators should be much smaller than the dominant contribution from the “tree” emission diagrams (Fig. 1(a) and 1(b)).

3. For annihilation diagrams, the corresponding NLO contributions are in factor doubly suppressed by the factors $1/m_{B_s}$ and $\alpha_s(t)$, and consequently must become much smaller than

Fig. 2. Typical Feynman diagrams for NLO contributions: the vertex corrections (a–d); the quark-loops (e–f), the chromomagnetic penguin contributions (g–h), and the NLO twist-2 and twist-3 contributions to $B_s \to (K, \eta_s)$ transition form factors (i–l).
those dominant LO contribution from Fig. 1(a) and 1(b). In short, those still unknown NLO contributions in the PQCD approach are in fact the higher order corrections to the already small LO pieces, and should be much smaller than the dominant contribution for the considered decay, say less than 5% of the dominant ones.

According to Refs. [12,16,43], the vertex corrections can be absorbed into the redefinition of the Wilson coefficients $a_i(\mu)$ by adding a vertex-function $V_i(M)$ to them.

$$a_{1,2}(\mu) \to a_{1,2}(\mu) + \frac{\alpha_s(\mu)}{9\pi} C_{1,2}(\mu) V_{1,2}(M),$$

$$a_i(\mu) \to a_i(\mu) + \frac{\alpha_s(\mu)}{9\pi} C_{i+1}(\mu) V_i(M), \quad \text{for } i = 3, 5, 7, 9,$$

$$a_j(\mu) \to a_j(\mu) + \frac{\alpha_s(\mu)}{9\pi} C_{j-1}(\mu) V_j(M), \quad \text{for } j = 4, 6, 8, 10,$$ \hspace{1cm} (27)

where M denotes the meson emitted from the weak vertex (i.e. the M_2 in Fig. 2(a)–2(d)). For a pseudo-scalar meson M, the explicit expressions of the functions $V_i(M)$ have been given in Eq. (6) of Ref. [43]. For the case of a vector meson V one can obtain the function $V_i(V)$ from $V_i(P)$ by some appropriate replacements in their expressions: $\phi^A \to \phi_V$, $\phi^B \to -\phi_V^*$ and the decay constant $f_P \to f_V, f_V^*$ [43].

The NLO “Quark-Loop” and “Magnetic-Penguin” contributions are in fact a kind of penguin corrections with the insertion of the four-quark operators and the chromo-magnetic operator O_{8g} respectively, as shown in Figs. 2(e,f) and 2(g,h). For the $b \to s$ transition, for example, the corresponding effective Hamiltonian $H_{eff}^{(q)}$ and H_{eff}^{mp} can be written in the following form:

$$H_{eff}^{(q)} = - \sum_{q=u,c,t} \sum_{q'} \frac{G_F}{\sqrt{2}} V_{qb}^* V_{qs} \frac{\alpha_s(\mu)}{2\pi} \left(\tilde{b} \gamma_\rho (1 - \gamma_5) T^a s \right) \left(\tilde{q}' \gamma^\rho T^a q' \right),$$ \hspace{1cm} (28)

$$H_{eff}^{mp} = - \frac{G_F}{\sqrt{2}} \frac{g_s}{8\pi^2} m_b V_{tb}^* V_{ts} C_{eff}^{8g} \tilde{s}_i \sigma^{\mu\nu} (1 + \gamma_5) T^a_{ij} G_{\mu\nu}^a b_j,$$ \hspace{1cm} (29)

where l^2 in the function $C^q(\mu, l^2)$ is the invariant mass of the gluon which attaches the quark loops in Figs. 2(e,f), and the expression of $C^q(\mu, l^2)$ can be found in Refs. [16,33]. The C_{eff}^{8g} in Eq. (29) is the effective Wilson coefficient with the definition of $C_{8g}^{eff} = C_{8g} + C_5 [31]$. By analytical evaluations, we find the following two points:

1. The four pure annihilation type decays $B_s^0 \to \pi \rho$ and $B_s^0 \to \pi \omega$ do not receive the NLO contributions from the vertex corrections, the quark-loop and the magnetic-penguin diagrams. The only NLO contributions are included by using the NLO-WCs, instead of the LO ones.

2. For the remaining seventeen decay channels, besides the LO decay amplitudes, one should take those NLO contributions into account:

$$A_{K^0\phi}^{(u)} \to A_{K^0\phi}^{(u)} + M_{K^0\phi}^{(u,c)}, \quad A_{K^0\phi}^{(t)} \to A_{K^0\phi}^{(t)} - M_{K^0\phi}^{(t)} - M_{K^0\phi}^{(g)},$$

$$A_{\rho^- K^+}^{(u)} \to A_{\rho^- K^+}^{(u)} + M_{\rho K}^{(u,c)}, \quad A_{\rho^- K^+}^{(t)} \to A_{\rho^- K^+}^{(t)} - M_{\rho K}^{(t)} - M_{\rho K}^{(g)},$$

$$A_{\pi^- K^{*+}}^{(u)} \to A_{\pi^- K^{*+}}^{(u)} + M_{\pi K^*}^{(u,c)}, \quad A_{\pi^- K^{*+}}^{(t)} \to A_{\pi^- K^{*+}}^{(t)} - M_{\pi K^*}^{(t)} - M_{\pi K^*}^{(g)},$$

$$A_{\pi^0 K^+}^{(u)} \to A_{\pi^0 K^+}^{(u)} + \frac{1}{\sqrt{2}} M_{\pi K^*}^{(u,c)}, \quad A_{\pi^0 K^+}^{(t)} \to A_{\pi^0 K^+}^{(t)} - \frac{1}{\sqrt{2}} M_{\pi K^*}^{(t)} - \frac{1}{\sqrt{2}} M_{\pi K^*}^{(g)},$$

$$A_{\pi^0 K^*}^{(u)} \to A_{\pi^0 K^*}^{(u)} + 2 M_{\pi K^*}^{(u,c)}, \quad A_{\pi^0 K^*}^{(t)} \to A_{\pi^0 K^*}^{(t)} - 2 M_{\pi K^*}^{(t)} - 2 M_{\pi K^*}^{(g)},$$
\[
A^{(u)}_{K^+ K^+} \rightarrow A^{(u)}_{K^+ K^+} + M^{(u,c)}_{K^+ K^+}, \quad A^{(t)}_{K^+ K^+} \rightarrow A^{(t)}_{K^+ K^+} - M^{(t)}_{K^+ K^+} - M^{(g)}_{K^+ K^+},
\]

\[
A^{(u)}_{K^0 \eta_s} \rightarrow A^{(u)}_{K^0 \eta_s} + M^{(u,c)}_{K^0 \eta_s}, \quad A^{(t)}_{K^0 \eta_s} \rightarrow A^{(t)}_{K^0 \eta_s} - M^{(t)}_{K^0 \eta_s} - M^{(g)}_{K^0 \eta_s},
\]

\[
A^{(u)}_{\phi_{ts}} \rightarrow A^{(u)}_{\phi_{ts}} + M^{(u,c)}_{\phi_{ts}}, \quad A^{(t)}_{\phi_{ts}} \rightarrow A^{(t)}_{\phi_{ts}} - M^{(t)}_{\phi_{ts}} - M^{(g)}_{\phi_{ts}},
\]

\[
A^{(u)}_{\rho^0 K^0} \rightarrow A^{(u)}_{\rho^0 K^0} + \frac{1}{\sqrt{2}} M^{(u,c)}_{\rho^0 K^0}, \quad A^{(t)}_{\rho^0 K^0} \rightarrow A^{(t)}_{\rho^0 K^0} - \frac{1}{\sqrt{2}} M^{(t)}_{\rho^0 K^0} - \frac{1}{\sqrt{2}} M^{(g)}_{\rho^0 K^0},
\]

\[
A^{(u)}_{\omega K^0} \rightarrow A^{(u)}_{\omega K^0} + \frac{1}{\sqrt{2}} M^{(u,c)}_{\omega K}, \quad A^{(t)}_{\omega K^0} \rightarrow A^{(t)}_{\omega K^0} - \frac{1}{\sqrt{2}} M^{(t)}_{\omega K^0} - \frac{1}{\sqrt{2}} M^{(g)}_{\omega K^0},
\]

where the terms \(A^{(u,t)}\) refer to the LO amplitudes, while \(M^{(u,c,t)}\) and \(M^{(g)}\) are the NLO ones, which describe the NLO contributions from the up-loop, charm-loop, QCQD-penguin-loop, and magnetic-penguin diagrams, respectively.

