Citations per year
Abstract: (arXiv)
This paper investigates the notion of Krylov complexity, a measure of operator growth, within the framework of 1-matrix quantum mechanics (1-MQM). Krylov complexity quantifies how an operator evolves over time by expanding it in a series of nested commutators with the Hamiltonian. We analyze the Lanczos coefficients derived from the correlation function, revealing their linear growth even in this integrable system. This growth suggests a link to chaotic behavior, typically unexpected in integrable systems. Our findings in both ground and thermal states of 1-MQM provide new insights into the nature of complexity in quantum mechanical models and lay the groundwork for further studies in more complex holographic theories.Note:
- typo corrected
References(41)
Figures(20)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]