Planck-Scale Physics and the Peccei-Quinn Mechanism

Marc Kamionkowski*
School of Natural Sciences
Institute for Advanced Study
Olden Lane
Princeton, N.J. 08540

John March-Russell†
Joseph Henry Laboratories
Princeton University
Princeton, N.J. 08544

ABSTRACT

Global-symmetry violating higher-dimension operators, expected to be induced by Planck-scale physics, in general drastically alter the properties of the axion field associated with the Peccei-Quinn solution to the strong-CP problem, and render this solution unnatural. The particle physics and cosmology associated with other global symmetries can also be significantly changed.

* Research supported by an SSC Fellowship from the Texas National Research Laboratory Commission. e-mail: kamion@guinness.ias.edu
† Research supported by NSF grant NSF-PHY-90-21984. e-mail: jmr@puhep1.princeton.edu, jmr@iassns.bitnet
After almost twenty years of experimental verification, there is little room to doubt that quantum chromodynamics (QCD) is the true theory of the strong interactions [1]. Perhaps the only outstanding flaw in the theory arises from non-perturbative effects which, unless suppressed, lead to a neutron electric-dipole moment orders of magnitude larger than that observed. This is the infamous strong-CP problem. Essentially, the problem is that the QCD Lagrangian contains a term

$$\bar{\theta} \frac{g^2}{32\pi^2} G^{a \mu \nu} \tilde{G}_{a \mu \nu},$$

where $G^{a \mu \nu}$ is the gluon field and $\bar{\theta}$ is an undetermined parameter. This term leads to an electric-dipole moment of order $d_n \simeq 5 \times 10^{-16} \bar{\theta}$ e cm. The current experimental limit is $d_n \lesssim 10^{-25}$ e cm which constrains $\bar{\theta}$ to be less than 10^{-10}. Here we have performed an anomalous chiral rotation to move the phase of the determinant of the fermion mass-matrix into the theta-term, resulting in a net theta-angle $\bar{\theta}$.

To date, the most elegant and intriguing solution to the strong-CP problem has been that proposed by Peccei and Quinn [2] where $\bar{\theta}$ becomes a dynamical field with a potential minimized at $\bar{\theta} = 0$. Their solution involves introducing a new global chiral symmetry $U(1)_{PQ}$ spontaneously broken at a scale f_{PQ} which leads to a Nambu-Goldstone boson, the axion [3]. Due to the anomalous nature of the $U(1)_{PQ}$ symmetry, QCD-instanton (and other, more general, non-perturbative) effects result in the axion acquiring a periodic potential

$$V_{\text{QCD}}(\bar{\theta}) = (m^i_a)^2 f_{PQ}^2 (1 - \cos \bar{\theta}),$$

minimized at $\bar{\theta} = 0$ (where, for simplicity, we consider the case where no axion domain walls occur). Here

$$m^i_a \simeq 0.4 \frac{f_\pi m_\pi}{f_{PQ}}.$$
In this Letter we make the simple observation that the existence of higher-dimension symmetry-violating operators expected to be induced at the Planck scale by quantum-gravity effects spoils the Peccei-Quinn solution to the strong-CP problem. Generally, the explicit Planck-scale symmetry-violating effects will favor a minimum of the potential at a value $\bar{\theta} \neq 0$. In order for the Peccei-Quinn mechanism to work the symmetry-breaking effects from Planck-scale physics must be small compared to those induced by QCD effects which drive $\bar{\theta}$ to zero. What we find is that in order to solve the strong-CP problem, either; (1) the couplings of symmetry-breaking operators from the Planck scale must be exponentially small, or (2) the Planck-scale potential is coincidentally minimized at $\bar{\theta} = 0$. Therefore, the Peccei-Quinn mechanism, invoked to solve a “fine-tuning” problem, is itself subject to a similar disease.