It is straightforward to calculate the decay amplitudes \(M^{(q)}\) and \(M^{(mp)}\). As mentioned in the previous section, since the Lorentz structure of wave functions for vector mesons is different from those for pseudoscalar mesons, there are also two different kinds of decay amplitudes \(M^{(q)}_{M_2 M_3}\) and \(M^{(mp)}_{M_2 M_3}\). First, when the \(M_2\) is a pseudoscalar meson and \(M_3\) is a vector meson, the NLO decay amplitudes \(M^{(q)}_{PM_3}\) and \(M^{(mp)}_{PM_3}\) can be written in the form:

\[
M^{(q)}_{PV} = -8m^4_{B_1} \frac{C_F^2}{\sqrt{2}N_c} \int_0^\infty dx_1 dx_2 dx_3 \int_0^\infty b_1 db_1 b_2 db_3 b_3 \phi_{B_1}(x_1) \left\{ (1 + x_3) \phi^A_\rho(x_2) \phi_\nu(x_3) \right. \\
- 2r_p \phi^A_\rho(x_2) \phi_\nu(x_3) + r_v(1 - 2x_3) \phi^A_\rho(x_2)(\phi^+ \nu(x_3) + \phi^- \nu(x_3)) \\
- 2r_p r_v \phi^A_\rho(x_2)((2 + x_3) \phi^+ \nu(x_3) - x_3 \phi^+ \nu(x_3)) \right. \cdot \alpha^2 (t_a) \cdot h_e(x_1, x_3, b_1, b_3) \\
\left. \cdot \exp[-S_{ab}(t_a)] C^{(q)}(t_a, l^2) + [2r_v \phi^A_\rho(x_2) \phi^+ \nu(x_3) - 3r_p r_v \phi^A_\rho(x_2)] \phi^+ \nu(x_3) \right. \\
\left. \cdot \alpha^2 (t_b) \cdot h_e(x_3, x_1, b_3, b_1) \cdot \exp[-S_{ab}(t_b)] C^{(q)}(t_b, l^2) \right\},
\]

\[
M^{(mp)}_{PV} = 16m^6_{B_1} \frac{C_F^2}{\sqrt{2}N_c} \int_0^\infty dx_1 dx_2 dx_3 \int_0^\infty b_1 db_1 b_2 db_3 db_3 \phi_{B_1}(x_1) \\
\times \left\{ \frac{1}{(1 - x_3)} [2\phi_\nu(x_3) - r_v(3\phi^+ \nu(x_3) + \phi^T \nu(x_3)) - r_v x_3(\phi^+ \nu(x_3) - \phi^T \nu(x_3))] \phi^A_\rho(x_2) \\
- r_p x_2 (1 + x_3) (3\phi^T \rho(x_2) - \phi^T \rho(x_2)) \phi_\nu(x_3) + r_p r_v (1 - x_3) (3\phi^T \rho(x_2) + \phi^+ \nu(x_3)) \\
+ \phi^T \rho(x_2)(\phi^+ \nu(x_3) - \phi^- \nu(x_3)) + r_p r_v x_2 (1 - 2x_3) (3\phi^T \rho(x_2) + \phi^+ \nu(x_3)) \right. \\
\left. + \phi^T \rho(x_3)) \right. \cdot \alpha^2 (t_a) h_g(x_1, b_1) \cdot \exp[-S_{cd}(t_a)] C_{8g}^{eff}(t_a) \\
- [4r_v \phi^A_\rho(x_2) \phi^+ \nu(x_3) + 3r_p r_v x_2 (3\phi^T \rho(x_2) - \phi^T \rho(x_2)) \phi^+ \nu(x_3)] \cdot \alpha^2 (t_b) \cdot h'_g(x_1, b_1) \\
\cdot \exp[-S_{cd}(t_b)] C_{8g}^{eff}(t_b) \right\}.
\]

When \(M_2 = V\) and \(M_3 = P\), however, the corresponding decay amplitudes can be written as
\[
\mathcal{M}_{V}^{(q)} = -8m_{B}^{4} C_{F}^{2} \frac{C_{F}^{2}}{\sqrt{2N_{c}}} \int_{0}^{1} dx_{1} dx_{2} x_{3} \int_{0}^{\infty} b_{1} db_{1} b_{3} db_{3} \phi_{B_{s}}(x_{1}) \left[(1 + x_{3})\phi_{0}(x_{2})\phi_{p}^{A}(x_{3}) + r_{p} (1 - 2x_{3})\phi_{v}(x_{2})(\phi_{p}^{A}(x_{3}) + \phi_{p}^{T}(x_{3})) + r_{p} r_{v}\phi_{v}^{A}(x_{2})(2 + x_{3})\phi_{p}^{A}(x_{3}) - x_{3}\phi_{p}^{T}(x_{3})) \right] \cdot \alpha_{s}^{2}(t_{a}) \cdot h_{e}(x_{1}, x_{3}, b_{1}, b_{3}) \cdot \exp[-S_{ab}(t_{a})] C^{(q)}(t_{a}, l^{2}) + [2r_{p}\phi_{p}(x_{2})\phi_{p}^{A}(x_{3}) + r_{p} r_{v}\phi_{v}^{A}(x_{2})]\phi_{p}^{A}(x_{3}) - x_{3}\phi_{p}^{T}(x_{3})) \cdot \alpha_{s}^{2}(t_{b}) \cdot h_{e}(x_{3}, x_{1}, b_{3}, b_{1}) \cdot \exp[-S_{ab}(t_{b})] C^{(q)}(t_{b}, l^{2}) \right].
\]

(33)

\[
\mathcal{M}_{V}^{(m)} = 16m_{B}^{4} C_{F}^{2} \frac{C_{F}^{2}}{\sqrt{2N_{c}}} \int_{0}^{1} dx_{1} dx_{2} x_{3} \int_{0}^{\infty} b_{1} db_{1} b_{2} db_{2} b_{3} db_{3} \phi_{B_{s}}(x_{1}) \times \left\{ -((1 - x_{3})\left[2\phi_{p}^{A}(x_{3}) + r_{p}(3\phi_{p}^{A}(x_{3}) + \phi_{p}^{T}(x_{3})) + r_{p} x_{3}(\phi_{p}^{A}(x_{3}) - \phi_{p}^{T}(x_{3})) \right] \phi_{v}(x_{2}) - r_{p} \phi_{v}(x_{2})(1 + x_{3})(3\phi_{p}^{A}(x_{3}) - \phi_{v}^{A}(x_{2})) + r_{p} r_{v}(1 - x_{3})(3\phi_{p}^{A}(x_{3}) - \phi_{v}^{A}(x_{2})) \right) \cdot \alpha_{s}^{2}(t_{a}) h_{g}(x_{1}, b_{1}) \cdot \exp[-S_{cd}(t_{a})] C^{eff}_{8g}(t_{a}) - [4r_{p}\phi_{p}(x_{2})\phi_{p}^{A}(x_{3}) + 2r_{p} r_{v}\phi_{v}(x_{2})\phi_{p}^{A}(x_{3}) - \phi_{v}^{A}(x_{2}))\phi_{p}^{A}(x_{3}) \cdot \alpha_{s}^{2}(t_{b}) \cdot h_{g}(x_{3}, b_{1}) \cdot \exp[-S_{cd}(t_{b})] \cdot C^{eff}_{8g}(t_{b}) \right].
\]

(34)

The explicit expressions for the hard functions \((h_{e}, h_{g}, h_{g}^{'})\), the functions \(C^{(q)}(t_{a}, l^{2})\) and \(C^{(q)}(t_{b}, l^{2})\), the Sudakov functions \(S_{ab}(t)\) and \(S_{cd}(t)\), the hard scales \(t_{a,b}\) and the effective Wilson coefficients \(C^{eff}_{8g}(t)\), can be found easily for example in Refs. [16,27,28,38].

As mentioned in previous section, the NLO twist-2 and twist-3 contributions to the form factors of \(B \to \pi\) transition have been calculated very recently in Refs. [29,30]. Based on the approximation of the \(SU(3)\) flavor symmetry, we extend the formulas for \(B \to \pi\) transitions as given in Refs. [29,30] to the cases for \(B_{s} \to (K, \eta_{s})\) transition form factors directly, after making appropriate replacements for some relevant parameters. The NLO form factor \(f^{+}(q^{2})\) for \(B_{s} \to K\) transition, for example, can be written in the form:

\[
f^{+}(q^{2})_{NLO} = 8\pi m_{B_{s}}^{2} C_{F} \int dx_{1} dx_{2} \int b_{1} db_{1} b_{2} db_{2} \phi_{B_{s}}(x_{1}, b_{1}) \times \left\{ r_{K} \left[\phi_{p}^{A}(x_{2}) - r_{K}^{T}(x_{2}) \right] \cdot \alpha_{s}(t_{1}) \cdot e^{-S_{B_{s}K}(t_{1})} \cdot S_{c}(x_{2}) \cdot h(x_{1}, x_{2}, b_{1}, b_{2}) + \left[(1 + x_{2}\eta) r_{T}^{(1)}(x_{1}, \mu, \mu_{f}, q^{2}) \right] \phi_{p}^{A}(x_{2}) + 2r_{K} \left(\frac{1}{\eta} - x_{2} \right) \phi_{K}^{A}(x_{2}) - 2x_{2} r_{K} \phi_{p}^{A}(x_{2}) \right] \cdot \alpha_{s}(t_{1}) \cdot e^{-S_{B_{s}K}(t_{1})} \cdot S_{c}(x_{2}) \cdot h(x_{1}, x_{2}, b_{1}, b_{2}) + 2r_{K} \phi_{K}^{A}(x_{2}) r_{T}^{(1)}(x_{1}, \mu, \mu_{f}, q^{2}) \cdot \alpha_{s}(t_{2}) \cdot e^{-S_{B_{s}K}(t_{2})} \cdot S_{c}(x_{2}) \cdot h(x_{1}, x_{2}, b_{1}, b_{2}) \right\}.
\]

