Scaling MadMiner with a deployment on REANA
Apr 12, 2023
Citations per year
Abstract: (arXiv)
MadMiner is a Python package that implements a powerful family of multivariate inference techniques that leverage matrix element information and machine learning. This multivariate approach neither requires the reduction of high-dimensional data to summary statistics nor any simplifications to the underlying physics or detector response. In this paper, we address some of the challenges arising from deploying MadMiner in a real-scale HEP analysis with the goal of offering a new tool in HEP that is easily accessible. The proposed approach encapsulates a typical MadMiner pipeline into a parametrized yadage workflow described in YAML files. The general workflow is split into two yadage sub-workflows, one dealing with the physics simulations and the other with the ML inference. After that, the workflow is deployed using REANA, a reproducible research data analysis platform that takes care of flexibility, scalability, reusability, and reproducibility features. To test the performance of our method, we performed scaling experiments for a MadMiner workflow on the National Energy Research Scientific Computer (NERSC) cluster with an HT-Condor back-end. All the stages of the physics sub-workflow had a linear dependency between resources or wall time and the number of events generated. This trend has allowed us to run a typical MadMiner workflow, consisting of 11M events, in 5 hours compared to days in the original study.Note:
- To be published in proceedings of 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research
- scaling
- statistics
- family
- machine learning
- cluster
- computer
- performance
- neural network
- statistical analysis
- data analysis method
References(13)
Figures(2)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]