Rotation Symmetry and Nonabelian Berry Potential

Hyun Kyu Leea and Mannque Rhob

a Department of Physics, Hanyang University
Seoul 133-791, Korea
b Service de Physique Theorique, C.E. Saclay
F-91191 Gif-sur-Yvette, France

\textbf{A B S T R A C T}

We study the role of rotational symmetry in the systems where nonabelian Berry potentials emerge as a result of integrating out fast degrees of freedom. The conserved angular momentum is constructed in the presence of a non-abelian Berry potential, which is formulated using Grassmann variables. The modifications on conventional angular momentum are discussed in close analogy with monopole systems. The diatomic molecular system discussed by Zygelman is found to have a similar structure to that of a non-abelian SU(2) charge coupled to a 't Hooft-Polyakov monopole. The abelian limit of the Berry potential in diatomic systems is shown to be the same as U(1) monopole and in a large separation limit, we observe the decoupling associated with a vanishing field tensor.

\footnotesize{Supported in part by the KOSEF under Grant No.91-08-00-04 and by Ministry of Education (BSR I-92-231)}
I. Introduction

It is well known [4] that the conservation laws of a system coupled to a symmetric background gauge field persist in modified forms. The simplest example is the angular momentum of a system coupled to a Dirac (U(1)) magnetic monopole. The conserved angular momentum is modified to a sum of mechanical angular momentum and a contribution from the magnetic field [2]. A more interesting phenomenon related to this observation is \(\text{spin-isospin} \) transmutation [3].

The purpose of this note is to investigate the modification on the conserved angular momentum due to the presence of a non-abelian Berry potential [4,5]. We are motivated to look into this matter with the aim to gain an insight that can be applied to systems that are more complex and where a simple delineation of relevant degrees of freedom is not readily available. We are in particular thinking of the variety of excitations that take place in strongly interacting systems such as light- and heavy-quark baryons which have been suggested to be understandable in terms of hierarchy of induced gauge structure [6,7]. The crucial element is that the gauge structure is generic depending only on symmetries and independent of the kinds of interactions involved, be that atomic, nuclear or elementary particle.

In section II, the theory of non-abelian Berry potentials is formulated not in the usual matrix form but using Grassmann variables. Grassmannian variables prove to be easier to work with for non-abelian Berry potentials. For instance, we can avoid the matrix form for action and gauge invariance is made more transparent. In section III, the conditions for the modified angular momentum are discussed in detail and the case of 't Hooft-Polyakov monopole will be discussed as an example. In section IV, the method will be used to construct conserved angular momenta for a system coupled to Berry potentials. Particular attention is given to the case of the diatomic molecule discussed by Zygelman [8]. Both the \(R = 0 \) and \(R = 1 \) limits for the diatomic molecule are discussed.

II. Non-abelian Berry Potential

It is now well known [4] that in a quantum system, induced gauge fields naturally appear in the space of slow variables when the fast variables are integrated out. Hereafter they will be referred to as Berry potentials. The Schrödinger equation
resulting after fast variables are integrated out is given by the following form,

\[\frac{1}{2m} (\vec{p}_R \cdot i \vec{A})^2 = \frac{\partial}{\partial t} \]

(1)

where \(\vec{A} \) is defined by

\[\vec{A}_{ab} = i a_R \vec{p}_R j_b \vec{R} i \]

(2)

\(j_b \vec{R} i \) is a ‘snap-shot’ eigenstate for a given slow variable \(\vec{R} \), which is related to the reference state \(j_i \) by a unitary operator \(U(\vec{R}) \) such that

\[j_b \vec{R} i = U(\vec{R}) j_i \]

(3)

Eq.(1) is a matrix equation where \(i \) is a column vector defined in a vector space described by \(j_i \).