(35)
where \(\eta = 1 - q^2/m_B^2 \) with \(q^2 = (P_B - P_3)^2 \) and \(P_3 \) is the momentum of the meson \(M_3 \) which absorbed the spectator \(\bar{s} \) quark of the \(\bar{B}_s^0 \) meson, \(\mu (\mu_f) \) is the renormalization (factorization) scale, the hard scale \(r_{1,2} \) are chosen as the largest scale of the propagators in the hard \(b \)-quark decay diagrams \([29,30]\). The explicit expressions of the threshold Sudakov function \(S_t(x) \) and the hard function \(h(x_i, b_j) \) can be found in Refs. \([29,30]\). The NLO correction factor \(F_{T_2}^{(1)}(x_i, \mu, \mu_f, q^2) \) and \(F_{T_3}^{(1)}(x_i, \mu, \mu_f, q^2) \) appeared in Eq. (35) describe the NLO twist-2 and twist-3 contributions to the form factor \(f_{+0}(q^2) \) of the \(B_s \to K \) transition respectively, and can be written in the following form \([29,30]\):

\[
F_{T_2}^{(1)} = \frac{\alpha_s(\mu_f)CF}{4\pi} \left[\frac{21}{4} \ln \left(\frac{\mu^2}{m_{B_s}^2} \right) - \left(\frac{13}{2} + \ln r_1 \right) \ln \left(\frac{\mu_f^2}{m_{B_s}^2} \right) + \frac{7}{16} \ln^2 (x_1 x_2) + \frac{1}{8} \ln^2 x_1 \right. \\
+ \frac{1}{4} \ln x_1 \ln x_2 + \left(\frac{1}{4} + 2 \ln r_1 + \frac{7}{8} \ln \eta \right) \ln x_1 + \left(\frac{3}{2} + \frac{7}{8} \ln \eta \right) \ln x_2 \\
+ \frac{15}{4} \ln \eta - \frac{7}{16} \ln^2 \eta + \frac{3}{2} \ln^2 r_1 - \ln r_1 + \frac{101 \pi^2}{48} + \frac{219}{16} \right],
\]

\[
F_{T_3}^{(1)} = \frac{\alpha_s(\mu_f)CF}{4\pi} \left[\frac{21}{4} \ln \left(\frac{\mu^2}{m_{B_s}^2} \right) - \frac{1}{2} (6 + \ln r_1) \ln \left(\frac{\mu_f^2}{m_{B_s}^2} \right) + \frac{7}{16} \ln^2 x_1 - \frac{3}{8} \ln^2 x_2 \\
+ \frac{9}{8} \ln x_1 \ln x_2 + \frac{29}{8} \ln r_1 + \frac{15}{8} \ln \eta \right) \ln x_1 + \left(\frac{25}{16} + \ln r_2 + \frac{9}{8} \ln \eta \right) \ln x_2 \\
+ \frac{1}{2} \ln r_1 - \frac{1}{4} \ln^2 r_1 + \ln r_2 - \frac{9}{8} \ln \eta - \frac{1}{8} \ln^2 \eta + \frac{37 \pi^2}{32} + \frac{91}{32} \right],
\]

(36)

(37)

where \(r_i = m_{B_s}^2/\xi^2 \) with the choice of \(\xi_1 = 25m_{B_s} \) and \(\xi_2 = m_{B_s} \). For the \(B_s \to (K, \eta_s) V \) decays, the large recoil region corresponds to the energy fraction \(\eta \sim O(1) \). The factorization scale \(\mu_f \) is set to be the hard scales

\[
r^a = \max(\sqrt{x_3 \eta} m_{B_s}, 1/b_1, 1/b_3), \quad \text{or} \quad r^b = \max(\sqrt{x_1 \eta} m_{B_s}, 1/b_1, 1/b_3),
\]

(38)

corresponding to the largest energy scales in Fig. 1(a) and 1(b), respectively. The renormalization scale \(\mu \) is defined as \([29,38]\)

\[
\mu = \mu_s(\mu_f) = \left\{ \text{Exp} \left[c_1 + \left(\ln \frac{m_{B_s}^2}{\xi_1^2} + \frac{5}{4} \right) \ln \left(\frac{m_{B_s}^2}{\xi_1^2} \right) \right] x_1^{c_2} x_3^{c_3} \right\}^{-2/21} \mu_f,
\]

(39)

with the coefficients

\[
c_1 = - \left(\frac{15}{4} - \frac{7}{16} \ln \eta \right) \ln \eta + \frac{1}{2} \ln \frac{m_{B_s}^2}{\xi_1^2} \left(3 \ln \frac{m_{B_s}^2}{\xi_1^2} + 2 \right) - \frac{101 \pi^2}{48} - \frac{219}{16},
\]

\[
c_2 = - \left(2 \ln \frac{m_{B_s}^2}{\xi_1^2} + \frac{7}{8} \ln \eta - \frac{1}{4} \right),
\]

\[
c_3 = - \frac{7}{8} \ln \eta + \frac{3}{2},
\]

(40)

where \(\xi_1 = \xi_1 = 25m_{B_s} \).
3. Numerical results

In the numerical calculations, the following input parameters will be used implicitly. The masses, decay constants and QCD scales are in units of GeV [5]:

\[
\begin{align*}
\Lambda_{\text{MS}}^{(f=S)} &= 0.225, & f_{B_s} &= 0.23 \pm 0.02, & f_K &= 0.16, & f_\pi &= 0.13, & f_\rho &= 0.209, \\
\Lambda_{\text{MS}}^{T} &= 0.165, \\
m_{B_s} &= 5.37, & m_K &= 0.494, & m_0^T &= 1.4, & m_0^K &= 1.9, & f_\omega &= 0.195, & f_{\omega} &= 0.145, \\
f_{K^*} &= 0.217, & f_{K^*} &= 0.185, & f_\phi &= 0.231, & f_{\phi} &= 0.20, & m_\rho &= 0.77, \\
m_\omega &= 0.78, \\
m_{K^*} &= 0.89, & m_\phi &= 1.02, & \tau_{B_s^0} &= 1.497 \text{ps}, & m_b &= 4.8, & M_W &= 80.42.
\end{align*}
\]

For the CKM matrix elements, we also take the same values as being used in Ref. [25], and neglect the small errors on \(V_{ud}, V_{us}, V_{ts}\) and \(V_{tb}\)

\[
\begin{align*}
|V_{ud}| &= 0.974, & |V_{us}| &= 0.226, & |V_{ub}| &= \left(3.68^{+0.11}_{-0.08}\right) \times 10^{-3}, \\
|V_{td}| &= \left(8.20^{+0.59}_{-0.27}\right) \times 10^{-3}, \\
|V_{ts}| &= 40.96 \times 10^{-3}, & |V_{tb}| &= 1.0, & \alpha &= (99^{+4}_{-9.4})^\circ, & \gamma &= (59.0^{+9.7}_{-3.7})^\circ.
\end{align*}
\]

For the considered \(B_s^0 \to PV\) decays, the decay amplitude for a given decay mode with \(b \to q\) transitions can be generally written as

\[
A(B_s^0 \to f) = V_{ub} V_{aq}^* T - V_{tb} V_{iq}^* P = V_{ub} V_{aq}^* T \left[1 + z e^{i(-\theta + \delta)}\right],
\]

where \(q = (d, s), \theta\) is the weak phase (the CKM angles), \(\delta = \arg[P/T]\) are the relative strong phase between the tree \((T)\) and penguin \((P)\) diagrams, and the parameter “\(z\)” is the ratio of penguin to tree contributions with the definition

\[
z = \left|\frac{V_{tb} V_{iq}^*}{V_{ub} V_{aq}^*}\right| \left|\frac{P}{T}\right|,
\]

the ratio \(z\) and the strong phase \(\delta\) can be calculated in the PQCD approach. The CP-averaged branching ratio, consequently, can be defined as

\[
B(B_s^0 \to f) \propto \frac{1}{2} \left[|A|^2 + |\bar{A}|^2\right] = |V_{ub} V_{aq}^* T|^2 \left[1 + 2z \cos \theta \cos \delta + z^2\right],
\]

where the ratio \(z\) and the strong phase \(\delta\) have been defined in the above equations.

In Table 1, we list the PQCD predictions for the CP-averaged branching ratios of the considered \(B_s^0\) decays. The label “LO” means the full leading order PQCD predictions. For other four cases with the label “+VC”, “+QL”, “+MP” and “NLO”, the NLO Wilson coefficients \(C_i(\mu)\) and \(\theta_i(\mu)\) at two-loop level are used implicitly. The label “+VC” means the additional NLO “Vertex correction” is included. The label “+QL” (“+MP”) means both “VC” and “QL” (“VC”, “QL” and “MP”) NLO contributions are taken into account simultaneously. And finally the label “NLO” means that all currently known NLO contributions are taken into account: the newly known NLO corrections to the form factor \(F_{0}^{B_s \to K}(0)\) and \(F_{0}^{B_s \to \eta_s}(0)\) also be included here. In Table 1, for the sake of comparison, we also list the LO PQCD predictions (in the
eighth column) as given in Ref. [25], the QCDF predictions as given in Ref. [12] (the ninth column) and in Ref. [14] (the tenth column) respectively. The main theoretical errors come from the uncertainties of the various input parameters: dominant ones from \(\eta_{B_s} = 0.50 \pm 0.05 \text{ GeV} \), \(f_B = 0.23 \pm 0.02 \text{ GeV} \) and the Gegenbauer moments like \(\alpha_2^{\pi,k} = 0.25 \pm 0.15 \). The total errors of the NLO PQCD predictions as listed in Table 1 are obtained by adding the individual errors in quadrature.