To reprise the arguments of Ref. 4, it is widely believed that Planck-scale physics results in the violation of all global symmetries. Wormholes provide one specific mechanism for this violation [5,6,7]. Black holes provide yet another. It is well known that as a consequence of the black-hole no-hair theorems [8] the global charge of a black hole is not defined; therefore, if in a scattering process a virtual or non-virtual black hole is formed from an initial state of definite global charge, the black hole decays (Hawking evaporates) [9] into final states of differing global charge. At energies small compared to the Planck mass these symmetry-violating effects may be described by higher-dimension operators in an effective theory of the light modes. On dimensional grounds, the higher dimension operators are expected to be suppressed by the appropriate power of the Planck mass resulting in symmetry-breaking operators like those introduced in Eq. (5) below.

The calculation is simple. The potential for the $U(1)_{PQ}$ field ϕ is

$$V_{0}(\phi) = \lambda(|\phi|^{2} - f_{PQ}^{2}/2)^{2}. \quad (4)$$

First we add to this a general explicit symmetry-breaking term, that might well be
induced by quantum-gravity effects, of dimension $2m + n$ and $U(1)_{PQ}$ charge of n:

$$V_g(\phi) = \frac{g}{M_{Pl}^{2m+n-4}}|\phi|^{2m+n} + h.c. + c,$$

(5)

where $g = |g| \exp(i\delta)$ is a complex coupling which might well be of order unity, and c is a constant chosen so that the minimum of V is zero. Note that we are not necessarily assuming that quantum-gravity effects explicitly violate CP. In the case where they do not violate CP (as we expect), the phase δ is just proportional to $\arg \det M_f$, and arises from the chiral $U(1)_{PQ}$ rotation that we perform to move the phase of the fermion mass matrix into the θ-term.

After spontaneous-symmetry breaking, the potential for the axion degree of freedom a due to Planck-scale effects becomes

$$V_g = (m_a^g)^2 f_{PQ}^2 [1 - \cos(na + \delta)],$$

(6)

where we define the square of the quantum-gravitationally induced axion mass to be

$$(m_a^g)^2 = |g|M_{Pl}^2 \left(\frac{f_{PQ}}{\sqrt{2}M_{Pl}} \right)^{2m+n-2}.$$

(7)

When we add this to the potential due to QCD instanton effects, Eq. (2), the complete potential for a becomes

$$V(a) = f_{PQ}^2 \left\{ (m_a^g)^2[1 - \cos(na + \delta)] + (m_a^{i})^2[1 - \cos(a)] \right\},$$

(8)

where we have shifted the axion field a so as to eliminate the $\bar{\theta}G\tilde{G}$ term in the action, and implicitly defined a new δ. (The full calculation would involve the running of the coupling constant g down from the Planck scale to the scale of the axion mass. This leads to additional factors expected to be of order $\ln(M_{Pl}/m_a) \lesssim 50$ in g which, as we will see, does not alter our main conclusions. However such considerations can be important in more general contexts.)
In any case, in order for the Peccei-Quinn mechanism to solve the strong-CP problem, the minimum of the potential should be located at $a \lesssim 10^{-10}$. After some algebra, this condition (taking $n = 1$ for simplicity) may be written as

$$\frac{|\sin \delta|}{(1 + r^2 + 2r \cos \delta)^{1/2}} \lesssim 10^{-10},$$

where $r \equiv (m_i^a)^2/(m_a^g)^2$. Therefore, if $\sin \delta$ is of order unity, we must have $r > \sim 10^{10}$.