Following [9], we introduce a Grassmann variable \(a \) for each \(j_i \) and rewrite the Schrodinger equation eq.(1) as

\[\frac{1}{2m} ((\vec{p}_R \cdot i \vec{A} (\vec{y}; \vec{R}))^2 = \frac{\partial}{\partial t} \]

(4)

In the above equation, internal degrees of freedom are considered to be dynamical degrees of freedom treated classically in the form of anticommuting coordinates. Equation (4) can be obtained by quantizing the system described by the following Lagrangian

\[L = \frac{1}{2m} \vec{R}^2 + i a \frac{\partial}{\partial t} \vec{A} T_{ab} \vec{R} b \]

(5)

where \(T \) is a matrix representation in the vector space of \(j_i \)’s for a generator \(T \) of \(U(\vec{R}) \),

\[[T; \vec{T}] = i f \]

(6)

Following the standard quantization procedure [8,10], we obtain the following commutation relations,

\[[\vec{p}_i; \vec{p}_j] = i \delta_{ij}; \quad \vec{f}_a; \vec{g}_b = i \delta_{ab} \]

(7)
It is then straightforward to obtain the Hamiltonian
\[H = \frac{1}{2m} (\mathbf{p} - \mathbf{A})^2 \]
where
\[\mathbf{A} = \mathbf{A} \cdot \mathbf{I} ; \]
\[\mathbf{I} = \gamma_\alpha T_{\alpha \beta} b ; \]
Using the commutation relations, it can be verified that
\[[\mathbf{I} ; \mathbf{I}] = i f \quad \mathbf{I} ; \]
The Schrödinger equation
\[H = \frac{\partial}{\partial t} ; \]
with eq. (8) leads to eq. (4). It is clear that the Lagrangian, eq. (4), is invariant under the gauge transformation
\[\mathbf{A} \rightarrow \mathbf{A} + \mathbf{I} \cdot \mathbf{f} \quad \mathbf{I} \cdot \mathbf{r} ; \]
\[a \rightarrow a + \frac{i T_{\alpha \beta} b}{} ; \]
It should be noted that eq. (13) corresponds to the gauge transformation on \(j \mathbf{A} \). We should also note that the Lagrangian (3) resembles closely the Lagrangian obtained in [1] for the chiral bag model of baryon structure when the sea quarks are integrated out.

III. Conserved Angular Momentum

Consider a particle coupled to an external gauge field of 't Hooft-Polyakov monopole [11] with a coupling constant \(g \). The magnetic field is given by
\[\mathbf{B} = \frac{\mathbf{r} A_T}{gr^2} \]
which is obtained from the gauge field \(\mathbf{A} \),
\[A_i = \frac{r_i}{gr^2} ; \]
\[\mathbf{B} = \mathbf{r} \cdot \mathbf{A} \cdot i g[A ; \mathbf{A}] ; \]
\(^2 \) More precisely it is an asymptotic form of 't Hooft-Polyakov monopole field.
Using the convention described in the previous section, the Hamiltonian of a particle coupled to a 't Hooft-Polyakov monopole can be written as:

\[
H = \frac{1}{2m} \left(\mathbf{p} \cdot \mathbf{A} \right)^2
= \frac{1}{2m} \mathbf{D} \cdot \mathbf{D}
\]

where \(\mathbf{D} = \mathbf{p} \cdot \mathbf{A} \).

It is obvious that the mechanical angular momentum \(\mathbf{L}_m \) of a particle

\[
\mathbf{L}_m = m \mathbf{r} \times \mathbf{r} \cdot \mathbf{D}
\]

does not satisfy the SU(2) algebra after canonical quantization in eq. (1) and moreover it cannot be a symmetric operator that commutes with the Hamiltonian. The conventional angular momentum, \(\mathbf{L}_0 = \mathbf{r} \times \mathbf{p} \), satisfies the usual angular momentum commutation rule. However it does not commute with the Hamiltonian and hence cannot be a conserved angular momentum of the system. This observation shows us that the construction of a conserved angular momentum of a system coupled to a topologically nontrivial gauge field is not a trivial matter.