Among the twenty one \(B_s^0 \rightarrow PV \) decays considered in this paper, only three of them, say \(\bar{B}_s^0 \rightarrow \pi^- K^{*+}, K^+ K^{*-} \) and \(\bar{B}_s^0 \rightarrow K^0 \bar{K}^{*0} \), have been measured recently by LHCb experiments [44]. For \(\bar{B}_s^0 \rightarrow \eta' \phi \) decay, the LHCb Collaboration put an upper limit at 95% C.L. on its decay rate very recently [45]. We list those measured values and upper limit in the last column of Table 1 and will compare those theoretical predictions with them.

From our PQCD predictions for the branching ratios, the previous theoretical predictions as given in Refs. [12,14,25] and the data [44,45], as listed in Table 1, we have the following observations:

1. The LO PQCD predictions for branching ratios of \(\bar{B}_s^0 \rightarrow (\pi, K, \eta^{(*)})V \) decays as given in Ref. [25] ten years ago are confirmed by our independent calculations. Some little differences between the central values of the LO predictions are induced by the different choices or upgrade of some input parameters, such as the Gegenbauer moments and the CKM matrix elements.

2. For the “QCD-Penguin” decays \(\bar{B}_s^0 \rightarrow K^0 \bar{K}^{*0} \) and \(\bar{B}_s^0 \rightarrow K^{\pm} K^{*\mp} \), the NLO contributions can provide \(\sim 30\% \) to 45\% enhancements to the LO PQCD predictions of their branching ratios. For the “tree” dominated decay \(\bar{B}_s^0 \rightarrow \pi^- K^{*+} \), however, the NLO contribution will result in a 37\% reduction of the LO PQCD prediction for its branching ratio. The resultant enhancements or the reduction, fortunately, are all in the right direction. After the inclusion of the NLO corrections, the NLO PQCD predictions for these three decays become well consistent with those currently available data within one standard deviation. In order to show numerically the improvements due to inclusion of the NLO corrections, we define the ratios \(R_{1,2,3} \) of the measured values and the PQCD predictions for those three measured decay modes:

\[
R_1 = \frac{B(\bar{B}_s^0 \rightarrow \pi^- K^{*+})_{\text{exp}}}{B(\bar{B}_s^0 \rightarrow \pi^- K^{*+})_{\text{PQCD}}} \approx \begin{cases} 0.52, & \text{LO}, \\ 0.83, & \text{NLO}, \end{cases} \tag{46}
\]

\[
R_2 = \frac{B(\bar{B}_s^0 \rightarrow K^+ K^{*-})_{\text{exp}}}{B(\bar{B}_s^0 \rightarrow K^+ K^{*-})_{\text{PQCD}}} \approx \begin{cases} 1.38, & \text{LO}, \\ 1.02, & \text{NLO}, \end{cases} \tag{47}
\]

\[
R_3 = \frac{B(\bar{B}_s^0 \rightarrow K^0 \bar{K}^{*0})_{\text{exp}}}{B(\bar{B}_s^0 \rightarrow K^0 \bar{K}^{*0})_{\text{PQCD}}} \approx \begin{cases} 1.65, & \text{LO}, \\ 1.14, & \text{NLO}, \end{cases} \tag{48}
\]

It is easy to see that the agreements between the PQCD predictions and the three measured values are indeed improved significantly due to the inclusion of the NLO contributions. This is a clear indication for the important role of the NLO contributions in order to understand the experimental measurements.

3. For the “tree” dominated decay \(\bar{B}_s^0 \rightarrow K^+ \rho^- \), the NLO contribution results in a \(\sim 15\% \) reduction against the LO result, but its branching ratio is still at \(1.6 \times 10^{-5} \) level, the largest one of all decays considered in this paper. We believe that this decay mode could be measured by LHCb soon. For the “color-suppressed-tree” decay \(\bar{B}_s^0 \rightarrow \pi^0 K^{*0} \), however, although the
Table 1
The PQCD predictions for the CP-averaged branching ratios (in units of 10^{-6}) of the considered \bar{B}_s^0 decays. As a comparison, we also list the theoretical predictions as given in Refs. [12,14,25], and those currently available measured values [44] or upper limit at 95% C.L. [45].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{B}_s^0 \to \pi^- K^{*+}$</td>
<td>T</td>
<td>6.32</td>
<td>5.12</td>
<td>4.01</td>
<td>3.96</td>
<td>3.96+0.52-1.16</td>
<td>7.63+0.19-2.3</td>
<td>8.75+0.58-4.9</td>
<td>7.8+0.6-1.0</td>
<td>3.3±1.2</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^+ K^{*-}$</td>
<td>P</td>
<td>9.03</td>
<td>10.75</td>
<td>12.30</td>
<td>12.24</td>
<td>12.25+2.95-3.5</td>
<td>10.7+3.2-7.9</td>
<td>9.6+2.47-7.9</td>
<td>10.3±5.7</td>
<td>12.5±2.6</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 K^{*0}$</td>
<td>P</td>
<td>9.95</td>
<td>12.41</td>
<td>14.46</td>
<td>14.38</td>
<td>14.39+3.54-2.93</td>
<td>11.6±5.5-3.6</td>
<td>8.1+2.46-7.5</td>
<td>10.5±6.1-3.3</td>
<td>16.4±4.1</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^+ \rho^-$</td>
<td>T</td>
<td>18.6</td>
<td>16.3</td>
<td>16.6</td>
<td>16.4</td>
<td>15.9+6.5-4.9</td>
<td>17.8+7.89-5.89</td>
<td>24.5+15.2-12.9</td>
<td>14.7+1.7-2.3</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 K^+ K^-$</td>
<td>C</td>
<td>0.08</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
<td>0.21+0.07-0.04</td>
<td>0.07+0.04-0.02</td>
<td>0.25+0.46-0.22</td>
<td>0.89±1.16</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta \phi$</td>
<td>P</td>
<td>3.3</td>
<td>0.89</td>
<td>1.40</td>
<td>1.21</td>
<td>1.26±0.31-0.23</td>
<td>3.6±1.2-0.17</td>
<td>0.12±0.26-0.05</td>
<td>1.0±1.6</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta' \phi$</td>
<td>P</td>
<td>0.25</td>
<td>0.63</td>
<td>0.76</td>
<td>0.51</td>
<td>0.59+0.10-0.13</td>
<td>0.19±0.20-0.13</td>
<td>0.05±1.18-0.19</td>
<td>2.2±9.4-2.2</td>
<td>< 1.01</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 \phi$</td>
<td>P</td>
<td>0.20</td>
<td>0.22</td>
<td>0.23</td>
<td>0.23</td>
<td>0.24±0.05-0.10</td>
<td>0.16±0.05-0.07</td>
<td>0.27±0.25-0.05</td>
<td>0.6±0.4-0.4</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 \rho^0$</td>
<td>C</td>
<td>0.10</td>
<td>0.39</td>
<td>0.36</td>
<td>0.34</td>
<td>0.34+0.12-0.09</td>
<td>0.08+0.07-0.04</td>
<td>0.61±1.26-0.61</td>
<td>1.9+3.2-1.1</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 \omega$</td>
<td>C</td>
<td>0.14</td>
<td>0.51</td>
<td>0.56</td>
<td>0.62</td>
<td>0.65+0.22-0.17</td>
<td>0.15+0.08-0.05</td>
<td>0.51±0.83-0.40</td>
<td>1.6±2.4-0.9</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta' K^*$</td>
<td>C</td>
<td>0.20</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.20+0.04-0.03</td>
<td>0.17+0.07-0.03</td>
<td>0.26±0.30-0.08</td>
<td>0.50±0.22</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta' K^*0$</td>
<td>C</td>
<td>0.11</td>
<td>0.26</td>
<td>0.33</td>
<td>0.37</td>
<td>0.35+0.03-0.03</td>
<td>0.09±0.04-0.03</td>
<td>0.28±0.59-0.03</td>
<td>0.90±1.00-0.51</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 \phi$</td>
<td>P_{EW}</td>
<td>0.13</td>
<td>0.11</td>
<td>–</td>
<td>–</td>
<td>0.11+0.05-0.02</td>
<td>0.12±0.06-0.05</td>
<td>0.16±0.05-0.05</td>
<td>0.12±0.05-0.02</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta \phi$</td>
<td>P_{EW}</td>
<td>0.08</td>
<td>0.12</td>
<td>–</td>
<td>–</td>
<td>0.11±0.10-0.02</td>
<td>0.08±0.03</td>
<td>0.17±0.07</td>
<td>0.10±0.02</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta' \phi$</td>
<td>P_{EW}</td>
<td>0.13</td>
<td>0.20</td>
<td>–</td>
<td>–</td>
<td>0.19+0.05-0.03</td>
<td>0.13+0.06-0.04</td>
<td>0.25±0.12-0.05</td>
<td>0.16±0.07-0.04</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta \omega$</td>
<td>P, C</td>
<td>0.07</td>
<td>0.11</td>
<td>–</td>
<td>–</td>
<td>0.11±0.03</td>
<td>0.04±0.02</td>
<td>0.01±0.03</td>
<td>0.02±0.02</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta' \omega$</td>
<td>P, C</td>
<td>0.30</td>
<td>0.35</td>
<td>–</td>
<td>–</td>
<td>0.35+0.06-0.04</td>
<td>0.44±0.23-0.19</td>
<td>0.024±0.092-0.021</td>
<td>0.15±0.31-0.10</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 \omega$</td>
<td>ann</td>
<td>0.004</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.003</td>
<td>0.004</td>
<td>0.0005</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^- \rho^+$</td>
<td>ann</td>
<td>0.22</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.13±0.04</td>
<td>0.22±0.06-0.03</td>
<td>0.003</td>
<td>0.02±0.01</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^+ \rho^-$</td>
<td>ann</td>
<td>0.26</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.12±0.04-0.03</td>
<td>0.24±0.07-0.03</td>
<td>0.003</td>
<td>0.02±0.01</td>
<td>–</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 \rho^0$</td>
<td>ann</td>
<td>0.24</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.12±0.04-0.03</td>
<td>0.23±0.07-0.08</td>
<td>0.003</td>
<td>0.02±0.01</td>
<td>–</td>
</tr>
</tbody>
</table>
NLO contribution can provide a large $\sim 150\%$ enhancement, but the theoretical predictions for its branching ratio in the LO and NLO PQCD or in the QCDF approaches $^{[12,14]}$ are always at the level of 10^{-7}, much smaller than that for $B_s^0 \to K^+ \rho^-$ decay. At the LO and NLO level, one can read out the ratio of the branching ratios of these two decays from Table 1