If we demand that the coupling constant $|g|$ be $\mathcal{O}(10^{-2})$ and assume a symmetry-breaking operator of dimension 5 we find that in order to consistently solve the strong-CP problem we must have

$$f_{PQ} \lesssim 10 \text{ GeV},$$

which corresponds to axion masses $m_a \gtrsim 100 \text{ keV}$. Axions with such masses coming purely from the anomaly and strong-interaction physics have been ruled out by laboratory experiments [10]. Since in this regime $m_a^g \ll m_a^i$, the standard phenomenology of the axion will remain essentially unaltered by the Planck-scale physics (in other words the coupling of the axion to other fields is determined by f_{PQ} which in this regime is almost unaltered from its usual value for these masses). Therefore these laboratory results remain valid, and an axion that is both able to naturally solve the strong-CP problem, and is affected by Planck-scale physics in the assumed way, is disallowed by observation. This is our most significant conclusion.

Of course, we could take the couplings of the symmetry-violating operators to be exponentially small. For instance, astrophysical arguments have ruled out most possible values of the axion mass [10] (assuming that the mass is related to the matter couplings in the standard way). The only open window is now around $m_a^i \sim 10^{-5} \text{ eV}$, which corresponds to $f_{PQ} \sim 10^{12} \text{ GeV}$. If the Peccei-Quinn mechanism is to work with such a symmetry-breaking scale, the coupling of a
dimension-5 symmetry-breaking operator induced by Planck-scale physics must be

$$|g| \lesssim 10^{-55}. \quad (11)$$

Note that for this value of g it is self-consistent to use unamended astrophysical arguments since the couplings are essentially unchanged. But all we have achieved is to replace one mystery, the smallness of the observed value of $\bar{\theta}$, with another, the smallness of the coupling constants g. (Or alternatively, the mystery of why their phases δ are inexplicably related to the phase of the determinant of the fermion mass matrix, an apparently low-energy phenomenon).

Now, of course, axion-like fields have been considered in the context of string theory. For instance, the “model-independent” axion arises from the two-form field $B_{\mu\nu}$, and the characteristic axion couplings to $\text{tr} \tilde{G} \tilde{G}$ (and $\text{tr} \tilde{R} \tilde{R}$, where R is the Ricci curvature) result from the Yang-Mills and Lorentz Chern-Simons three forms ω_Y and ω_L, that appear in field strength $H = dB - \omega_Y + \omega_L$. However, not only do QCD non-perturbative effects explicitly break the Peccei-Quinn symmetry, but so do string-theoretic non-perturbative effects [11]. The important point is that, unlike Yang-Mills theories where instanton effects are generally of order $\exp(-8\pi^2/e^2)$, string instanton effects are of order $\exp(-2\pi/e)$ [12]. A reasonable (and expected) order of magnitude value of the string coupling is $e \sim e_{GUT} \sim 0.5$, leading to a value of the coupling of the higher-dimension operator $g \sim \exp(-15)$. It is significant that our constraint on the coupling, $g \lesssim 10^{-55} \sim \exp(-130)$, is stronger than this value.

We should point out that if some mechanism does select $\bar{\theta} = 0$ as the minimum of the potential, then the Peccei-Quinn mechanism will still work. However, if $m_a^q \gg m_a^i$ the mass of the axion will be $m_a \simeq m_a^q$, and for a given value of f_{PQ} the phenomenology will be altered significantly [13,14]. In short, since the QCD-instanton induced mass is a decreasing function of f_{PQ} and the quantum-gravitationally induced mass is an increasing function of f_{PQ}, there will in general

* We thank Tom Banks and Ed Witten for discussions on these points.
be a minimum mass for the axion. For example, assuming a dimension-5 symmetry-breaking operator and $|g| \sim 10^{-2}$ (at the axion scale), the minimum mass is roughly $m_a \sim 1\text{keV}$ and occurs for $f_{PQ} \sim 10^4 \text{GeV}$. Astrophysics and cosmology have been used to severely restrict the allowed values of f_{PQ} [10]; however, if the axion has a gravitationally induced mass, the constraints on f_{PQ} need to be re-examined and several are most likely invalidated [13,14].