The conserved angular momentum can be constructed by modifying \(\mathbf{L}_m \) to

\[
\mathbf{L} = \mathbf{L}_m + \mathbf{Q}
\]

where \(\mathbf{Q} = \mathbf{Q}_I \) is to be as follows. The methods to determine \(\mathbf{Q} \) have been discussed in the literature \([1,2]\). Here we adopt a rather straightforward method. The first condition required for \(\mathbf{Q} \) is the consistency condition that \(\mathbf{L} \) satisfy the SU(2) algebra

\[
[L_i;L_j] = i\epsilon_{ijk}L_k:
\]

This leads to an equation for \(\mathbf{Q} \),

\[
\mathbf{r}(\mathbf{r} \times \mathbf{E}) + \mathbf{r}(\mathbf{E} \times \mathbf{Q}) + \mathbf{D}(\mathbf{r} \cdot \mathbf{Q}) = 0:
\]

where

\[
\mathbf{D} = \mathbf{r} \times i[A;]:
\]

Hereafter we put \(g = 1 \) for close analogy with eq. (4).
The second equation is obtained by requiring that \(L \) commute with \(H \),

\[
[L,H] = 0; \tag{23}
\]

Eq. (23) can be replaced by a stronger condition

\[
[L_i,D_j] = i_{ijk}D_k; \tag{24}
\]

which leads to

\[
D_iQ_j + i_{ijk}B_{ij}B_j = 0; \tag{25}
\]

It is obvious that \(L \) satisfying eq. (24) or (25) commutes with the Hamiltonian eq. (17).

It is interesting to note that eq. (25) is the condition for the \"spherically symmetric potential\" discussed by Jackiw [13]. Here we can verify it in a more straightforward way using eq. (24). Moreover the meaning of spherical symmetry becomes clear from eq. (23).

In the case of \(t \) Hooft-Polyakov monopole, eqs. (14) and (15), it can be shown that

\[
Q = r(\hat{r} \cdot I) \tag{26}
\]

satisfies eqs. (21) and (25). After inserting eq. (26) into eq. (19), we get

\[
L = L_m + r(\hat{r} \cdot I) \tag{27}
\]

\[
= \vec{r} \cdot \vec{p} + I; \tag{28}
\]

where

\[
I_i = \hat{I}_i; \tag{29}
\]

Eq. (26, 29) shows clearly how the isospin-spin transmutation occurs in a system where a particle is coupled to a nonabelian monopole.

This analysis can be applied to the abelian \(U(1) \) monopole just by replacing \(\hat{r} \cdot I \) by \(-1\) in eqs. (26) and (27). Then

\[
Q = \hat{r}; \tag{30}
\]

\[
L = m \vec{r} - \hat{r}; \tag{31}
\]

\(^4\) We are considering a Dirac monopole with \(e = g = 1 \).
One can rewrite eq. (31) in a more familiar form seen in the literature

\[L = \mathbf{p} \cdot \mathbf{\omega}; \]

(32)

where

\[\mathbf{\omega} = \frac{(1 \cos \theta)}{\sin \theta} \mathbf{\omega}_x + \frac{(1 \cos \theta)}{\sin \theta} \mathbf{\omega}_y + \mathbf{\omega}_z; \]

(33)

IV. Rotational Symmetry of Nonabelian Berry Potential

In this section we construct conserved angular momentum in a diatomic molecule in which a Berry potential couples to the dynamics of slow degrees of freedom, corresponding to the nuclear coordinate \(\mathbf{R} \), a system that has been discussed by Zygelman [8].

The Berry potential is defined on the space spanned by the electronic states \(\mathbf{J} = 1 \) and \(\mathbf{J} = 0 \), where \(\mathbf{J} \)'s are eigenvalues of the third component of the orbital angular momentum of the electronic states. The electronic states responding to slow rotation of \(\mathbf{R} \), \(\mathbf{U}(\mathbf{R}) \) defined by

\[\mathbf{U}(\mathbf{R}) = \exp(i \mathbf{L}_z) \exp(i \mathbf{L}_y) \exp(i \mathbf{L}_x); \]

(34)

induce a Berry potential of the form

\[\mathbf{A} = \mathbf{i} \hbar \mathbf{J} \mathbf{U}(\mathbf{R}) \mathbf{U}(\mathbf{R})^\dagger \mathbf{J} \mathbf{b} \mathbf{a} \]

