First Measurement of the CP-Violation Parameter

$\eta_{+-\gamma}$ in Neutral Kaon Decays

E.J. Ramberg et al
The E731 Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

December 1992

Submitted to Physical Review Letters

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
First Measurement of the CP-Violation Parameter
η_1, γ in Neutral Kaon Decays

E.J. Ramberg, G.J. Bock, R. Coleman, J. Enagonio,
Y.B. Hsiung, K. Stanfield, R. Tschirhart and T. Yamanaka(a)

Fermi National Accelerator Laboratory, Batavia, Illinois 60510

A.R. Barker(b), R.A. Briere, L.K. Gibbons, G. Makoff, V. Papadimitriou(c),
J.R. Patterson(d), S. Somalwar, Y.W. Wah, B. Winstead, R. Winston,
M. Woods(e) and H. Yamamoto(f)

The Enrico Fermi Institute and the Department of Physics,
The University of Chicago, Chicago, Illinois, 60637

E.C. Swallow

Department of Physics, Elmhurst College, Elmhurst, Illinois 60126 and
The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois, 60637

G. Blair(a), G.D. Gollin(h), M. Karlsson(i), and J.K. Okamitsu(j)

Department of Physics, Princeton University, Princeton, New Jersey 08544

P. Debu, B. Peyaud, R. Turlay, and R. Vallage

Department de Physique des Particules Elementaires, Centre d'Etudes
Nucleaires de Saclay, F-91191 Gif-sur-Yvette Cedex, France
Abstract

Interference between K_S and K_L decays into the final state $\pi^+\pi^-\gamma$ has been observed for the first time in experiment 731 at Fermilab. By fitting the distribution of decays downstream of a regenerator, a new CP violation parameter $|\eta_{+-\gamma}|$, analogous to $|\eta_{+-}|$, has been measured to be $(2.15 \pm 0.26 \pm 0.20) \times 10^{-3}$, and $\phi_{+-\gamma}$, the associated phase angle, has been measured to be $(72 \pm 23 \pm 17)^\circ$. Assuming that any difference between this fit value for $\eta_{+-\gamma}$ and the previously measured value for η_{+-} can be attributed to direct CP violation in this decay, a limit of $\frac{|\epsilon_{\pi^+\pi^-\gamma}|}{\epsilon} < 0.3$ at the 90% confidence level has been made.
Decays of the neutral kaons, \(K_L^0 \) and \(K_S^0 \), have been studied in great detail because they represent the only known example of a system that exhibits violation of CP symmetry. A demonstration of this symmetry violation is the fact that the \(K_L^0 \) can decay into both CP odd and CP even final states.\(^1\) Because mixing can occur in the neutral kaon system, it is possible to see an interference pattern in the proper time distribution of its decays.\(^2\) We report here the first observation of \(K_L^0 - K_S^0 \) interference for the decay into the final state \(\pi^+ \pi^- \gamma \), and our measurement of the level of CP violation in this decay. By comparing the magnitude of the observed CP violation to that of the \(\pi^+ \pi^- \) decay mode, a limit for the amount of direct CP violation in the decay has been obtained.

The two electroweak eigenstates of neutral kaons can be described as

\[
\begin{align*}
K_L^0 &\propto [(1 + \epsilon)K^0 - (1 - \epsilon)\overline{K}^0] \\
K_S^0 &\propto [(1 + \epsilon)K^0 + (1 - \epsilon)\overline{K}^0]
\end{align*}
\]

where \(\epsilon \) is the complex parameter describing the amount of CP violation.

Because the magnitude of \(\epsilon \) is small (\(\approx 2.3 \times 10^{-3} \)), \(K_L^0 \) decays primarily into CP-odd states and \(K_S^0 \) into CP-even states. In addition, CP violation may also be present in the decay amplitudes of \(K_S^0 \) and \(K_L^0 \). Such, so-called, "direct" CP violation is characterized for the two pion decay by the complex parameter \(\epsilon' \) and is predicted to occur within the standard model due to second order weak transitions. However, the two most recent experimental searches for such an effect have not unambiguously established the presence of direct CP violation.\(^3,4\)