$$R_4 = \frac{\mathcal{B}(B_s^0 \to K^+ \rho^-)}{\mathcal{B}(B_s^0 \to \pi^0 K^{*0})} \approx \begin{cases} 232, & \text{LO}, \\ 76, & \text{NLO}. \end{cases} \quad (49)$$

In order to understand so large difference, we made careful examinations for the LO decay amplitudes of these two decay modes and found the two reasons. Firstly, as shown explicitly in Eqs. (22,23), the dominant part of the decay amplitudes for these two decays are very different in magnitude (in units of 10^{-4}):

$$\mathcal{A}_T(B_s^0 \to K^+ \rho^-) = V_{ud} V_{ud}^* \left[f_\rho F_K a_1 + M_{eK} C_1 \right] = 17.45 - 49.38i,$$

$$\mathcal{A}_C(B_s^0 \to \pi^0 K^{*0}) = V_{ud} V_{ud}^* \left[f_\pi F_{K^*} a_2 + M_{eK^*} C_2 \right] / \sqrt{2} = -2.15 + 0.42i,$$

where $a_1 = C2 + C1/3 \approx C2 \approx 1.1$ is a large quantity, while $|a_2| \approx |C_1 + C2/3| \approx 0.1$ a small one. The ratio of these two magnitudes $|\mathcal{A}_T|/|\mathcal{A}_C| \approx 33$ is therefore very large. This is the main reason of the large difference of these two branching ratios. Secondly, there is a strong constructive interference among the large \mathcal{A}_T and \mathcal{A}_P for $B_s^0 \to K^+ \rho^-$, but a destructive one between the small \mathcal{A}_C and \mathcal{A}_P for $B_s^0 \to \pi^0 K^{*0}$ decay. Numerically, one finds (in units of 10^{-4}) that

$$\mathcal{A}(B_s^0 \to K^+ \rho^-)^{\text{LO}} = (17.45 - 49.38i) + (6.39 - 2.00i) = 23.83 - 51.38i,$$

$$\mathcal{A}(B_s^0 \to \pi^0 K^{*0})^{\text{LO}} = (-2.15 + 0.42i) + (1.19 - 2.34i) = -0.96 - 1.92i.$$

For the corresponding CP-conjugated decay modes, we also find similar behavior

$$\mathcal{A}(B_s^0 \to K^- \rho^+)^{\text{LO}} = (15.5 + 50.0i) + (3.24 - 5.84i) = 18.7 + 44.2i,$$

$$\mathcal{A}(B_s^0 \to \pi^0 \bar{K}^{*0})^{\text{LO}} = (1.473 - 1.62i) + (-0.75 - 2.51i) = 0.72 - 4.13i.$$

From above four decay amplitudes, it is simple to define the ratio $R_4(|\mathcal{A}|^2)$ of the square of the decay amplitudes:

$$R_4(|\mathcal{A}|^2)^{\text{LO}} = \frac{|\mathcal{A}(B_s^0 \to K^+ \rho^-)|^2 + |\mathcal{A}(B_s^0 \to K^- \rho^+)|^2}{|\mathcal{A}(B_s^0 \to \pi^0 K^{*0})|^2 + |\mathcal{A}(B_s^0 \to \pi^0 K^{*0})|^2} \approx 248, \quad (56)$$

which is indeed close to the ratio of the CP-averaged branching ratios: $R_4^{\text{LO}} \approx 232$ as defined in Eq. (49). From above numerical results, it is straightforward to understand the large difference between the LO PQCD predictions for $B(B_s^0 \to K^+ \rho^-)$ and $B(B_s^0 \to \pi^0 K^{*0})$. At the NLO level, the ratio $R_4^{\text{NLO}} \approx 76$ can be interpreted in a similar way.

The two $B_s^0 \to \phi \eta, \phi \eta'$ decays are very similar in nature, the difference between the PQCD predictions for $B(B_s^0 \to \phi \eta)$ and $B(B_s^0 \to \phi \eta')$ is rather large at LO level: $R_5^{\text{LO}}(B) = 3.3/0.25 \approx 13.2$, but become smaller at NLO level: $R_5^{\text{NLO}}(B) = 1.26/0.59 \approx 2.14$, after the
inclusion of the NLO contributions. For \(\bar{B}_s^0 \rightarrow \phi \eta \) decays, the NLO contribution results in a 62% reduction for its branching ratio. For \(\bar{B}_s^0 \rightarrow \phi \eta' \) decay, however, the inclusion of the NLO contribution leads to a 136% enhancement to its LO result. How to understand these special features for these two decay modes? The major reason is the unique \(\eta-\eta' \) mixing pattern. We know that the decay amplitude for \(\bar{B}_s^0 \rightarrow V(\eta, \eta') \) with \(V = (\phi, \omega, \rho^0, K^{*0}) \) can be written as

\[
\mathcal{A}(\bar{B}_s^0 \rightarrow V \eta) = \mathcal{A}(V \eta_\omega) \cos(\phi) - \mathcal{A}(V \eta_\rho) \sin(\phi),
\]

(57)

\[
\mathcal{A}(\bar{B}_s^0 \rightarrow V \eta') = \mathcal{A}(V \eta_\omega) \sin(\phi) + \mathcal{A}(V \eta_\rho) \cos(\phi),
\]

(58)

where \(\phi = 39.3^0 \) is the mixing angle of \(\eta-\eta' \) system [32]. Since \(\sin(\phi) = 0.63 \) has the same sign with \(\cos(\phi) = 0.77 \) and are similar in magnitude, the interference between the two parts, consequently, may be constructive for one channel but destructive for another, or vice versa. For \(\bar{B}_s^0 \rightarrow \phi \eta \) and \(\phi \eta' \) decays, for example, we find the LO PQCD predictions for their decay amplitudes (in units of \(10^{-4} \))

\[
\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta)_{LO} \approx (13.25 + 4.23 i) \cdot \cos(39.3^0) - (-17.16 - 8.61 i) \cdot \sin(39.3^0) = 21.01 + 8.68 i,
\]

(59)

\[
\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta')_{LO} \approx (13.25 + 4.23 i) \cdot \sin(39.3^0) + (-17.16 - 8.61 i) \cdot \cos(39.3^0) = -4.86 - 3.96 i.
\]

(60)

And it is easy to see that \(\mathcal{A}(\phi \eta_\omega) \) interfere constructively with \(\mathcal{A}(\phi \eta_\rho) \) for \(\bar{B}_s^0 \rightarrow \phi \eta \) decay, but destructively with \(\mathcal{A}(\phi \eta_\rho) \) for \(\bar{B}_s^0 \rightarrow \phi \eta' \) decay. Such pattern of interference leads to the large ratio of \(|\mathcal{A}|^2 \)

\[
R_{LO}^2(|\mathcal{A}|^2) = \frac{|\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta)_{LO}|^2}{|\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta')_{LO}|^2} = 13.14 \approx R_{S}^2(B).
\]

(61)

When the NLO contributions are taken into account, however, we find numerically

\[
\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta)_{NLO} = (0.47 + 9.47 i) \cdot \cos(39.3^0) - (-14.76 - 5.76 i) \cdot \sin(39.3^0) = 9.66 + 10.88 i,
\]

(62)

\[
\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta')_{NLO} = (0.47 + 9.47 i) \cdot \sin(39.3^0) + (-14.76 - 5.76 i) \cdot \cos(39.3^0) = -11.02 + 1.57 i,
\]