(35)

\[\mathbf{A} = \frac{\mathbf{A}}{\mathbf{R}} + \frac{\mathbf{A}}{\mathbf{R} \sin \mathbf{R}} \mathbf{R}; \]

(36)

where

\[\mathbf{A} = (\mathbf{R} \mathbf{T}_y \mathbf{c}, \mathbf{T}_x \mathbf{s}) \mathbf{a} \]

(37)

\[\mathbf{A} = \mathbf{T}_z (\cos \mathbf{1}) (\mathbf{R} \mathbf{c}, \mathbf{sin} (\mathbf{T}_x \mathbf{c} + \mathbf{T}_y \mathbf{s}) \mathbf{a}; \]

\(\mathbf{T}^0 \)'s are spin-1 representations of the orbital angular momentum \(\mathbf{L} \) and \(\mathbf{m} \) measures the transition amplitude between the and states

\[\mathbf{U}(\mathbf{R}) = \frac{\mathbf{1}}{2} \mathbf{i} \mathbf{L}_x \mathbf{L}_y \mathbf{L}_y \mathbf{L}_x \mathbf{j} \mathbf{k} \]

(38)
The nonvanishing field strength tensor is given by

$$ B = \frac{F}{R^2 \sin \theta} = \frac{(1/2)}{R^2} \mathbf{R} \hat{\mathbf{R}} : $$ \hspace{1cm} (39)$$

Following the procedure described in section II, introducing a Grassmannian variable for each electronic state and replacing T by I defined in eq. (9) and quantizing the corresponding Lagrangian, we obtain the Hamiltonian

$$ H = \frac{1}{2} (\mathbf{\sigma} \cdot \mathbf{A})^2 ; $$ \hspace{1cm} (40)$$

where $\mathbf{A} = \mathbf{A} \cdot I$. It should be noted that the presence of the constant which is not quantized that appears in the Berry potential is a generic feature of nontrivial nonabelian Berry potentials as can be seen in many examples [2, 3].

To find a solution of eq. (23) and eq. (25), it is better to look into the Hamiltonian in detail. Using the gauge freedom, the Hamiltonian can be rewritten in the most symmetric form. This can be done by subtracting a trivial (or pure gauge) part out of the Berry potential, which is equivalent to choosing a new gauge such that

$$ A^0 = V^V A V + V^V F V $$ \hspace{1cm} (41)$$

$$ F^0 = V^V F V $$ \hspace{1cm} (42)$$

where V is an inverse operation of U in eq. (34), i.e., $V = U^\dagger$. Then

$$ A^0 = (1) \mathbf{I} \sin \mathbf{I} \cos \mathbf{I} ; $$ \hspace{1cm} (43)$$

or more compactly

$$ A^0 = (1 \mathbf{I} \frac{\mathbf{R} \hat{\mathbf{R}}}{R^2} ; $$

and

$$ B^0 = (1 \frac{\mathbf{R} \hat{\mathbf{R}} (\mathbf{R} \hat{\mathbf{R}})}{R^2} \mathbf{I}) ; $$ \hspace{1cm} (44)$$

It is remarkable that the above Berry potential has the same structure as the Polyakov monopole, eq. (14) and eq. (15), except for the different constant factors (1) for vector potential and $(1/2)$ for magnetic field. Because of these two
different factors, however, one cannot simply take eq. (26) as a solution of (25) for the case of nonabelian Berry potentials.

Using the following identities derived from eq. (43),

\[R \ A^0 = 0; \]
\[R \ A^0 = (1) f I \ (I R) R^g; \]

the Hamiltonian, eq. (44), can be written as

\[H = \frac{1}{2} R^2 \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} + \frac{1}{2} R^2 \ (L_0 + (1) I) \ i^2 \frac{1}{2} R^2 (1) \ i^2 (I R^2) \]

(47)

Now one can show that the conserved angular momentum \(L \) is

\[L = L_0 + I; \]
\[= R \ R^g + Q; \]

(48)

(49)

with

\[Q = I + (1) (R) (R I); \]

(50)

Hence, in terms of the conserved angular momentum \(L \), the Hamiltonian becomes

\[H = \frac{1}{2} R^2 \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} + \frac{1}{2} R^2 (L_0 + I) \ i^2 \frac{1}{2} R^2 (1) \ i^2 \]

(51)

where \((I R^2) = 1\) has been used.