To search for evidence of direct CP violation in neutral kaon decay, Fermilab experiment 731 collected data on both \(K_L^0 \) and \(K_S^0 \) decaying simultaneously into the experimental apparatus. Two \(K_L^0 \) beams entered the active decay volume, whereupon one encountered a regenerator made of \(B_4C \). The regenerator consisted of 4 blocks of this material, totalling 2 interaction lengths, with scintillator following each block to veto decays and interactions occurring inside the regenerator. The regenerator alternated between the two \(K_L^0 \) beams during the course of data taking to reduce systematic errors. (A more detailed description of the apparatus may be found elsewhere.\(^5,6,9\)) Because \(K^0 \) and \(\overline{K}^0 \) interact differently in matter, \(K_S^0 \) were regenerated from the \(K_L^0 \) beam. Downstream of the regenerator, the number of decays into a
final state can be described as a function of proper time, τ, as

$$\frac{dN}{d\tau} \propto F(E_K)e^{-\tau}\left[|\rho|^2e^{-\Gamma_L\tau} + |\eta|^2e^{-\Gamma_S\tau} + 2|\rho|\cdot|\eta|\cos(\Delta m\tau + \phi_\rho - \phi_\eta)e^{-\left(\frac{m_{\pi^+}\Gamma_{\pi^+\pi^0}}{2}\right)\tau}\right]$$

(2)

where Γ_L and Γ_S are the decay widths of the K_L^0 and K_S^0, respectively, and Δm is their mass difference. The function $F(E_K)$ takes into account the energy spectrum of the incident beam and the factor $e^{-\tau}$ accounts for absorption in the regenerator. Both of these factors can be accurately determined from the 2π decay modes. The parameter ρ is the regeneration amplitude and has a power law dependence on the kaon momentum, p_K: $\rho \propto q p_K^g$, where g is a geometric factor depending on the length and density of the regenerator. From an extensive analysis of the 2π decay modes, it has been determined that $\alpha = 0.602 \pm 0.010$ for our regenerator (where the error is statistical only). The phase of the regeneration parameter, ϕ_ρ, is determined once α is known.

The complex parameter η in Equations 2 parameterizes the level of CP violation for the given decay mode and is determined experimentally by measuring the ratio between the amplitudes for K_L and K_S decaying into a final state. In the absence of direct CP violation η is equivalent to ϵ. Currently, the value of η has been determined only for the $\pi^+\pi^-$ and $\pi^0\pi^0$ decay modes, with $|\eta_{++}| = 2.268 \pm 0.023 \cdot 10^{-3}$ and $|\eta_{00}| = 2.253 \pm 0.024 \cdot 10^{-3}$. The phase angles for these complex parameters are $\phi_{++} = 46.6 \pm 1.2$ and $\phi_{00} = 46.6 \pm 2.0$. The analogous CP violation parameters for the decay into the final state $\pi^+\pi^-\gamma$ are here termed η_{+-} and ϕ_{+-}. We have shown how we isolated the $\pi^+\pi^-\gamma$ signal in our data and measured branching ratios for both K_S and K_L decays. As discussed in this reference, the decay of neutral kaons into $\pi^+\pi^-\gamma$ can occur through an inner bremsstrahlung process, or IB, for both K_L^0 and K_S^0, where the photon is emitted by one of the final state pions through an E1 transition. This bremsstrahlung process does not affect the $\pi^+\pi^-$ decay vertex, therefore the CP characteristics are unchanged, namely CP conserving for the K_S and CP violating for the K_L. Another type of decay can also occur, the direct emission, or DE, where the photon arises directly from the decay vertex, through an M1 transition. This type of decay is CP conserving for the K_L^0 and CP violating for the K_S^0. Because the $\pi^+\pi^-\gamma$ final state has these
different contributions, $\eta_{+-\gamma}$ must be defined for a pure final CP eigenstate, specifically

$$ \eta_{+-\gamma} = \frac{A(K_L \rightarrow \pi^+\pi^-\gamma E1)}{A(K_S \rightarrow \pi^+\pi^-\gamma E1)} $$

(3)

If no mixing occurs between the DE and IB forms of decay, then the DE decay will modify Equation 2 only by adding a term $\frac{f}{1-f} |\eta|^2 e^{-\Gamma t}$ where f is the fraction of K_L decays that occur through the DE process. If, however, the DE process can occur through an $E1$ transition, then mixing can occur between the two forms of decay and then the interference term of Equation 2 will also be affected, forcing the fit value of $\eta_{+-\gamma}$ as defined in Equation 3 to differ from η_{+-}. This would indicate that direct CP violation exists in this decay mode, with $\epsilon_{+-\gamma} \neq 0$.

