Theoretical and experimental constraints for the equation of state of dense and hot matter
Mar 29, 2023137 pages
Published in:
- Living Rev.Rel. 27 (2024) 1, 3
- Published: Jun 5, 2024
e-Print:
- 2303.17021 [nucl-th]
View in:
Citations per year
Abstract: (Springer)
This review aims at providing an extensive discussion of modern constraints relevant for dense and hot strongly interacting matter. It includes theoretical first-principle results from lattice and perturbative QCD, as well as chiral effective field theory results. From the experimental side, it includes heavy-ion collision and low-energy nuclear physics results, as well as observations from neutron stars and their mergers. The validity of different constraints, concerning specific conditions and ranges of applicability, is also provided.- Multi-messenger physics
- Neutron star
- Dense matter
- Heavy-ion collisions
- quantum chromodynamics: perturbation theory
- heavy ion: scattering
- effective field theory: chiral
- lattice field theory
- nuclear physics
- neutron star
References(697)
Figures(35)
- Collaboration•
- •
- Phys.Rev.C 96 (2017) 6, 064908
- e-Print:•
- Collaboration•
- •
- Eur.Phys.J.C 77 (2017) 6, 428
- e-Print:•
- Collaboration•
- •
- Eur.Phys.J.C 78 (2018) 12, 997
- e-Print:•
- Collaboration•
- •
- Phys.Lett.B 789 (2019) 444-471
- e-Print:•
- Collaboration•
- •
- Phys.Rev.C 86 (2012) 014907
- e-Print:•
- Collaboration•
- •
- Phys.Lett.B 707 (2012) 330-348
- e-Print:•
- Collaboration•
- •
- JHEP 11 (2013) 183
- e-Print:•
- Collaboration•
- •
- Phys.Rev.C 90 (2014) 2, 024905
- e-Print:•
- Collaboration•
- •
- Eur.Phys.J.C 74 (2014) 11, 3157
- e-Print:•
- Collaboration•
- •
- Phys.Rev.C 101 (2020) 2, 024906
- e-Print:•
- Collaboration•
- •
- Phys.Rev.D 84 (2011) 112004
- e-Print:•
- Collaboration•
- •
- Phys.Rev.Lett. 107 (2011) 032301
- e-Print:•
- Collaboration•
- •
- Eur.Phys.J.C 71 (2011) 1655
- e-Print:•
- Collaboration•
- •
- Phys.Lett.B 696 (2011) 328-337
- e-Print:•
- •
- LIGO Scientific and
- Virgo and
- Fermi GBM and
- INTEGRAL and
- IceCube and
- IPN and
- Insight-Hxmt and
- ANTARES and
- Swift and
- Dark Energy Camera GW-EM and
- DES and
- DLT40 and
- GRAWITA and
- Fermi-LAT and
- ATCA and
- ASKAP and
- OzGrav and
- DWF (Deeper Wider Faster Program) and
- AST3 and
- CAASTRO and
- VINROUGE and
- MASTER and
- J-GEM and
- GROWTH and
- JAGWAR and
- CaltechNRAO and
- TTU-NRAO and
- NuSTAR and
- Pan-STARRS and
- KU and
- Nordic Optical Telescope and
- ePESSTO and
- GROND and
- Texas Tech University and
- TOROS and
- BOOTES and
- MWA and
- CALET and
- IKI-GW Follow-up and
- H.E.S.S. and
- LOFAR and
- LWA and
- HAWC and
- Pierre Auger and
- ALMA and
- Pi of Sky and
- Chandra Team at McGill University and
- DFN and
- ATLAS Telescopes and
- High Time Resolution Universe Survey and
- RIMAS and
- RATIR and
- SKA South Africa/MeerKAT
- •
- Astrophys.J.Lett. 848 (2017) 2, L12
- e-Print:•
- •
- LIGO Scientific and
- KAGRA and
- VIRGO
- •
- Astrophys.J.Lett. 915 (2021) 1, L5
- e-Print:•
- Collaboration•
- •
- Phys.Rev.C 103 (2021) 6, 064907
- e-Print:•
- Collaboration•
- •
- Phys.Rev.C 104 (2021) 2, 024902,
- Phys.Rev.C 111 (2025) 2, 029902 (erratum)
- e-Print:•
- Collaboration•
- •
- Phys.Rev.Lett. 127 (2021) 26, 262301
- e-Print:•
- Collaboration•
- •
- Phys.Rev.C 105 (2022) 6, 064911
- e-Print:•