It is interesting to see what happens in the two extreme cases of \(\frac{\partial}{\partial R} = 0 \) and \(1 \). For \(\frac{\partial}{\partial R} = 1 \), the degenerate and states form a representation of the rotation group and hence the Berry potential (and its field tensor) vanishes or becomes a pure gauge. Then \(Q = I \) and \(L = R \ R^g + I \). Now I can be understood as the angular momentum of the electronic system which is decoupled from the spectrum. One can also understand this as the restoration of rotational symmetry in the electronic system. Physically, \(I = R \ R^g \).

For \(\frac{\partial}{\partial R} = 0 \), the and states are completely decoupled and only the \(U(1) \) monopole field can be developed on the states. \(\frac{\partial}{\partial R} \) becomes identical to eq. (30) as \(\frac{\partial}{\partial R} \) goes to zero and the Hamiltonian can be written as

\[H = \frac{1}{2} R^2 \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} + \frac{1}{2} R^2 (L_0 L_1) \]

(52)
which is a generic form for a system coupled to an \(U(1) \) monopole field. Physically this corresponds to small internuclear distance at which the and states decouple. Therefore, a truly nonabelian Berry potential can be obtained only for which is not equal to zero or one.

V. Discussion

We have described a system coupled with nonabelian Berry potentials using Grassmann variables. The advantage of this formulation is that the systematic investigation of the symmetry of the system becomes much easier than in the formulation with an action in a matrix form. For instance, the canonical quantization procedure can be easily implemented and the gauge invariance is made transparent. We have shown that the correct Schrödinger equation can be reproduced after quantization.

Two constraint equations for a conserved angular momentum have been obtained in a straightforward manner: One from the condition that the angular momentum \(L \) satisfy the \(SU(2) \) algebra and the other from the requirement \([L; H] = 0 \). It turns out that the second equation in a stronger form, eq. (2), is equivalent to the condition for a "spherically symmetric gauge potential" obtained by Jackiw. Hence our derivation is a verification of the condition of Jackiw in a different setting while clarifying the meaning of spherical symmetry.

We apply those prescriptions to a specific example, a diatomic molecular system discussed by Zygelman to reinvestigate the role of rotational symmetry in Berry potentials. We note that it has a similar structure to that of a system of an \(SU(2) \) charge coupled to a ’t Hooft-Polyakov magnetic monopole except for two different factors, (1) and (2) for vector potential and magnetic field respectively, these being a generic feature of nonabelian Berry potentials. The conserved angular momentum is found to have the same form as that of ’t Hooft-Polyakov magnetic monopole. For \(\gamma = 0 \), the and states are completely decoupled from each other such that only the \(U(1) \) monopole field can be developed on the states[14]. We demonstrate this explicitly by showing that the Hamiltonian becomes a generic form for a system coupled to an abelian monopole. For \(\gamma = 1 \), the angular momentum of the electronic system is completely decoupled from the spectrum. In this limit, the total angular momentum of the system is the sum of the mechanical angular momentum,
\(L_m \), and the angular momentum stored in the electronic system, \(I \), each of which is separately conserved. This comes about because of the restoration of rotational symmetry in the electronic system as the \(\alpha \) and \(\beta \) states become degenerate.

As mentioned in the Introduction, we were led to this investigation by the belief that the situation in diatomic molecules presents a generic case and a clear understanding of the Berry potentials guising there could lead to an insight into other more complex situations. For instance, the decoupling of slow and fast variables, or equivalently the restoration of rotational symmetry, seems to occur also in such complex phenomena as excitation spectra of heavy-quark baryons in strong interaction physics although it does not seem to take place in light-quark systems [7]. Our hope is that the lesson from the diatomic molecule could provide an understanding of this difficult problem.

Acknowledgements

We are grateful for continuous discussions with Maciej Nowak and Ismail Zayed whose critical remarks motivated us to look into the problem addressed here.
References