Another point is that one might imagine a situation in which the coefficients of the leading symmetry-violating operators are very small (or zero), but those of some much higher-dimension (e.g., dimension 40,000) symmetry-violating operators are large. For instance if we take $f_{PQ} \sim 10^{12} \text{GeV}$ (for an astrophysically allowed solution to the strong-CP problem) and assume that the first operator with a large coupling has $|g|$ of order 10^{-2}, we find that the leading operator consistent with the Peccei-Quinn solution has dimension $2m + n \simeq 12$. However, this is an erroneous conclusion, unless there is some reason (such as protected continuous, or discrete [15], gauge symmetries) that forbids all the lower-dimension operators. The reason for this is simple:† If the effective theory contains a symmetry-violating operator of the form $|\phi|^2m_\phi^n$ with a coupling of order unity, then we can form symmetry-violating operators of lower dimension n by contracting legs. The inverse powers of $M_{P\Pi}$ from the operators are cancelled by positive powers of $M_{P\Pi}$ from the divergent loop integrations that must be cut off at the scale of new physics (in our case, the Planck mass), leaving suppression only by the dimensionally enforced power of $M_{P\Pi}$ and a coupling that by assumption is not small. More generally, if we have two operators, both with couplings or order unity, that violate global charge by amounts n and n' (and have arbitrary values of m), we can then form an operator of dimension $|n - n'|$ that also violates global charge (unless, of course, such an operator is “accidentally” forbidden by some other reason, such as gauge invariance). Thus, the only consistent ways in which Planck-scale symmetry violations can be suppressed are: (a) by having the lower-dimension operators

† We thank Sidney Coleman for this argument.
absolutely forbidden, or (b) by having all of the couplings of the symmetry-violating operators exponentially small.

In summary, we have shown that, unless suppressed, higher-dimension symmetry-violating operators induced by quantum-gravity effects generally drive $\bar{\theta}$ to a value other than 0, invalidating the Peccei-Quinn solution to the strong-CP problem. On the other hand, if for some reason the Planck-scale physics picks out $\bar{\theta} = 0$, the phenomenology of the standard axion is significantly altered and the astrophysical constraints on f_{PQ} may not be as restrictive as currently believed.

More generally, what we have essentially argued is that for each (continuous or discrete) global symmetry spontaneously broken at a scale f, Planck-scale physics induces a characteristic explicit-symmetry breaking scale resulting in a mass m for the pseudo-Nambu-Goldstone boson given roughly by

$$m^2 \sim g n^2 f^2 \left(\frac{f}{M_{Pl}} \right)^{2m+n-4}.$$

(12)

Since many ideas in particle physics and cosmology rely on exact or (nearly exact) global symmetries, it is clear that the existence of higher-dimensional global-symmetry-violating operators can have significant consequences, for example, on the texture [4] and late-time phase-transition models for large-scale structure formation, the evolution of global cosmic strings and monopoles, some baryogenesis scenarios, various candidate explanations for the dark matter, several recently-proposed inflationary models, and particle-physics models involving majorons, familons, schizons, or spontaneously broken discrete global symmetries (which have been thought to be severely constrained cosmologically by the evolution of domain walls) [14]. Viewed from this perspective, global symmetries are a significant, and stringent, test of the physics of the Planck scale, with many phenomenological ramifications.

After the completion of this work we were informed that previous authors have commented upon the effects of Planck-scale physics on the properties of the axion
We also understand that similar conclusions have been reached by R. Holman, S. Hsu, E. W. Kolb, R. Watkins, and L. M. Widrow \[17\], and by D. Seckel and S. M. Barr \[13\]. We gratefully thank Tom Banks, Robert Brandenburger, Sidney Coleman, Jacques Distler, Jerry Michael, John Preskill, David Seckel, Erick Weinberg, Frank Wilczek and Ed Witten for helpful discussions. MK gratefully acknowledges the hospitality of the Institute for Advanced Study.

REFERENCES

13. S. M. Barr and D. Seckel, University of Delaware, Bartol Research Institute Preprint. We thank David Seckel for notifying us of this work.

