On the heavy-quark states interactions with nucleons and nuclei

A. Kaidalov
Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia

March 1993

Abstract

The method of multipole expansion in QCD is used to calculate the scattering amplitudes of heavy–quark $\langle QQ \rangle$–states on hadrons. The amplitudes near threshold and the total cross sections for $(QQ)h$–interactions at different energies are calculated. It is pointed out that these cross sections are small at energies of (QQ)–system $E < 50$ GeV. This result has serious implications for the models, which explain the (QQ)–states suppression in heavy ions collisions in terms of (QQ)–interaction with comoving hadrons.
Study of interactions of heavy quark system \((Q\bar{Q})\) with nucleons and nuclei can give a valuable information on both QCD forces at small and intermediate distances and on the space–time picture of high–energy processes. It is also important for understanding of a mechanism of the \(J/\psi\) -suppression in heavy ions collisions, which was proposed as a possible signal for the quark–gluon plasma formation.

The data on the \(A\)-dependence of \(Q\bar{Q}\)-production in hadron–nucleus collisions are not, in general, directly related to the cross section of \((Q\bar{Q})\ N\)–interaction. This was demonstrated in the case of diffractive photoproduction of \(Q\bar{Q}\) states in Refs. [1, 2]. Recently we have shown [3, 4], that the same is true for non-diffractive production of \(J/\psi\) for interactions of both hadrons and photons with nuclei. We stressed that it is not \(J/\psi\) but another \(c\bar{c}\)-state propagates a nucleus. Thus it is difficult to extract an information on \(J/\psi\ N\)–interaction cross section by studying its production on nuclei.

Here I want to emphasize that the \((Q\bar{Q})\)-hadron amplitudes can be determined theoretically. For this purpose it is convenient to use the method of multipole expansion in QCD [5, 6, 7, 8]. This approach uses the fact that for very heavy quarks the sizes of the \((Q\bar{Q})\)-bound states are small \(r \sim a_0 = 4/3m_Qa_s\), the binding energies \(E_0 = (3a_s/4)^2m_Q\) are large and these states are determined by the QCD-coulomb part of the potential. For \(J/\psi\) or \(\eta_c\) –states the radius is not so small, however applications of the multipole expansion to the \(c\bar{c}\) states [8, 9, 10] lead to very satisfactory results. I shall follow the approach developed in Refs. [7, 8] to calculate \((Q\bar{Q})\)-h scattering amplitudes. The amplitudes of \((\Phi \equiv Q\bar{Q})\)-h scattering are written as the series of matrix elements of the gluonic operators

\[
T_{\Phi h} = \sum_{n=2} d_n a_0^2 \frac{2-n}{2} < h|\frac{1}{2}(i)^n F^{0\nu}(D^0)^{n-2} F^0_\nu|h \>
\]

where \(F^{\mu\nu}\) is the gluonic tensor field, \(D^\nu\) is the covariant derivative and \(d_n\) are numbers, determined by the wave–function of the \((Q\bar{Q})\)-state. The values of \(d_n\) have been calculated in some approximation in Ref. [7].

For the forward \((Q\bar{Q})\)-h scattering amplitude the matrix elements entering Eq. (1) can be written as

\[
< h|\frac{1}{2}(i)^n F^{0\nu}(D^0)^{n-2} F^0_\nu|h > = A_n \lambda^n
\]

where \(\lambda = (s - M^2)/2M, M \equiv M_{(Q\bar{Q})}\).

Near the threshold of \((Q\bar{Q})\)-h scattering the dominant contribution is given by \(n=2\). It can be found [11, 12], using the low-energy QCD-theorem, based on the triangle anomaly relation between the gluonic field and the trace of the energy–momentum tensor \(\Theta_{\mu\nu}\) [13, 14]

\[
F_{\mu\nu} = \left(\frac{4\alpha_s}{\beta(\alpha_s)} \right) \Theta_{\mu\nu}
\]

where \(\beta(\alpha_s)\) is the Gell-Mann–Low function.

Using the property of the matrix elements of \(\Theta_{\mu\nu}\) at zero momentum transfer

\[
< h|\Theta_{\mu\nu}|h > \big|_{p_1=p_2=p} = 2p_{\mu}p_{\nu}
\]

one can obtain

\[
< h|\alpha_s E^i E^i|h > = \frac{4\pi m_h^2}{b} + O(\alpha_s)
\]

where \(b=9\) is the first coefficient of \(\beta(\alpha_s)\).
The amplitude of $J/\psi N$--elastic scattering near threshold is equal to

$$T_{\psi N} = \frac{112\pi^2 M_{\psi} m_N^2 a_0^3}{3^5 \alpha_s}$$

(6)

At higher energies the elastic scattering amplitudes and the total interaction cross sections, related to their imaginary parts, can be obtained, using the method of Ref. [8]. In this paper it was pointed out that the same coefficients A_n enter into the expansion of the gluonic structure function $f_g(x)$ of the hadron h.

