Towards a Dual Representation of Lattice QCD

Nov 6, 2018
7 pages
Published in:
  • PoS LATTICE2018 (2018) 224
Contribution to:
  • Published: Nov 6, 2018 by SISSA
e-Print:

Citations per year

201820192020202120222301
Abstract: (SISSA)
Our knowledge about the QCD phase diagram at finite baryon chemical potential μB\mu_{B} is limited by the well known sign problem. The path integral measure, in the standard determinantal approach, becomes complex at finite μB\mu_{B} so that standard Monte Carlo techniques cannot be directly applied. As the sign problem is representation dependent, by a suitable choice of the fundamental degrees of freedom that parameterize the partition function, it can get mild enough so that reweighting techniques can be used. A successful formulation, capable to tame the sign problem, is known since decades in the limiting case β0\beta\to 0, where performing the gauge integration first, gives rise to a dual formulation in terms of color singlets (MDP formulation). Going beyond the strong coupling limit represents a serious challenge as the gauge integrals involved in the computation are only partially known analytically and become strongly coupled for β>0\beta>0. We will present explict formulae for all the integral relevant for SU(N){\rm SU}(N) gauge theories discretised a la Wilson, and will discuss how they can be used to obtain a positive dual formulation, valid for all β\beta, for pure Yang Mills theory.
Note:
  • 7 pages, 1 figure, proceedings to talk presented at 36th annual International Symposium on Lattice Field Theory, 22-28 July 2018, East Lansing, MI, USA
  • quantum chromodynamics: critical phenomena
  • approximation: strong coupling
  • gauge field theory: Yang-Mills
  • gauge field theory: discrete
  • representation: dependence
  • path integral: measure
  • potential: chemical
  • duality: transformation
  • color: singlet
  • lattice field theory