(63)

and similar numerical results for \(\mathcal{A}(B_s^0 \rightarrow \phi \eta)_{NLO} \) and \(\mathcal{A}(B_s^0 \rightarrow \phi \eta')_{NLO} \). It is then simple to define the ratio \(R_{S}^{NLO} \) in the following form

\[
R_{S}^{NLO}(|\mathcal{A}|^2) = \frac{|\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta)_{NLO}|^2 + |\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta')_{NLO}|^2}{|\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta')_{NLO}|^2 + |\mathcal{A}(\bar{B}_s^0 \rightarrow \phi \eta')_{NLO}|^2} = 2.2 \approx R_{S}^{NLO}(B).
\]

(64)

One can see that the strength of the interference at the NLO level become a little weaker than that at the LO level, the value of the ratio consequently changed its value from a large 13 to a relatively small one 2.2. For \(\bar{B}_s^0 \rightarrow \phi \eta' \) decay, based on the data collected in the period
of RUN-I, the LHCb Collaboration put an upper limit on its branching ratio very recently [45]: $B(\bar{B}_s^0 \rightarrow \phi \eta^\prime) < 0.82 \times 10^{-6}$ at 90% and 1.01 \times 10^{-6} at 95% confidence level (CL). The PQCD predictions and the QCDF prediction as given in Ref. [12] agree with this limit, while the central value of the QCDF prediction as given in Ref. [14] is likely too large. The future LHCb and/or Belle-II measurements for this kind of decays may be helpful for us to examine the mixing pattern between $\eta-\eta^\prime$ system.

For $\bar{B}_s^0 \rightarrow \omega \eta$ and $\omega \eta^\prime$ decays, the difference between the PQCD predictions for their branching ratios can be understood by a similar mechanism: the interference effects between the decay amplitude $A(\omega \eta)$ and $A(\omega \eta_s)$. (5) For the “color-suppressed-tree” decay $\bar{B}_s^0 \rightarrow \eta K^{*0}$, the total NLO contribution is negligibly small. For other three same kind decays $\bar{B}_s^0 \rightarrow K^0(\rho^0, \omega)$ and $\bar{B}_s^0 \rightarrow \eta^\prime K^{*0}$, however, the NLO contributions can provide a factor of $2 \sim 4$ enhancement to their branching ratios. The central values of the NLO PQCD predictions for the branching ratios of above four decays agree well with those QCDF predictions as given in Ref. [12] within one standard deviation, but smaller than those QCDF predictions as given in Ref. [14] by a factor of $3 \sim 5$. Such model differences will be examined by the LHCb (RUN-II) and/or Belle-II experiments.

(6) For the three “Electroweak-Penguin” $\bar{B}_s^0 \rightarrow \eta(\rho^0)$ and $\pi^0 \phi$ decays, the NLO corrections comes only from the usage of the NLO Wilson coefficients $C_i(\mu)$, the $\alpha_s(\mu)$ at two-loop level and the so-called “Vertex corrections”. The enhancement or reduction due to the inclusion of the NLO contributions are always not large: less than 45% in magnitude. The PQCD predictions for their decay rates agree well with those in QCDF approach [12,14].

(7) For the four pure “annihilation” decays, the only NLO correction comes from the usage of the NLO Wilson coefficients $C_i(\mu)$ and the $\alpha_s(\mu)$ at two-loop level. For $\bar{B}_s \rightarrow \pi^\mp \rho^\pm$ and $\pi^0 \rho^0$ decays, the NLO corrections will lead to $\sim 50\%$ reduction on their LO PQCD predictions for branching ratios, but the NLO PQCD predictions are still at the 10^{-7} level, much larger than those QCDF predictions as given in Refs. [12,14] by roughly one to two orders of magnitude. The forthcoming LHCb and Belle II experimental measurements can help us to examine such large theoretical difference.

The $\bar{B}_s \rightarrow \pi^0 \omega$ decay is also a pure “annihilation” decay, but the theoretical predictions for its branching ratios in both the PQCD and QCDF approaches are always tiny in size: less than 10^{-8} and be hardly measured even in the future LHCb experiments.

(8) By comparing the numerical results as listed in the sixth column (“+MP”) and seventh column (“NLO”), one can see easily that, the effects due to the inclusion of the NLO pieces of the $B_s \rightarrow K$ or $B_s \rightarrow \eta_s$ transition form factors are always small: $\sim 10\%$ for the first seventeen decays. For the remaining four pure “annihilation” decays, in fact, they do not receiver such kind of NLO corrections.

(9) The still missing NLO contributions in the pQCD approach are the ones to the LO hard spectator and the non-factorizable annihilation diagrams. But from the comparative studies for the LO and NLO contributions from different sources in Refs. [24,41,42], we do believe that those still missing NLO contributions are most possibly the higher order corrections to the small LO quantities, and therefore can be safely neglected.

As mentioned previously, the PQCD predictions for the branching ratios as listed in Table 1 are obtained by using the asymptotic form of the twist-3 distribution amplitudes $\phi^{s,t}_V(x)$ as shown in Eq. (20). In order to examine the high order effects explicitly, we recalculated the PQCD predictions for the branching ratios of the considered decay modes by using the NLO expressions of $\phi^{s,t}_V(x)$ as given for example in Refs. [37,46,47]:

\[B(\bar{B}_s^0 \rightarrow \phi \eta^\prime) < 0.82 \times 10^{-6} \]
\[
\phi^V (x) = \frac{3 f^T_V}{2\sqrt{6}} \left[t^2 + 0.1 t^2 (5 t^2 - 2) + 0.56 C_4^{1/2}(t) \right], \quad \text{for} \quad V = (\rho, \omega),
\]

\[
\phi^\phi (x) = \frac{3 f^T_\phi}{2\sqrt{6}} \left\{ t^2 + 0.56 C_4^{1/2}(t) + 0.23 \left[1 - \ln \left(\frac{x}{1-x} \right) \right] \right\},
\]

\[
\phi^\ell_K (x) = \frac{3 f^T_K}{2\sqrt{6}} \left\{ 0.1 t (1 + 10 t - 3 r^2) + 0.56 C_4^{1/2}(t) + 0.02 r^2 (5 r^2 - 3) + 0.12 [1 + 2 r (1 + \ln (1 - x))] \right\},
\]

\[
\phi^\ell_V (x) = \frac{3 f^T_V}{2\sqrt{6}} (-t) \left\{ 1 + 0.76 (1 - 10 x + 10 x^2) \right\}, \quad \text{for} \quad V = (\rho, \omega),
\]

\[
\phi^\ell (x) = \frac{3 f^T_\phi}{4\sqrt{6}} \left\{-t [4.5 - 11.2 x (1 - x)] + 0.46 \ln \left(\frac{x}{1-x} \right) \right\},
\]

\[
\phi^\ell_K (x) = \frac{3 f^T_K}{2\sqrt{6}} \left\{-t \left[1 - 0.2 r + 0.6 (1 - 10 x + 10 x^2) \right] - 0.04 x (1 - x) + 0.12 [1 - 6 x - 2 \ln (1 - x)] \right\},
\]

where \(C_4^{1/2}(t) = (3 - 30 r^2 + 35 r^4)/8 \) with \(t = 2 x - 1 \) is one of the Gegenbauer polynomials \(C_n^{1/2}(t) \). We found that the resultant changes of the PQCD predictions for all considered decays are very small in magnitude. For \(\bar{B}_s^0 \to \pi^- K^{**} \) and other 5 typical decay channels, for example, the new PQCD predictions for the CP-averaged branching ratios (in units of \(10^{-6}\)) obtained by employing the NLO \(\phi^{x,f}_V \) are the following:

\[
\mathcal{B}(\bar{B}_s^0 \to \pi^- K^{**}) = 4.06^{+1.23}_{-1.12},
\]

\[
\mathcal{B}(\bar{B}_s^0 \to K^+ K^{-}) = 12.86^{+2.91}_{-3.24},
\]

\[
\mathcal{B}(\bar{B}_s^0 \to K^0 \bar{K}^{*0}) = 14.96^{+3.23}_{-3.06},
\]

\[
\mathcal{B}(\bar{B}_s^0 \to K^+ \rho^-) = 15.9^{+6.3}_{-4.7},
\]

\[
\mathcal{B}(\bar{B}_s^0 \to K^0 \omega) = 0.65^{+0.20}_{-0.19},
\]

\[
\mathcal{B}(\bar{B}_s^0 \to K^0 \phi) = 0.26 \pm 0.05.
\]

It is easy to see that the differences between the central values of the PQCD predictions as given in Eqs. (67), (68) and the corresponding ones in Table 1 are indeed less than 8%, much smaller than the current theoretical uncertainties of the PQCD predictions: say around 30% as can be seen easily from above numerical results. The size of uncertainties of the PQCD predictions in Eqs. (67), (68) also become smaller slightly. For the three experimentally measured decays \(\bar{B}_s^0 \to (\pi, K) K^* \), furthermore, the PQCD predictions obtained by using \(\phi^{x,f}_V \) in their asymptotic or NLO forms all agree very well with the measured values within the errors. On the other hand, we also know that the higher Gegenbauer moments themselves are not well determined at present, more studies about higher order parts of \(\phi^{x,f}_V \) beyond the asymptotic ones are clearly required. We therefore still use the asymptotic form of \(\phi^{x,f}_V \) as given in Eq. (20) in this paper.