In this approach the amplitude of $(Q\bar{Q})h$--scattering is determined by the diagram of Fig. 1, where all the information about the matrix elements of Eq. (2) is contained in the function $f_g(x)$ and the amplitude of $(Q\bar{Q})g$--elastic scattering is explicitly calculated. The total cross section is given by the following expression

$$\sigma_{(Q\bar{Q})h}(s) = \left(93 \frac{mb}{GeV^2} \right) \frac{3\alpha_s a_0^2}{4} \int_{1/\phi}^{1} dx f_g(x) \frac{(x\phi - 1)^{3/2}}{(x\phi)^5}$$

(7)

where $\phi = \lambda/\epsilon_0 = (s - M^2)/2M\epsilon_0$.

It follows from Eq. (7) that the energy dependence of these total cross sections are given by a universal function of variable ϕ.

For the gluonic structure function of the form

$$f_g(x) = A \left(\frac{1 - x^n}{x}\right)$$

(8)

the total cross sections tend to constant values as $s \to \infty$ (if we choose $f_g(x) \sim \frac{1}{x^{1+\alpha}}$ for $x \to 0$ then the cross sections would behave as s^Δ as $s \to \infty$), which for ψp and Υp interactions ($n=5, A=3$) are equal to [8]

$$\sigma_{\psi p}^\infty = (3 - 5)mb, \quad \sigma_{\Upsilon p}^\infty = (0.8 - 1.2)mb$$

(9)

Here I want to emphasize that there is a strong preasymptotic rise of the cross sections as energy increases, shown in Fig.2.
In order to check this theoretical prediction I shall use the assumption of the generalised vector dominance, which relates \(\sigma_{(Q\bar{Q})p} \) to the total photoproduction cross section of the \((Q\bar{Q})\)-quarks. For example

\[
\sigma_{\gamma p \rightarrow c\bar{c}X}(s) = c\sigma_{\gamma p}^{(tot)}(s) \tag{10}
\]

\[
\left[\frac{d\sigma(\gamma p \rightarrow \psi p)}{dt} \right]_{t=0} = \frac{c}{16\pi} \left(\sigma_{\psi p}^{(tot)}(s) \right)^2 (1 + \rho^2(s)) \tag{11}
\]

where \(\rho = \text{Re} T_{\psi p \rightarrow \psi p}(s,0)/\text{Im} T_{\psi p \rightarrow \psi p}(s,0) \)

The points in Fig.2 show the energy dependence of \(\sigma_{\gamma p \rightarrow c\bar{c}X} \) correspondingly normalised. It was shown in Ref.[8] that Eq.(11) also agrees with experiment.

One can obtain the model independent inequalities for \(\sigma_{(Q\bar{Q})h} \), which follow only from unitarity [15]:

\[
\sigma_{(Q\bar{Q})h}^{(tot)}(s) \geq \left[\frac{d\sigma(\gamma N \rightarrow (Q\bar{Q})N)}{dt} \right]_{t=0} \frac{16\pi}{(1 + \rho(s)^2)\sigma_{\gamma N \rightarrow (Q\bar{Q})X}(s)} \tag{12}
\]

At high energies \(E > 100 \text{ GeV} \) it is reasonable to neglect in Eq.(12) by \(\rho^2(s) \) compared to 1 and, using the experimental data on the total cross section of charm photoproduction \(\sigma_{\gamma p \rightarrow c\bar{c}X} \) and \(\left[\frac{d\sigma(\gamma p \rightarrow \psi p)}{dt} \right]_{t=0} \), we get at \(E = 100 \text{ GeV} \)

\[
\sigma_{\psi N}^{(tot)} \geq 2.8 \text{ mb} \tag{13}
\]

For light-quark states the relation (12) is close to equality [15]. If we assume that the same is true for \(\psi N \)-interaction we obtain \(\sigma_{\psi N}^{(tot)} = 2.8 \text{ mb} \) at \(E_{(lab)} = 100 \text{ GeV} \). This result is in a reasonable agreement with theoretical estimates given above.

Thus, using the model, based on the multipole expansion in QCD, we obtain the following estimates for asymptotic \(s \sim 10^3 \text{ GeV}^2 \) for \(\psi \) and \(s \sim 10^4 \text{ GeV}^2 \) for \(\Upsilon \) values of \((Q\bar{Q})h\) cross sections

\[
\sigma_{\psi N} = (3 - 5)\text{mb}, \quad \sigma_{\psi \Upsilon} = (2 - 3)\text{mb}; \tag{14}
\]

\[
\sigma_{\Upsilon N} = (0.8 - 1.2)\text{mb}, \quad \sigma_{\Upsilon \Upsilon} = (0.6 - 0.8)\text{mb} \tag{15}
\]
These cross sections decrease strongly as energy decreases and are very small near threshold. The energy dependence of σ_{T^*} is shown in Fig.3. For energies $E_T < 200 \text{ GeV}$ $\sigma_{T^*} < 0.1 \text{mb}$, while $\sigma_{\varphi^*} < 0.2 \text{mb}$ for $E_\psi < 50 \text{ GeV}$. These results are important for interpretation of the heavy-quarkonia suppression in hadron-nucleus and nucleus-nucleus collisions. If cross sections of $(Q\bar{Q})$-interactions with hadrons are so small then it is not possible to explain the experimentally observed suppression of J/ψ and Υ in the models of $(Q\bar{Q})$-interactions with comoving hadrons.

References