Learning to identify electrons
Nov 3, 2020
10 pages
Published in:
- Phys.Rev.D 103 (2021) 11, 116028
- Published: Jun 1, 2021
e-Print:
- 2011.01984 [physics.data-an]
DOI:
- 10.1103/PhysRevD.103.116028 (publication)
View in:
Citations per year
Abstract: (APS)
We investigate whether state-of-the-art classification features commonly used to distinguish electrons from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the performance of typical features, revealing a gap which indicates that these lower-level data do contain untapped classification power. To reveal the nature of this unused information, we use a recently developed technique to map the deep network into a space of physically interpretable observables. We identify two simple calorimeter observables which are not typically used for electron identification, but which mimic the decisions of the convolutional network and nearly close the performance gap.Note:
- 10 pages, lots of figures, v2 for submission
- calorimeter: hadronic
- jet: background
- electron: particle identification
- particle identification: performance
- network
- gap
- calorimeter: electromagnetic
- neural network
- data analysis method
References(44)
Figures(26)
- [1]
- [2]
- [3]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]