The previous letter describes the method of data selection for the $\pi^+\pi^-\gamma$ candidates, which resulted in 3841 events in the regenerator beam before background subtraction. (An estimate of 25 events as background was obtained from the sidebands in the reconstructed P_{γ} and mass spectra.) These events had photon energies in the kaon center-of-mass larger than 20 MeV. This sample includes a K_L DE component that decays downstream of the regenerator position. Because the K^0_S decays are essentially purely IB, the photon energy spectrum of their decays can be used to separate IB from the DE component of K^0_L decays. The fraction of K^0_S events with $E_{\gamma} > 20$ MeV which occur through the DE type of decay was determined to be $f = (0.685 \pm 0.041)$.

Figure 1a shows the proper time distribution from the regenerator of these decays. Superimposed on this figure is the same distribution for Monte Carlo simulated $\pi^+\pi^-\gamma$ decays in our apparatus, normalized to the same number of events. The value for $\eta_{+-\gamma}$ in the simulation was taken to be the same as η_{+-}. Shown in Figure 1b is the same plot, except that in this instance the Monte Carlo events were generated with no interference term between K^0_L and K^0_S decays. As this figure shows, the data require the existence of such an interference term, demonstrating that the CP characteristics of this decay are similar to the two pion decay.

To fit the data for a quantitative result for the CP violation parameters of the $\pi^+\pi^-\gamma$ decay, Equation 2 (with the DE addition) was rewritten in terms of the kaon energy, E_K, and decay position in the lab, Z_{det}, instead of the combined variable of proper time.
The data were histogrammed in the variables E_K (in bins of 10 GeV from 30 to 150 GeV) and $Z_{\nu e}$ (in bins of 2 meters starting at the downstream face of the regenerator and extending 14 meters downstream). An estimate for the distribution of background was made by binning, in the same way, the data which occurred in the mass sidebands, as discussed in reference 10. This background estimate was then subtracted from the data sample. The data were then corrected, bin by bin, for the acceptance of our apparatus, as determined by Monte Carlo simulated events. The simulation contained more than 8 times the statistics of the data. The Monte Carlo assumes an amplitude for DE decay containing a ρ propagator term as postulated by Lin and Valencia11 and indicated by our results10.

Free parameters in the fit were $\eta_{+-\gamma}$, $\phi_{+-\gamma}$ and an overall normalization. The currently accepted values for the lifetimes τ_S and τ_L of the K_S and K_L, and for their mass difference, Δm, were used8 and were not allowed to vary. The value of α quoted above was used. No direct CP violation arising from the DE decay was allowed in the fit, so that if such an effect exists, it would modify the value of $\eta_{+-\gamma}$.

The result of the fit was

$$|\eta_{+-\gamma}| = (2.15 \pm 0.26) \cdot 10^{-3}$$
$$\phi_{+-\gamma} = (72 \pm 23)^\circ$$

The error is from the statistical uncertainty of the fit as determined by the fitting program. The χ^2 of the fit was 46 for 54 degrees of freedom. If the momentum exponent α in the regeneration amplitude ρ was allowed to vary as part of the fit, we obtained 0.613 ± 0.039 for its value, which agrees well with the value obtained from the two pion decays.

To derive the estimate for the systematic error, parameters used in the fit were allowed to vary within their experimentally determined range. No significant effect on the fit outcome was obtained when kaon lifetimes or their mass difference were varied. A change of $0.02 \cdot 10^{-3}$ in the fit value for $\eta_{+-\gamma}$, and 3° in $\phi_{+-\gamma}$, was seen if the expected background level was not subtracted from the data. An uncertainty of 0.005 m in the position of the regenerator (a conservative estimate obtained from the $\pi^+\pi^-$ data), translated to a change in the fit values of $\eta_{+-\gamma}$ and $\phi_{+-\gamma}$ of $0.02 \cdot 10^{-3}$ and 1.5°, respectively. If the fixed value of α was allowed to vary by 0.01, then the fit results varied by $0.05 \cdot 10^{-3}$ and 5°. Varying the value of f, the fraction of DE in K_L decays,
Table 1: Systematic errors in the fit for $\eta_{\pm \gamma}$ and $\phi_{\pm \gamma}$.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Amount changed</th>
<th>Error on $\eta_{\pm \gamma}$</th>
<th>Error on $\phi_{\pm \gamma}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background subtraction</td>
<td>100%</td>
<td>$0.02 \cdot 10^{-3}$</td>
<td>2°</td>
</tr>
<tr>
<td>Position of regenerator</td>
<td>0.005 m</td>
<td>$0.02 \cdot 10^{-3}$</td>
<td>1.5°</td>
</tr>
<tr>
<td>Value for α</td>
<td>0.10</td>
<td>$0.05 \cdot 10^{-3}$</td>
<td>5°</td>
</tr>
<tr>
<td>f_{γ} (DE fraction)</td>
<td>0.041</td>
<td>$0.06 \cdot 10^{-3}$</td>
<td>2°</td>
</tr>
<tr>
<td>Z_{vtx} acceptance</td>
<td>0.2% per m</td>
<td>$0.10 \cdot 10^{-3}$</td>
<td>3°</td>
</tr>
<tr>
<td>E_K acceptance</td>
<td>0.06% per GeV</td>
<td>$0.15 \cdot 10^{-3}$</td>
<td>16°</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$0.20 \cdot 10^{-3}$</td>
<td>17°</td>
</tr>
</tbody>
</table>