Now we turn to the evaluations of the CP-violating asymmetries for the considered decay modes. In the \(B_s \) system, we expect a much larger decay width difference: \(\Delta \Gamma_s/(2 \Gamma_s) \sim -10\% \) [5]. Besides the direct CP violation \(A_f^{dir} \), the CP-violating asymmetry \(S_f \) and \(H_f \) are defined as usual [25].
\[A^\text{dir}_f = \frac{|\lambda|^2 - 1}{1 + |\lambda|^2}, \quad S_f = \frac{2\text{Im}[\lambda]}{1 + |\lambda|^2}, \quad H_f = \frac{2\text{Re}[\lambda]}{1 + |\lambda|^2}. \]

They satisfy the normalization relation \(|A_f|^2 + |S_f|^2 + |H_f|^2 = 1\), while the parameter \(\lambda\) is of the form

\[\lambda = \eta_f e^{2i\beta} \frac{A(\bar{B}^0_s \to f)}{A(\bar{B}^0_s \to \bar{f})}, \]

where \(\eta_f\) is \(+1(-1)\) for a CP-even(CP-odd) final state \(f\) and \(\beta_s = \text{arg}[-V_{ts}V_{tb}^*]\) is very small in size.

The PQCD predictions for the direct CP asymmetries \(A^\text{dir}_f\), the mixing-induced CP asymmetries \(S_f\) and \(H_f\) of the considered decay modes are listed in Table 2 and Table 3. In these two tables, the label “LO” means the LO PQCD predictions, the label “NLO” means that all currently known NLO contributions are taken into account, the same definition as for the NLO PQCD predictions for the branching ratios as in Table 1. The errors here are defined in the same way as for the branching ratios. As a comparison, the LO PQCD predictions as given in Ref. [25] and the central values of the NLO QCDF predictions as given in Ref. [12] are also listed in Table 2 and 3.

Since the mechanism and the sources of the CP asymmetries for the considered decay modes are very different in the PQCD approach and the QCDF approach, we here listed the central values of the NLO QCDF predictions only. Unfortunately, no experimental measurements for the CP asymmetries of the \(\bar{B}_s^0\) decays considered here are available at present.

From the PQCD predictions for the CP violating asymmetries of the considered \(\bar{B}_s^0\) decays as listed in the Table 2 and 3, one can see the following points:

1. For all \(\bar{B}_s^0 \to PV\) decays, the LO PQCD predictions for their CP asymmetries obtained in this paper do agree well with those as given in Ref. [25].
2. For most \(\bar{B}_s^0 \to PV\) decays, the changes of the PQCD predictions for the CP asymmetries induced by the inclusion of the NLO corrections are basically not large in size. For \(\bar{B}_s^0 \to \pi^0 K^{\ast 0}\), \(\eta^0\) and \(\eta^\prime\omega\) decays, however, the PQCD predictions for their \(A^\text{dir}_f\) can change sign after the inclusion of the NLO corrections. For \(\bar{B}_s^0 \to \pi^0 \phi\), \(\eta^\prime\rho\), \(\eta\omega\) and \(\eta^\prime\phi\) decays, on the other hand, the NLO enhancements on their \(A^\text{dir}_f\) can be larger than a factor of two.
3. By comparing the numerical results as listed in Table 2, one can see that the PQCD and QCDF predictions for the CP-asymmetries of the considered decays are indeed quite different, due to the very large difference in the mechanism to induce the CP asymmetries in the pQCD approach and the QCDF approach. In the PQCD approach, fortunately, one can calculate the CP asymmetries for the pure annihilation decays. From Table 2 one can see that the PQCD predictions for the \(A^\text{dir}_f\) of the four pure annihilation decays \(\bar{B}_s^0 \to \pi(\omega, \rho)\) are small: less than 10% in magnitude.
4. Since the currently measured \(\bar{B}_s \to \pi^- K^{\ast +}\) and \(\bar{B}_s \to K^+ K^{\ast -} + K^- K^{\ast +}\) decays have a large decay rates at the level of \(10^{-5} - 10^{-6}\), their relatively large direct CP asymmetries from –30% to around 50% could be measured in the near future LHCb or Belle-II experiments. For \(\bar{B}_s \to K^0(\rho^0, \omega)\) and \(\eta'(K^{\ast 0}, \rho^0)\), however, it might be very difficult to measure their large direct CP asymmetries (around 50% in magnitude), due to their very small branching ratios at the level of \(10^{-7} - 10^{-8}\).
5. The mixing-induced \(CP\) asymmetries \(S_f\) and \(H_f\) for the considered twelve decay modes are shown in Table 3. For \(\bar{B}_s \to K_s(\omega, \phi)\) and \(\omega(\pi^0, \eta')\) decays, although their \(S_f\) are
100

Table 2
The LO and NLO PQCD predictions for the direct CP asymmetries A_{CP}^{dir} (in units of 10^{-2}) of the considered $B_s^0 \to PV$ decays. As comparisons, the LO PQCD predictions as given in Ref. [25] and the central values of the NLO QCDF predictions as given in Ref. [12] are listed in last two columns.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Class</th>
<th>LO</th>
<th>NLO</th>
<th>PQCD [25]</th>
<th>QCDF [12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{B}_s^0 \to K^+ \rho^-$</td>
<td>T</td>
<td>16.5</td>
<td>11.3^{+2.9}_{-2.8}</td>
<td>14.2^{+3.5}_{-5.6}</td>
<td>-1.5</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 K^{*0}$</td>
<td>C</td>
<td>-49.4</td>
<td>19.7^{+3.7}_{-4.9}</td>
<td>-47.1^{+36.4}_{-31.8}</td>
<td>-45.7</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 \rho^0$</td>
<td>C</td>
<td>72.1</td>
<td>69.4^{+5.5}_{-5.5}</td>
<td>73.4^{+17.5}_{-15.2}</td>
<td>24.7</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 \omega$</td>
<td>C</td>
<td>-59.3</td>
<td>-84.7^{+1.1}_{-4.5}</td>
<td>-52.1^{+23.1}_{-15.2}</td>
<td>-43.9</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 \phi$</td>
<td>PEW</td>
<td>15.1</td>
<td>49.2^{+0.5}_{-0.5}</td>
<td>13.3^{+2.6}_{-1.8}</td>
<td>27.2</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 \phi$</td>
<td>P</td>
<td>-</td>
<td>-2.9^{+1.2}_{-1.4}</td>
<td>0</td>
<td>-10.3</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 \omega$</td>
<td>ann</td>
<td>4.7</td>
<td>3.8^{+0.5}_{-0.7}</td>
<td>6.0^{+0.9}_{-6.2}</td>
<td>-</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^- \rho^+$</td>
<td>ann</td>
<td>1.6</td>
<td>-1.2^{+3.2}_{-2.3}</td>
<td>4.6^{+2.9}_{-3.6}</td>
<td>-</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^+ \rho^-$</td>
<td>ann</td>
<td>-4.3</td>
<td>-8.5^{+5.7}_{-4.8}</td>
<td>-1.3^{+2.9}_{-3.5}</td>
<td>-</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^0 \rho^0$</td>
<td>ann</td>
<td>1.0</td>
<td>4.6^{+2.5}_{-3.6}</td>
<td>1.7^{+3.9}_{-3.6}</td>
<td>-</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \pi^- K^{*+}$</td>
<td>T</td>
<td>-17.2</td>
<td>-12.1^{+1.2}_{-3.5}</td>
<td>-19.0^{+3.7}_{-5.6}</td>
<td>0.6</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^+ K^{*-}$</td>
<td>P</td>
<td>-34.1</td>
<td>-21.6^{+4.9}_{-4.3}</td>
<td>-36.6^{+5.3}_{-4.3}</td>
<td>2.2</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^- K^{*+}$</td>
<td>P</td>
<td>50.1</td>
<td>46.6^{+7.4}_{-6.7}</td>
<td>55.3^{+10.8}_{-11.2}</td>
<td>-3.1</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to K^0 K^{*0}$</td>
<td>P</td>
<td>-</td>
<td>0.8^{+0.1}_{-0.2}</td>
<td>0</td>
<td>1.7</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \bar{K}^0 K^{*0}$</td>
<td>P</td>
<td>-</td>
<td>0.1^{+0.05}_{-0.05}</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta K^{*0}$</td>
<td>C</td>
<td>38.5</td>
<td>30.6^{+10.9}_{-8.5}</td>
<td>51.2^{+15.6}_{-14.4}</td>
<td>40.2</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta^* K^{*0}$</td>
<td>C</td>
<td>-37.2</td>
<td>-63.4^{+3.1}_{-2.6}</td>
<td>-51.1^{+16.1}_{-19.8}</td>
<td>-58.6</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta \rho^0$</td>
<td>PEW</td>
<td>-14.3</td>
<td>37.7^{+1.2}_{-2.3}</td>
<td>-9.2^{+3.1}_{-2.8}</td>
<td>27.8</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta^* \rho^0$</td>
<td>PEW</td>
<td>23.9</td>
<td>54.1^{+1.2}_{-1.3}</td>
<td>25.8^{+4.6}_{-4.4}</td>
<td>28.9</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta \omega$</td>
<td>P, C</td>
<td>-9.4</td>
<td>-35.8^{+3.5}_{-3.5}</td>
<td>-16.7^{+16.5}_{-19.4}</td>
<td>-</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta^* \omega$</td>
<td>P, C</td>
<td>11.3</td>
<td>-23.5^{+5.4}_{-4.6}</td>
<td>7.7^{+10.4}_{-9.4}</td>
<td>-</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta \phi$</td>
<td>P</td>
<td>-1.2</td>
<td>-4.1^{+0.2}_{-0.3}</td>
<td>-1.8^{+0.6}_{-0.6}</td>
<td>-8.4</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \to \eta^* \phi$</td>
<td>P</td>
<td>5.1</td>
<td>14.2^{+1.3}_{-2.5}</td>
<td>7.8^{+1.9}_{-8.6}</td>
<td>-62.2</td>
</tr>
</tbody>
</table>

large in size, but it is still very difficult to measure them due to their very small decay rates.