resulted in a shift of $0.06 \cdot 10^{-3}$ and 2° in the fit. Finally, we varied the acceptance correction linearly in Z_{vtx} or E_K, at a level statistically allowed by the $\pi^+\pi^-\gamma$ data. This level was 0.23% per meter for the Z_{vtx} acceptance, and 0.09% per GeV for the E_K acceptance. This is a conservative estimate for the systematic error arising from the acceptance correction, because the $\pi^+\pi^-$ and $\pi^0\pi^0$ data show no such level of disagreement with the Monte Carlo. The change in the fit values of $\eta_{\pm \gamma}$ and $\phi_{\pm \gamma}$ resulting from the modification to the acceptance correction in Z_{vtx} was $0.10 \cdot 10^{-3}$ and 3°, and from the modification to the E_K acceptance correction was $0.15 \cdot 10^{-3}$ and 16°. All of the individual contributions to the total systematic error are shown in Table 1. The total systematic error is $0.20 \cdot 10^{-3}$ on the fit value for $\eta_{\pm \gamma}$ and 17° on the fit value for $\phi_{\pm \gamma}$.

The value of η obtained implies that the level of direct CP violation in this decay is small. If all of the difference between the fit value of $\eta_{\pm \gamma}$ and the known value of ϵ were to be attributed to a direct CP violation effect in the DE decay:

$$\eta_{\pm \gamma} = \eta_{\pm} + \epsilon_{\pm \gamma}'$$

and if the phase angles of these parameters are assumed to be equal, then a limit of

$$\frac{|\epsilon_{\pm \gamma}'|}{\epsilon} < 0.3$$
can be placed at the 90% confidence level.

To conclude, we have demonstrated that interference between K_L^0 and K_S^0 exists in the decay to the final state $\pi^+\pi^-\gamma$ and that the CP violation parameters of this decay are consistent with those of the $\pi^+\pi^-$ and $\pi^0\pi^0$ decays. This result gives a limit on the level of direct CP violation in this decay.

We wish to thank Fermilab for the operation of the Tevatron and the MC beam line during the running of this experiment. This work was supported in part by the Department of Energy, the National Science Foundation, and the French Atomic Energy Commission. Two of us (G.D.G. and Y.W.W.) would like to acknowledge the support of the Department of Energy Outstanding Junior Investigator Awards. One of us (A.R.B.) acknowledges the support of the Robert R. McCormick Foundation, and one of us (Y.W.W.) wishes to thank the Enrico Fermi Institute of the University of Chicago for support provided by a Block Grant Award.
References

(a) Current address: Physics Department, Osaka University, Toyonaka, Osaka 560 Japan
(b) Current address: University of Colorado, Boulder, CO 80309
(c) Current address: Fermi National Accelerator Laboratory, Batavia, IL 60510
(d) Current address: Cornell University, Ithaca, NY 14853
(e) Current address: SLAC, Stanford, P.O. Box 4349, CA 94305
(f) Current address: Harvard University, Cambridge, MA 02138
(g) Current address: University of Oxford, Oxford, OX13RH U.K.
h) Current address: Department of Physics, U. of Illinois, Urbana, IL 61801
(i) Current address: CERN, CH-1211, Geneva 23, Switzerland
(j) Current address: Princeton Combustion Research Laboratories, Monmouth Junction, NJ 08852

6 J. Patterson thesis; University of Chicago; (1990)
7 M. Karlsson thesis; Princeton University; (1990)
9 Review of Particle Properties; (1992)
10 E.J. Ramberg et al.; to be published (1992)
Figure 1: The proper time distribution of $\pi^+\pi^-\gamma$ decays with respect to the regenerator. Figure a) includes a comparison with Monte Carlo events containing an interference term between K_S and K_L while figure b) comparison is with simulated events having no such interference term.