4. Summary

In summary, we calculated the CP-averaged branching ratios and CP-violating asymmetries for all twenty one $B_s^0 \to PV$ decays with $P = (\pi, K, \eta, \eta')$ and $V = (\rho, K^*, \phi, \omega)$ by employing the PQCD factorization approach. All currently known NLO contributions, specifically those newly known NLO twist-2 and twist-3 contributions to the relevant form factor $F_0^{B_s^0 \to K^0(0)}$ and $F_0^{B_s^0 \to \eta_s^+(0)}$, are taken into account.
The LO and NLO PQCD predictions for the mixing-induced CP asymmetries (in units of 10^{-2}) S_f (the first row) and H_f (the second row). The meaning of the labels are the same as those in Table 2.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Class</th>
<th>LO</th>
<th>NLO</th>
<th>PQCD [25]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{B}_s^0 \rightarrow K_S \rho^0$</td>
<td>C</td>
<td>-54.1</td>
<td>$-7.9^{+15.2}_{-16.2}$</td>
<td>-57^{+56}_{-43}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-41.2</td>
<td>$-71.5^{+8.9}_{-9.4}$</td>
<td>-36^{+47}_{-20}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow K_S \omega$</td>
<td>C</td>
<td>-55.5</td>
<td>$30.1^{+5.2}_{-8.4}$</td>
<td>-63^{+29}_{-14}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-58.3</td>
<td>$-43.8^{+3.2}_{-3.2}$</td>
<td>-57^{+33}_{-40}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow K_S \phi$</td>
<td>P</td>
<td>-72.1</td>
<td>$-95.6^{+0.2}_{-0.1}$</td>
<td>-72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-69.3</td>
<td>$-33.4^{+2.2}_{-2.2}$</td>
<td>-69</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \pi^0 \phi$</td>
<td>PEW</td>
<td>-16.1</td>
<td>$-8.7^{+4.5}_{-4.3}$</td>
<td>-7^{+8}_{-10}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.2</td>
<td>$86.6^{+0.6}_{-0.8}$</td>
<td>98^{+1}_{-3}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \pi^0 \rho^0$</td>
<td>Anni</td>
<td>-20.1</td>
<td>$-24.5^{+1.4}_{-2.9}$</td>
<td>-19^{+2}_{-3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.3</td>
<td>$96.8^{+0.3}_{-0.7}$</td>
<td>99</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \pi^0 \omega$</td>
<td>Anni</td>
<td>-97.2</td>
<td>$-97.6^{+0.2}_{-0.2}$</td>
<td>-97^{+11}_{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-24.6</td>
<td>$-21.2^{+1.1}_{-1.1}$</td>
<td>-22^{+13}_{-29}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \eta \omega$</td>
<td>P, C</td>
<td>-4.5</td>
<td>$11.1^{+2.3}_{-2.1}$</td>
<td>-2^{+2}_{-9}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.5</td>
<td>$93.3^{+0.4}_{-0.3}$</td>
<td>99^{+1}_{-6}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \eta' \omega$</td>
<td>P, C</td>
<td>-19.3</td>
<td>$-35.4^{+5.2}_{-7.9}$</td>
<td>-11^{+5}_{-5}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96.6</td>
<td>$91.8^{+3.3}_{-4.1}$</td>
<td>99</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \eta \rho^0$</td>
<td>PEW</td>
<td>20.8</td>
<td>$10.3^{+2.3}_{-2.6}$</td>
<td>15^{+15}_{-17}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.1</td>
<td>$92.6^{+0.4}_{-0.1}$</td>
<td>98^{+1}_{-3}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \eta' \rho^0$</td>
<td>PEW</td>
<td>-29.4</td>
<td>$-11.1^{+1.3}_{-1.6}$</td>
<td>-16^{+11}_{-15}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.2</td>
<td>$82.3^{+3.6}_{-3.7}$</td>
<td>95^{+1}_{-3}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \eta \phi$</td>
<td>P</td>
<td>-3.2</td>
<td>$-4.2^{+0.5}_{-0.5}$</td>
<td>-3^{+7}_{-21}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.9</td>
<td>$99.4^{+0.1}_{-0.1}$</td>
<td>100^{+0}_{-1}</td>
</tr>
<tr>
<td>$\bar{B}_s^0 \rightarrow \eta' \phi$</td>
<td>P</td>
<td>-8.6</td>
<td>$-6.1^{+0.6}_{-0.4}$</td>
<td>0^{+2}_{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.9</td>
<td>$99.1^{+0.1}_{-0.1}$</td>
<td>100^{+0}_{-2}</td>
</tr>
</tbody>
</table>

From our analytical evaluations and numerical calculations, we found the following points:

1. The LO PQCD predictions for the branching ratios and CP-violating asymmetries of $B_s \rightarrow PV$ decays as presented in Ref. [25] are confirmed by our independent calculations. The effects of the NLO contributions on the PQCD predictions for the branching ratios and CP asymmetries of the considered decay modes are channel dependent and will be tested by future experiments.

2. For the three measured decays $\bar{B}_s^0 \rightarrow K^0 \bar{K}^{*0}$, $K^\pm K^{*\mp}$ and $\pi^- K^{*+}$, the NLO contributions can provide a large enhancement (about $30 - 45\%$) or a reduction ($\sim 37\%$) to the LO PQCD predictions for their branching ratios, respectively. From the variations of the ratios $R_{1,2,3}$,
one can see that the agreements between the PQCD predictions and the measured values are improved significantly due to the inclusion of the NLO contributions. This is the major reason why we have made great efforts to calculate the NLO contributions in the PQCD factorization approach.

(3) For the considered $B_s \to PV$ decays, the effects from the inclusion of the NLO twist-2 and twist-3 contributions to the form factor $F_0^{B_s \to K}$ and $F_0^{B_s \to \eta'}$ are always small: less than 10% in magnitude. One can read out this point easily from the following numerical results:

$$F_0^{B_s \to K}(0) = \begin{cases} 0.23 \pm 0.06, & \text{LO,} \\ 0.25 \pm 0.06, & \text{NLO,} \end{cases}$$

(71)

$$F_0^{B_s \to \eta'}(0) = \begin{cases} 0.24 \pm 0.05, & \text{LO,} \\ 0.26 \pm 0.05, & \text{NLO.} \end{cases}$$

(72)

(4) For the “tree” dominated decay $\bar{B}_s^0 \to K^+ \rho^-$ and the “color-suppressed-tree” decay $\bar{B}_s^0 \to \pi^0 K^{*0}$ decay, the different topological structure and the strong interference effects (constructive or destructive) between decay amplitude $A_{T,C}$ and A_P together leads to the very large difference in their decay rates.

(5) For $\bar{B}_s \to V(\eta, \eta')$ decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by the difference of the major contributing Feynman diagrams, and the interference effects (constructive or destructive) between the decay amplitude $A(V \eta_q)$ and $A(V \eta_s)$ due to the $\eta-\eta'$ mixing.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants No. 11775117, 11765012, 11235005, and by the Research Fund of Jiangsu Normal University under Grant No. HB2016004.

References

[4] R. Aaij, et al., LHCb Collaboration, Strong constraints on the rare decays $B_s^0 \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$, Phys. Rev. Lett. 108 (2012) 231801.

[24] Z.J. Xiao, W.F. Wang, Y.Y. Fan, Revisiting the pure annihilation decays $B_s \to \pi^+\pi^-$ and $B^0 \to K^+K^-$: the data and the perturbative QCD predictions, Phys. Rev. D 85 (2012) 094003.
[28] Z.J. Xiao, Ya Li, D.Q. Lin, Y.Y. Fan, A.J. Ma, $B^0_s \to (\pi\eta^{'0}), (\eta^{'0}\eta^{'0})$ decays and the effects of NLO contributions in pQCD, Phys. Rev. D 90 (2014) 114028.

[44] R. Aaij, et al., LHCb collaboration, Observation of $B^0_s \to K^{+}\pi^-\pi^+$ and evidence for $B^0_s \to K^{+}\pi^-\pi^+$ decays, New J. Phys. 16 (2014) 123001;

R. Aaij, et al., LHCb collaboration, First observation of the decay $B^0_s \to K^{0}\pi^0/(892)^0$ at LHCb, J. High Energy Phys. 01 (2016) 012.

